EP0878678B1 - Procédé et dispositif de production d'azote par séparation cryogénique d'air - Google Patents

Procédé et dispositif de production d'azote par séparation cryogénique d'air Download PDF

Info

Publication number
EP0878678B1
EP0878678B1 EP19980107748 EP98107748A EP0878678B1 EP 0878678 B1 EP0878678 B1 EP 0878678B1 EP 19980107748 EP19980107748 EP 19980107748 EP 98107748 A EP98107748 A EP 98107748A EP 0878678 B1 EP0878678 B1 EP 0878678B1
Authority
EP
European Patent Office
Prior art keywords
pressure column
nitrogen gas
medium
gas fraction
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19980107748
Other languages
German (de)
English (en)
Other versions
EP0878678A2 (fr
EP0878678A3 (fr
Inventor
Dietrich Dipl.-Ing. Rottmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19720453A external-priority patent/DE19720453A1/de
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP19980107748 priority Critical patent/EP0878678B1/fr
Publication of EP0878678A2 publication Critical patent/EP0878678A2/fr
Publication of EP0878678A3 publication Critical patent/EP0878678A3/fr
Application granted granted Critical
Publication of EP0878678B1 publication Critical patent/EP0878678B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • F25J3/04212Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product and simultaneously condensing vapor from a column serving as reflux within the or another column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen

