EP0802328B1 - Hydraulischer Stossheber - Google Patents

Hydraulischer Stossheber Download PDF

Info

Publication number
EP0802328B1
EP0802328B1 EP96119475A EP96119475A EP0802328B1 EP 0802328 B1 EP0802328 B1 EP 0802328B1 EP 96119475 A EP96119475 A EP 96119475A EP 96119475 A EP96119475 A EP 96119475A EP 0802328 B1 EP0802328 B1 EP 0802328B1
Authority
EP
European Patent Office
Prior art keywords
valve
ram
bellows
pressure
jack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96119475A
Other languages
English (en)
French (fr)
Other versions
EP0802328A1 (de
Inventor
Karl Obermoser
Original Assignee
Siebholz Dietmar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siebholz Dietmar filed Critical Siebholz Dietmar
Priority to AU16354/97A priority Critical patent/AU708806B2/en
Priority to PL97329346A priority patent/PL182664B1/pl
Priority to AU26380/97A priority patent/AU2638097A/en
Priority to JP53770097A priority patent/JP3853847B2/ja
Priority to CN97192909A priority patent/CN1081758C/zh
Priority to RU98120702A priority patent/RU2159361C2/ru
Priority to PCT/EP1997/001908 priority patent/WO1997040277A1/en
Priority to KR10-1998-0708318A priority patent/KR100383489B1/ko
Priority to US09/142,312 priority patent/US6234764B1/en
Priority to CZ983322A priority patent/CZ332298A3/cs
Priority to NZ331397A priority patent/NZ331397A/xx
Priority to IL12589397A priority patent/IL125893A/en
Priority to CA002249263A priority patent/CA2249263C/en
Priority to IDP971312A priority patent/ID16633A/id
Publication of EP0802328A1 publication Critical patent/EP0802328A1/de
Application granted granted Critical
Publication of EP0802328B1 publication Critical patent/EP0802328B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F7/00Pumps displacing fluids by using inertia thereof, e.g. by generating vibrations therein
    • F04F7/02Hydraulic rams

Definitions

  • the invention relates to a hydraulic jack according to the preamble of claim 1, in particular for conversion less Amounts of water under great pressure into large amounts of water under little Print.
  • Such jacks are already known from DE-C-804288.
  • As a ram are referred to as jacks that reverse the conversion of large ones Amounts of water under low pressure into small amounts of water under large Pressure can be used.
  • the jack according to the invention can both, i.e. it can optionally be used to increase pressure or flow become.
  • Suction rams have been known at least since 1905 ("inertial machines as Possibility of hydraulic-mechanical energy conversion ", lecture by Ivan Cyphelly, Fegawerk / Switzerland, held at the IHP of the RWTH Aachen, Prof. Backé, June 21, 1991). They use a ram valve, which, like the hydraulic rams with drift pipe and natural slope through which hydrodynamic pressure drop caused by water flow through the valve is created, is closed suddenly.
  • the ram valve is due to the sudden stopping of the propellant column exposed to a particularly high load, that of known suction rams is still considerably higher than with conventional hydraulic rams, at which by stopping the propellant column only the pressure at the valve is dammed up, which must be reached in order to convey into a wind boiler.
  • This high load on the jack valve has an adverse effect on the Service life of the well-known suction ram.
  • German patent application DE 19520343 described jack overcome, in which the jack valve is not as in the above mentioned prior art is formed as a check valve that by Spring force is kept open and closed by the motive water flow, but as closed by spring force and by the Driving water pressure open valve. Furthermore, the invention provides the jack valve in cooperation with one of the driving water acted upon pressure accumulator element in the manner of a resonant circuit cyclically actuate. Due to its construction, this suction ram can both work to increase pressure as well as increase volume flow.
  • Fig. 1 is a schematic representation of a first embodiment
  • Fig. 2 shows a second embodiment of the in the not previously published DE 19520343 described jack.
  • the hydraulic jack shown in Figs. 1 and 2 comprises in conventional Generally a driving water pipe 1, a delivery water pipe 2, a Jack valve 3 and a bottom valve 4 for sucking in conveyed water.
  • the ram outlet 9 is located at the end of the production water line 2
  • Jack valve 3 consists of a piston 3a and a piston 3a against a return spring 3b biasing a valve seat 6.
  • the Shock valve 3 is held closed by a spring.
  • the motive water line 1 is not only as in the state the technology with the pressure side of the jack valve 3, but also with a spring accumulator 5 is connected.