Definitions

  • the invention relates to a process for the production of nitrogen by Cryogenic air separation according to the preamble of patent claim 1.
  • the invention is therefore based on the object of such a method and specify appropriate device, which is characterized by particularly high Profitability, in particular through low energy consumption and / or low Mark apparatus costs.
  • This object is achieved in that the nitrogen gas fraction from the High pressure column is removed.
  • the heating of the nitrogen gas fraction is regularly caused by indirect Heat exchange causes.
  • it can be in the main heat exchanger be carried out, which is used to cool the feed air.
  • the measure according to the invention is omitted at least in part by heating the Nitrogen gas fraction from the intermediate temperature to the warm temperature End of the main heat exchanger (usually about the same as the Ambient temperature) and the corresponding re-cooling.
  • Corresponding the exchange losses in the corresponding heat exchanger are lower it means less energy is lost through irreversibility.
  • the corresponding one Heat exchanger can also have fewer passages and thus can be produced more cheaply.
  • the intermediate temperature to which the nitrogen gas fraction is heated is for example 140 to 190 K below the temperature of the warm end of the Main heat exchanger.
  • the relaxation of the nitrogen gas fraction upstream of it Condensation through indirect heat exchange preferably leads to one Intermediate pressure between the pressures of the high pressure column and the medium pressure column or to a pressure below the medium pressure column pressure. Accordingly, the Pressure of the condensate reduced before introduction into the medium pressure column or can be increased, for example by a throttle valve or by a Pump.
  • the nitrogen gas fraction between the heating to a The intermediate temperature and the relaxation did not cool down. This eliminates Irreversibility by heating and cooling the nitrogen gas fraction and the corresponding heat exchange devices completely.
  • the corresponding amount can also be considered High pressure product can be obtained from the high pressure column.
  • High pressure product can be obtained from the high pressure column.
  • Pump can be used to increase the Pressure in the condensate at the high pressure column level.
  • any known method can be used to relax the nitrogen gas fraction this relaxation is preferably carried out while performing work, for example in a turbine. Part of or all of it can be used for the Process required cold can be obtained. In addition, it is possible to use the Energy gained at least partially to compress a To use product stream, for example by mechanical coupling of the Relaxation machine to a compressor.
  • the relaxed amount of nitrogen gas fraction is so large is that it does not completely liquefy against the oxygenated liquid , it is favorable if part of the expanded nitrogen gas fraction in indirect heat exchange with an intermediate liquid from the medium pressure column is condensed.
  • the this indirect heat exchange condensate is preferred applied to the medium pressure column. That through the evaporation of the Intermediate liquid gas is preferably in the medium pressure column returned.
  • the additional heating of the medium pressure column caused by this improves the separation effect of this column.
  • the corresponding additional Condenser evaporator can be inside or outside the medium pressure column be arranged.
  • the intermediate liquid is preferably in an area below the point, at the bottom liquid from the high pressure column, and at least one, preferably 1 to 30, for example 20 theoretical plates above the Medium pressure column sump withdrawn.
  • the invention also relates to a device for producing nitrogen according to claims 9 to 12.
  • Compressed air 1 cleaned in a molecular sieve station flows through one Main heat exchanger 2 and is via line 3 in a double column 4, more precisely in whose high pressure column 5, fed.
  • Oxygenated liquid 8 from the After hypothermia 9 high-pressure column 5 is fed via line 10 into the medium-pressure column 6 throttled.
  • a part of the top fraction 7 of the high pressure column is through a Main capacitor 14 guided, condensed there and preferably completely again returned to the high pressure column 5.
  • Another partial stream 17 of the top fraction 7 is led to the main heat exchanger 2.
  • the intermediate temperature is for example 175 K lower than the temperature at the warm end of the Main heat exchanger 2 (approximately the same ambient temperature).
  • the liquid in the sump of the medium pressure column 6 enters through the main condenser 14 Heat exchange with the condensing top fraction of the high pressure column.
  • From the Medium pressure column 6 are an oxygen-enriched liquid 11 gaseous nitrogen stream 12 and optionally liquid nitrogen 13 removed.
  • the gaseous nitrogen stream is via the lines 18a and 18b and through the Heat exchanger 9, 31 and 2 out. He can from line 19a under about Subtracted ambient temperature as a medium pressure product or - as in the drawing shown - brought to a further increased product pressure in a compressor 22 and be discharged as a further high-pressure product 19b.
  • the nitrogen gas fraction turns out at an intermediate temperature deducted from the main heat exchanger 2 (line 20) and then in one Relaxation machine (for example a turbine) 23 relaxed to perform work.
  • one Relaxation machine for example a turbine
  • the nitrogen gas fraction 24 is in the Liquefaction chamber of a condenser-evaporator 25 initiated.
  • There she enters indirect heat exchange with possibly supercooled in 9 oxygen-enriched liquid 28 from the sump of the medium pressure column, which evaporated, drawn off via line 29 and preferably for regeneration the molecular sieve station is used.
  • the pressure on the evaporation side of the Head capacitor 25 is preferably so by means of the throttle valve in line 28 set that the overpressure necessary for the regeneration of the molecular sieve is available.
  • the oxygen-enriched liquid can be a pump, not shown, are promoted.
  • the work obtained in the work relaxation 23 is in the example transmitted by direct mechanical coupling to a post-compressor 22 which a product stream, here nitrogen 19a from the medium pressure column, compressed.
  • another process stream can be compressed or the mechanical energy can be applied a generator or to a brake blower.
  • the pressure in the evaporation space of the top condenser 25 adjusted by means of the valve in line 28 so that after evaporation and after the passage through the heat exchanger 9 and 2 (line 29) still for the Regeneration of the molecular sieve required overpressure is present.
  • the for Evaporation of the oxygen-enriched liquid requires the amount of nitrogen (Nitrogen gas fraction) is in the expansion machine 23 to a pressure brought, which is high enough to the evaporation of the oxygenated liquid against the condensing nitrogen gas fraction To ensure 24 in the top capacitor 25, and on the other hand ensures that the Refrigeration requirements for the procedure are covered.
  • Table 1 shows preferred numerical ranges and a particularly preferred specific numerical example for the operating pressures in the method according to FIG. 1.
  • speed range example Head of the high pressure column 5 5.0 - 9.3 bar
  • 6.2 bar Head of the medium pressure column 5 1.5 - 4.35 bar 2.9 bar
  • Entry of relaxation machine 23 4.3 - 9.9 bar
  • Exit relaxation machine 23 3.0 - 6.0 bar 4.37 bar
  • Evaporation side of the condenser-evaporator 25 1.0 - 3.0 bar 1.30 bar
  • FIG. 2 shows a modification of the method and the device according to FIG. 1. Corresponding features of the two examples have the same reference numerals. In the following, only the different features of the in FIG. 2 are described process described in detail.
  • the condensate 203 is placed on the head of the medium pressure column 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (12)