  • the pressure storage element 5 is the one shown in FIGS. 1 and 2 Embodiments of the jack formed as a spring accumulator.
  • the spring accumulator 5 has own housing 5c, which is upstream from the motive water line 1 Jack valve 3 communicates.
  • housing 5c is a through Spring 5b biased piston 5a, which is the pressure-adjustable organ of the Accumulator element forms.
  • the piston 3a, the return spring 3b and the valve seat of the jack valve 3 are also in in the embodiment of the jack shown in FIG its own, separate from the housing 5c housing 3c, so that the jack valve 3 and the spring accumulator 5 exclusively via the The motive water are in active connection with each other.
  • the elements of the spring accumulator 5 and the jack valve 3 are in housed in a common housing 10 and mechanically with each other coupled: the piston 5a of the spring accumulator 5 is at the upper end of the coupled piston-spring system arranged, and the pressure spring 5b connects the piston 5a to the underlying piston 3a of the Shock valve 3, the return spring 3b extends in the downward direction and on a fixed abutment 11 is fixed in the housing 10. The bottom end of the housing is immersed in the pumped water and is through the bottom valve 4 locked.
  • the driving water line opens into the housing 10 at the level of Storage spring 5b, while the production water pipe at the level of the lower End of the closing spring 3b branches from the housing.
  • the closing spring 3b and the pressure spring 5b are in this Embodiment of the suction ram of Fig. 2 tension springs.
  • shock jack shown in Figures 1 and 2 operates as follows:
  • the motive water flows through the motive water line 1 and tensions the Accumulator spring 5b via the driving water pressure acting on the piston 5a (Accumulator phase) until the pressure on the surface of the jack valve piston 3a minus the area of the valve seat 6, the force of the reset or Shock valve closing spring 3b overcomes. Then the opens Shock valve 3 suddenly because with the beginning of the opening Driving water pressure acts on the surface of the entire lift valve piston 3a.
  • the storage spring 5b now relaxes (relaxation phase) by the water mass in the delivery line 2 via a stroke movement of the piston 5a accelerates, causing the pressure in this line to drop until the force of the Closing spring 3b the pressure on the entire surface of the jack valve piston 3a overcomes and closes the jack valve.
  • the now subsequent renewed pressure accumulation phase sucks the further flowing Water in the delivery line 2 water from the bottom valve 4 until the Water flow due to the counter pressure caused by the head to stop is coming. Thereupon, further relaxation and Pressure storage phases.
  • the jack shown in FIG. 2 passes through like the one shown in FIG. 1 Shock lifter cyclical pressure storage and relaxation phases.
  • the shock lifter shown in Fig. 1 takes over in the shock lifter of Fig. 2 Accumulator piston 5a due to its spring coupling to the Shock valve piston 3a partially its reversing function. That is, that Driving water tensions the pressure spring 5b over the piston 5a attacking motive water pressure (accumulator phase) until the pressure on his Area minus the area of the valve seat 6 the force of the reset or Shock valve closing spring 3b overcomes. Then the opens Shock valve 3 suddenly because with the beginning of the opening Driving water pressure acts on the surface of the entire pressure piston 5a.
  • the pressure spring 5b now relaxes (relaxation phase) by the water mass in the delivery line 2 via a stroke movement of the piston 5a accelerates, causing the pressure in this line to drop until the force of the Closing spring 3b the pressure on the entire surface of the pressure accumulator piston 3a overcomes and closes the jack valve.
  • the now subsequent renewed pressure accumulation phase sucks the further flowing Water in the delivery line 2 water from the bottom valve 4 until the Water flow due to the counter pressure caused by the head to stop is coming. Thereupon, further relaxation and Pressure storage phases.
  • Fig. 2 is additionally in a free space of the housing 10 above the piston 3b an air-filled hose 8 is arranged, the pulsating movements of the Buffer valve piston 3b and the water in the delivery line 2, thereby ensuring a relatively quiet mass flow at the jack outlet 9 becomes.
  • other known buffering means can also be used be used.
  • the object of the present invention is a hydraulic To provide a jack that has a high efficiency with a compact structure and ensures a long service life, and both print and can be used to increase the volume flow.
  • the hydraulic jack according to the invention is basically the same constructed as shown in Figs. 1 and 2 and explained above.
  • a A special feature of the jack according to the invention is a mechanical one Coupling the valve seat of the jack valve with the valve seat of the Bottom valve in such a way that the kinetic energy, which when closing one Valve occurs on the other valve to open its valve member is transmitted. This is already achieved in addition to the above Treated advantages of such a jack an energetically more favorable Business.
  • Another advantage is that the harmful route between the two Valves, which is a problem in the prior art because of the kinetic Energy of the water cannot be used in this link and can cause cavitation when the jack is closed, can be kept optimally short.
  • this makes it more compact Construction of the jack ensures that the jack valve and Bottom valve are arranged in the immediate vicinity and axially.
  • the compact structure benefits from a design of the pressure accumulator Shape of a bellows, the valve member of the Bump valve carries. It also works in favor of the compact design the arrangement of the return spring for the valve member of the jack valve inside the pressure bellows. Finally comes According to the compact structure, a formation of the return spring for the bottom valve in the form of a bellows, the so in the pump is arranged that it is penetrated by the pumped water.
  • FIG. 3 shows a longitudinal sectional view through a preferred Embodiment of the jack according to the invention.
  • Functionally identical parts As in FIGS. 1 and 2, the same reference numerals are used in FIG. 3.
  • the jack shown in FIG. 3 has a generally tubular housing 20 on, with a cylindrical jacket 21 which at one, in Fig. 3 lower end, is closed by a bottom 22 and on its other, in Fig. 3rd upper end, is closed by a cover 23.
  • the inside of the tubular housing 20 is axially through a partition 24 in a sub-chamber 24 with a larger volume and a sub-chamber 26 with a smaller volume divided.
  • the bottom 22 of the housing 20 is in the illustrated embodiment formed in two parts and comprises a ring 27, the outer periphery of which Corresponds to the outer circumference of the jacket 21, and its eccentric inner circumference has an internal thread, into which a plug 28 with an external thread is screwed in.
  • a ring 27 Corresponds to the outer circumference of the jacket 21, and its eccentric inner circumference has an internal thread, into which a plug 28 with an external thread is screwed in.
  • an annular groove is formed on the outer circumference of the sealing plug 28, in which sits an O-ring 29 which is supported on the inner circumference of the ring 27.
  • a motive water pipe is connected to an inlet pipe 30 connected, a hole in the cover 23 and a corresponding hole interspersed in the partition 24.
  • Inlet pipe 30 tightly connected.
  • a tubular valve seat carrier 31 is inserted tightly, one into the smaller one Has partial chamber 26 protruding ring part 4a, which with its cover 23rd facing outside forms a valve seat 4a of the bottom valve 4, the also has a return spring 4c, which is formed as a bellows, with one end of which the valve member 4b is fixedly connected, and the other End is firmly connected to a pipe connection 32, which has a hole in the lid 23, interspersed with this and connected to a not shown Delivery line is connected.
  • valve seat 6 is formed in the form of a conical surface, which extends in the direction of the valve seat 4a of the bottom valve 4 tapers and to cooperate with a complementary spherical surface on the valve member 3a of the Shock valve 3 cooperates, also in the form of a circular disc is formed, which is fixed to the one, in Fig. 3 upper end of a bellows 5th is connected, which, as explained below, the pressure accumulator of the Shock lifter forms and with the other end firmly with the inner surface of the Sealing plug 28 is connected in the bottom of the housing 20.
  • the valve body 3 a of the jack valve 3 has a central bore that of is penetrated by a cylindrical body 35 which with its bottom valve 4 facing end into the interior enclosed by the valve seat support 31 protrudes, and which is flared at the other end, this flange-like end part for fastening the valve body 3 to the bellows 5.
  • a Bracket body for the return spring 3b formed by this spring is embraced. This body as well as the flange end of the cylindrical body 35 and this itself is completely penetrated by a capillary bore their extension takes place in a capillary tube 36, which is in the Bottom region of the holding tube 33 extends.
  • the casing of the housing 20 is in the region of the smaller subchamber 26 preferably broken in several places, and in these openings sit metal screens 37 and 38.
  • FIG. 3 schematically by a wavy line at the top of the Shown jack, this is under the surface of a water reservoir submerged.
  • the pressure in sub-chamber 25 acts when open Shock valve 3 on the interior of the bellows 4c, which is the return spring forms for the bottom valve 4, which is still closed at this time, and that existing conveyor water in this interior, and accelerates it, whereby the pressure continues to drop until it falls below the value at which the return spring 3b presses the valve body 3 again against its valve seat and thereby closes the jack valve, the pressure in the sub-chamber 25 is rebuilt.