  1. Procédé d'extraction d'azote par fractionnement à basse température d'air par l'intermédiaire d'une rectification à deux étapes dans une colonne double (4), qui présente une colonne haute pression (5) et une colonne moyenne pression (6), qui sont en relation d'échange thermique l'une avec l'autre, étant donné que, lors du procédé, de l'air est comprimé, purifié, refroidi dans un échangeur thermique principal (2) à contre-courant des produits de décomposition (17, 18, 29) et acheminé à la rectification (4), qu'au moins une fraction de produit d'azote (21) est évacuée de la colonne haute pression (5) et qu'une fraction gazeuse d'azote (20), provenant de la colonne double (4), est échauffée (2), détendue (23) et est amenée au moins en partie en échange thermique indirect (25) avec un liquide enrichi en oxygène (11, 28) provenant du domaine inférieur de la colonne moyenne pression (6), que la fraction gazeuse d'azote (20) est au moins partiellement condensée lors de l'échange thermique indirect (25), que le liquide enrichi en oxygène (11, 28) est au moins partiellement évaporé lors de l'échange thermique indirect (25), que le condensat (26) formé lors de l'échange thermique indirect (25) est introduit (16) au moins en partie dans la colonne moyenne pression (6) et que la fraction gazeuse d'azote (20) est échauffée en amont de la détente (23) à une température intermédiaire, qui se situe entre les températures aux extrémités froide et chaude de l'échangeur thermique principal (2), caractérisé en ce que la fraction gazeuse d'azote (20) est prélevée (7, 17) hors de la colonne haute pression (5).
  2. Procédé selon la revendication 1, caractérisé en ce que la fraction gazeuse d'azote (20) n'est pas refroidie entre l'échauffement (2) à la température intermédiaire et la détente (23).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la fraction gazeuse d'azote (20) n'est pas comprimée entre l'échauffement (2) à la température intermédiaire et la détente (23).
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la fraction gazeuse d'azote (20, 24) n'est pas comprimée entre la détente (23) et l'échange thermique indirect (25).
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'une partie (50) du condensat (26), formé lors de l'échange thermique indirect (25), est introduit (52) dans la colonne haute pression (5).
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la détente (23) de la fraction gazeuse d'azote (20) est effectuée de manière à fournir du travail.
  7. Procédé selon la revendication 6, caractérisé en ce que l'énergie obtenue lors de la détente (23) est utilisée au moins en partie en vue de la compression (22) d'un courant de produit (19a).
  8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'une partie (201) de la fraction gazeuse d'azote (24) détendue est condensée en échange thermique indirect (202) à l'aide d'un liquide intermédiaire provenant de la colonne moyenne pression (6).
  9. Dispositif en vue de l'extraction d'azote par fractionnement à basse température d'air à l'aide d'une colonne double (4), qui présente une colonne haute pression (5), une colonne moyenne pression (6), avec un échangeur thermique principal (2) ayant des passages pour l'air comprimé et purifié (1) et les produits de décomposition (17, 18, 29), avec un conduit de produit d'azote (21), qui est raccordé à la colonne haute pression (5), avec un conduit d'azote gazeux (7, 17, 20, 24), qui conduit de la colonne double (5) par l'intermédiaire de l'échangeur thermique principal (2) et d'une machine de détente (23) dans l'espace de liquéfaction d'un condenseur-évaporateur (25), et avec un conduit (11, 28) pour le liquide enrichi en oxygène, qui est raccordé au domaine inférieur de la colonne moyenne pression (6) et qui conduit au côté évaporation du condenseur-évaporateur (25), l'espace de liquéfaction du condenseur-évaporateur (25) étant raccordé par l'intermédiaire d'un conduit de condensat (26, 16) à la colonne moyenne pression (6), et le conduit d'azote gazeux (20, 24) émergeant en un endroit intermédiaire entre les extrémités froide et chaude, hors de l'échangeur thermique principal (2), caractérisé en ce que le conduit d'azote gazeux (7, 17, 20, 24) est raccordé en amont de l'échangeur thermique principal (2) à la colonne haute pression (5).
  10. Dispositif selon la revendication 9, caractérisé en ce que le conduit d'azote gazeux (20, 24) ne présente, entre l'échangeur thermique principal (2) et la machine de détente (23), aucun milieu en vue d'une modification de la température et/ou aucun milieu en vue de la modification de la pression.
  11. Dispositif selon la revendication 9 ou la revendication 10, caractérisé en ce que le conduit d'azote gazeux (20, 24) ne présente, entre la machine de détente (23) et le condenseur-évaporateur (20, 24), aucun milieu en vue de la modification de la pression.
  12. Dispositif selon l'une quelconque des revendications 9 à 11, caractérisé par un conduit de dérivation (201), qui est raccordé au conduit d'azote gazeux (24) entre la machine de détente (23) et le condenseur-évaporateur (25), et qui conduit dans l'espace de liquéfaction d'un condenseur-évaporateur (202) supplémentaire, dont l'espace de liquéfaction est raccordé au domaine intermédiaire de la colonne moyenne pression (6).
EP19980107748 1997-05-15 1998-04-28 Procédé et dispositif de production d'azote par séparation cryogénique d'air Expired - Lifetime EP0878678B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19980107748 EP0878678B1 (fr) 1997-05-15 1998-04-28 Procédé et dispositif de production d'azote par séparation cryogénique d'air

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19720453A DE19720453A1 (de) 1997-05-15 1997-05-15 Verfahren und Vorrichtung zur Gewinnung von Stickstoff durch Tieftemperaturzerlegung von Luft
DE19720453 1997-05-15
EP97113507A EP0878677A1 (fr) 1997-05-15 1997-08-05 Procédé et dispositif pour la production d'azote par séparation cryogénique d'air
EP97113507 1997-08-05
EP19980107748 EP0878678B1 (fr) 1997-05-15 1998-04-28 Procédé et dispositif de production d'azote par séparation cryogénique d'air