  • valve seats for the bottom valve 4 and the jack valve 3 is the Closing energy of the respective valve advantageously for opening the respective other valve used.
  • This advantage is with conventionally built Shock jacks cannot be achieved because the valve seats of the two in question Valves (the bottom valve is a reset valve!) Separated from each other are designed so that kinetic energy does not pass from one valve to another can be transferred. Rather, the one that is released when it is closed kinetic energy through damping, for example in the sealing rubber of the valve destroyed. Such damping is conventionally also required around the so-called bouncing of the respective valve member on the valve seat prevent. This hopping occurs in those trained according to the invention the valve seat interconnected or formed from the same material Valves on because the kinetic energy from the closing valve in the other valve is initiated in order to trigger or close it support.
  • valve member is axially flowed against, and the flow runs radially apart after the flow between the valve member and through the valve seat.
  • flow of the according to the invention with common valve seat designed valves between the valve members and the associated seats radially inwards together and then axially away from the respective valve. And that's the only way given a common valve seat.
  • Another advantage of Coupling the valve seats of the two valves according to the invention consists in that the distance between the two valves is kept negligibly short can be.
  • the jack according to the invention can also be operated as a normal ram. For this it is only necessary to provide an additional spring causes the bottom valve 4 to be open in the rest position.
  • the way of working of this modified jack is as follows:
  • the production water is due to its natural gradient accelerates, and it passes through the open bottom valve 4 on the Pipe connection 32 into the open until a hydrodynamic vacuum between the Valve member 4b and the valve seat 4a and a dynamic pressure in the bellows 4c Close the bottom valve 4.
  • the jack valve 3 opens and the kinetic energy of the pumped water loads the spring accumulator (bellows 5), whereby the jack valve 3 closes again and the process as explained above, starts over.
  • the spring accumulator bellows 5 however already loaded (i.e. no pressurized water is used) that excludes Bottom valve 4 not when the water has stopped, but only after the excess energy from the spring accumulator Pumped water has accelerated in reverse or backwards.
  • the jack valve 3 After this Closing the jack valve 3 then sucks the pumped water through the bottom valve 4 water until the direction of flow reverses. The means, if no pressurized water is required, the consumption of the Pumped water back to a minimum.
  • the purpose of the capillary tube 36 or the capillary opening in the valve member is that the pressure inside the bellows 5 is equal to the middle Pressure in the bellows 4c or in the delivery line is. This ensures that the pressure difference between motive water and production water, at which the The jack valve opens regardless of the delivery head. And that's what it is Load on the external motive water pump always the same regardless of whether the jack is used to remove large amounts of surface water or to pump small amounts of water from a great depth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Glass Compositions (AREA)
  • Surgical Instruments (AREA)
  • Switches With Compound Operations (AREA)
  • Braking Systems And Boosters (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Valve Device For Special Equipments (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Pipe Accessories (AREA)
  • Vehicle Body Suspensions (AREA)
  • Percussive Tools And Related Accessories (AREA)

Description

Die Erfindung betrifft einen hydraulischen Stoßheber gemäß Oberbegriff Anspruch 1, insbesondere zur Umwandlung geringer Wassermengen unter großen Druck in große Wassermengen unter geringem Druck. Derartige Stoßheber sind bereits aus der DE-C-804288 bekannt. Als Widder werden Stoßheber bezeichnet, die umgekehrt zur Umwandlung von großen Wassermengen unter geringem Druck in geringe Wassermengen unter großem Druck eingesetzt werden können. Der erfindungsgemäße Stoßheber kann beides, d.h. er kann wahlweise druck- oder volumenstromerhöhend eingesetzt werden.
Saugwidder sind mindestens seit 1905 bekannt ("Trägheitsmaschinen als Möglichkeit der hydraulisch-mechanischen Energieumformung", Vortrag von Ivan Cyphelly, Fegawerk/Schweiz, gehalten am IHP der RWTH Aachen, Prof. Backé, 21. Juni 1991). Sie verwenden ein Widderventil, das, wie bei den hydraulischen Widdern mit Treibwasserrohr und natürlichem Gefälle, durch den hydrodynamischen Druckabfall, der durch die Wasserströmung durch das Ventil hindurch entsteht, schlagartig geschlossen wird.
Bei bekannten Saugwiddern (z.B. Deutsches Patent N 804 288, 1949, oder bei dem heute noch gebauten Saugwidder der Fa. Fegawert S.A. Le Locie/Schweiz) wird beim Schließen des Widderventils die kinetische Energie des fließenden Wassers in der Treibwasserleitung vernichtet, weil das Treibwasser abgestoppt wird. Um diesen Verlust möglichst klein zu halten, hat der Saugwidder des Fegawerks als Treibwasserleitung einen Schlauch mit extrem großem Querschnitt, wodurch außerdem hohe Geschwindigkeiten des Treibwassers vermieden werden.
Die vorstehend genannten, bekannten Saugwidder erfordern für eine einwandfreie Funktion einen bestimmten konstanten Treibwassermengenstrom, da dann, wenn der benötigte Treibwassermengenstrom unterschritten wird, das Stoßheberventil nicht mehr schließt und der Wirkungsgrad auf Null abfällt.
Das Widderventil ist durch das schlagartige Abstoppen der Treibwassersäule einer besonders hohen Belastung ausgesetzt, die bei bekannten Saugwiddern noch erheblich höher ist als bei herkömmlichen hydraulischen Widdern, bei denen durch das Abstoppen der Treibwassersäule nur der Druck am Ventil aufgestaut wird, der erreicht werden muß, um in einen Windkessel zu fördern. Diese hohe Belastung des Stoßheberventils wirkt sich ungünstig auf die Standzeit des bekannten Saugwidders aus.
Diese Nachteile werden durch den in der nicht vorveröffentlichten (EPÜ Art. 54(3)) deutschen Patentanmeldung DE 19520343 beschriebenen Stoßheber überwunden, bei dem das Stoßheberventil nicht wie beim vorstehend genannten Stand der Technik als Rückschlagventil gebildet ist, das durch Federkraft offengehalten und durch die Treibwasserströmung geschlossen wird, sondern als durch Federkraft geschlossen gehaltenes und durch den Treibwasserdruck geöffnetes Ventil. Ferner ist erfindungsgemäß vorgesehen, das Stoßheberventil in Zusammenwirkung mit einem ebenfalls vom Treibwasser beaufschlagten Druckspeicherelement in Art eines Schwingkreises zyklisch zu betätigen. Dieser Saugwidder kann aufgrund seiner Konstruktion sowohl druckerhöhend als auch volumenstromerhöhend arbeiten.
Da der Treibwasserdruck bei diesem Stoßheber vor der Öffnung des Stoßheberventils durch das druckverstellbare Organ eines Druckspeicherelements aufgenommen wird, ist gewährleistet, daß das Treibwasser beim Betrieb des Stoßhebers nicht schlagartig abstoppt, sondern diesem kontinuierlich zugeführt werden kann, wodurch das Stoßheberventil im Vergleich zum Stand der Technik deutlich entlastet wird, was der Standzeit des Stoßhebers insgesamt zugute kommt.
Erreicht wird durch den Aufbau des Stoßheberventils dieses Stoßhebers als Schließventil und dessen Ansteuerung durch das Treibwasser im Verbund mit einem Druckspeicherelement ferner, daß das Stoßheberventil auch bei kleinstem Treibwassermengenstrom noch öffnet, da der Öffnungsdruck für das Stoßheberventil durch das Druckspeicherelement auch bei minimalem Treibwasserstrom aufgebaut wird. Erreicht wird damit also eine deutliche Steigerung des Wirkungsgrads des Stoßhebers im Vergleich zu dem vorstehend abgehandelten Saugwidder.
Weitere Einzelheiten dieses Stoßhebers sind nachfolgend anhand von Fig. 1 und 2 der Zeichnung näher erläutert, demnach zeigen:
Fig. 1 eine schematische Darstellung einer ersten Ausführungsform, und Fig. 2 eine zweite Ausführungsform des in der nicht vorveröffentlichten DE 19520343 beschriebenen Stoßhebers.
Der in Fig. 1 und 2 gezeigte hydraulische Stoßheber umfaßt in herkömmlicher Weise allgemein eine Treibwasserleitung 1, eine Förderwasserleitung 2, ein Stoßheberventil 3 und ein Bodenventil 4 zum Ansaugen von Förderwasser. Am Ende der Förderwasserleitung 2 befindet sich der Widderaustritt 9. Das Stoßheberventil 3 besteht aus einem Kolben 3a und einer den Kolben 3a gegen einen Ventilsitz 6 vorspannenden Rückstell- bzw. Schließfeder 3b. Das Stoßheberventil 3 wird durch eine Feder zugehalten.