Publications (3)

Publication Number Publication Date
EP0878678A2 EP0878678A2 (fr) 1998-11-18
EP0878678A3 EP0878678A3 (fr) 1999-04-07
EP0878678B1 true EP0878678B1 (fr) 2002-12-04

Family

ID=26036581

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19980107748 Expired - Lifetime EP0878678B1 (fr) 1997-05-15 1998-04-28 Procédé et dispositif de production d'azote par séparation cryogénique d'air

Country Status (4)

Country Link
EP (1) EP0878678B1 (fr)
DE (1) DE59806495D1 (fr)
DK (1) DK0878678T3 (fr)
ES (1) ES2189032T3 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110192194A1 (en) * 2010-02-11 2011-08-11 Henry Edward Howard Cryogenic separation method and apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3528374A1 (de) * 1985-08-07 1987-02-12 Linde Ag Verfahren und vorrichtung zur erzeugung von stickstoff mit ueberatmosphaerischem druck
US4617036A (en) * 1985-10-29 1986-10-14 Air Products And Chemicals, Inc. Tonnage nitrogen air separation with side reboiler condenser
DE4441920C1 (de) * 1994-11-24 1996-04-04 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Stickstoff durch Tieftemperaturzerlegung

Also Published As

Publication number Publication date
EP0878678A2 (fr) 1998-11-18
DK0878678T3 (da) 2003-03-10
ES2189032T3 (es) 2003-07-01
DE59806495D1 (de) 2003-01-16
EP0878678A3 (fr) 1999-04-07

Similar Documents

Publication Publication Date Title
EP1067345B1 (fr) Procédé et dispositif pour la séparation cryogénique des constituants de l'air
EP1139046B1 (fr) Procédé et installation de production d'oxygène sous haute pression par séparation cryogénique de l'air
EP1357342B1 (fr) Système de séparation d'air cryogénique à trois colonnes avec production d'argon
EP1284404A1 (fr) Procédé et dispositif pour la production d'un produit sous pression par séparation cryogénique de l'air
EP1074805B1 (fr) Procédé et dispositif pour la production d'oxygène sous pression
EP0948730B1 (fr) Procede et dispositif de production d'azote comprime
DE10013073A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1146301A1 (fr) Procédé et dispositif de production d'azote à haute pression par séparation d'air
DE19609490A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP0768503B1 (fr) Procédé de séparation d'air à triple colonne
DE3834793A1 (de) Verfahren zur gewinnung von rohargon
EP0878677A1 (fr) Procédé et dispositif pour la production d'azote par séparation cryogénique d'air
EP0878678B1 (fr) Procédé et dispositif de production d'azote par séparation cryogénique d'air
EP1134524B1 (fr) Procédé de production d'azote gazeux
DE4441920C1 (de) Verfahren und Vorrichtung zur Gewinnung von Stickstoff durch Tieftemperaturzerlegung
DE10045128A1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
EP0775881B1 (fr) Procédé et dispositif pour la récupération d'oxygène et d'azote à pression superatmosphérique
DE60019198T2 (de) Vorrichtung und Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation
EP1189002A1 (fr) Procédé et dispositif d'obtention de produit gazeux d'une installation de séparation d'air cryogenique
EP1284403B1 (fr) Procédé et appareil de production d'oxygène par séparation d'air cryogénique
DE19819263C2 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff
EP1050728B1 (fr) Procedé et installation de séparation des gaz de l'air à une seule colonne
DE19543395A1 (de) Doppelsäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
DE19537910A1 (de) Doppelsäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
DE19933557A1 (de) Verfahren und Vorrichtung zur Erzeugung von Druckstickstoff durch Tieftemperaturzerlegung von Luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE DK ES FI FR GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991005

AKX Designation fees paid

Free format text: DE DK ES FI FR GB IT SE

17Q First examination report despatched

Effective date: 20010904

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FI FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59806495

Country of ref document: DE

Date of ref document: 20030116

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030326

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2189032

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080312

Year of fee payment: 11

Ref country code: ES

Payment date: 20080520

Year of fee payment: 11

Ref country code: DK

Payment date: 20080430

Year of fee payment: 11

Ref country code: DE

Payment date: 20080502

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20080411

Year of fee payment: 11

Ref country code: IT

Payment date: 20080428

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080408

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080430

Year of fee payment: 11

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090428

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090428

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091222

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090429