Ferner ist vorgesehen, daß die Treibwasserleitung 1 nicht nur wie beim Stand der Technik mit der Druckseite des Stoßheberventils 3, sondern zusätzlich mit einem Federspeicher 5 in Verbindung steht.
Das Druckspeicherelement 5 ist bei den in den Fig. 1 und 2 gezeigten Ausführungsformen des Stoßhebers als Federspeicher gebildet.
Gemäß der in Fig. 1 gezeigten Ausführungsform weist der Federspeicher 5 ein eigenes Gehäuse 5c, das mit der Treibwasserleitung 1 stromauf vom Stoßheberventil 3 kommuniziert. Im Gehäuse 5c befindet sich ein durch eine Feder 5b vorgespannter Kolben 5a, der das druckverstellbare Organ des Druckspeicherelements bildet.
Der Kolben 3a, die Rückstellfeder 3b und der Ventilsitz des Stoßheberventils 3 sind bei der in Fig. 1 gezeigten Ausführungsform des Stoßhebers ebenfalls in einem eigenen, vom Gehäuse 5c getrennten Gehäuse 3c untergebracht, so daß das Stoßheberventil 3 und der Federspeicher 5 ausschließlich über das Treibwasser in Wirkverbindung miteinander stehen.
In Fig. 2 sind die Elemente des Federspeichers 5 und des Stoßheberventils 3 in einem gemeinsamen Gehäuse 10 untergebracht und mechanisch miteinander gekoppelt: Der Kolben 5a des Federspeichers 5 ist am oberen Ende des gekoppelten Kolben-Federsystems angeordnet, und die Druckspeicherfeder 5b verbindet den Kolben 5a mit dem darunter liegenden Kolben 3a des Stoßheberventils 3, dessen Rückstellfeder 3b in Abwärtsrichtung verläuft und an einem ortsfesten Widerlager 11 im Gehäuse 10 festgesetzt ist. Das untere Ende des Gehäuses taucht in das Förderwasser ein und ist durch das Bodenventil 4 verschlossen.
Die Treibwasserleitung mündet in das Gehäuse 10 auf der Höhe der Speicherfeder 5b, während die Förderwasserleitung auf der Höhe des unteren Endes der Schließfeder 3b vom Gehäuse abzweigt.
Die Schließfeder 3b und die Druckspeicherfeder 5b sind bei dieser Ausführungsform des Saugwidders von Fig. 2 Zugfedern.
Der in den Fig. 1 und 2 gezeigte Stoßheber arbeitet wie folgt:
Das Treibwasser strömt durch die Treibwasserleitung 1 und spannt die Druckspeicherfeder 5b über den am Kolben 5a angreifenden Treibwasserdruck (Druckspeicherphase), bis der Druck auf die Fläche des Stoßheberventilkolbens 3a abzüglich der Fläche des Ventilsitzes 6 die Kraft der Rückstell- bzw. Stoßheberventil-Schließfeder 3b überwindet. Daraufhin öffnet das Stoßheberventil 3 schlagartig, da mit dem Beginn des Öffnens der Treibwasserdruck auf die Fläche des gesamten Stoßheberventilkolbens 3a wirkt. Die Speicherfeder 5b entspannt sich nunmehr (Entspannungsphase), indem sie die Wassermasse in der Förderleitung 2 über eine Hubbewegung des Kolbens 5a beschleunigt, wodurch der Druck in dieser Leitung fällt, bis die Kraft der Schließfeder 3b den Druck auf die gesamte Fläche des Stoßheberventilkolbens 3a überwindet und das Stoßheberventil schließt. In der sich nunmehr anschließenden erneuten Druckspeicherphase saugt das weiterströmende Wasser in der Förderleitung 2 Wasser aus dem Bodenventil 4, bis die Wasserströmung aufgrund des Gegendrucks durch die Förderhöhe zum Erliegen kommt. Daraufhin laufen zyklisch weitere Entspannungs- und Druckspeicherphasen ab.
Der in der Fig. 2 gezeigte Stoßheber durchläuft wie der in Fig. 1 gezeigte Stoßheber zyklisch Druckspeicher- und Entspannungsphasen. Im Gegensatz zu dem in Fig. 1 gezeigten Stoßheber übernimmt bei dem Stoßheber von Fig. 2 der Druckspeicher-Kolben 5a aufgrund seiner Federkopplung an den Stoßheberventilkolben 3a partiell dessen Umsteuerfunktion. Das heißt, das Treibwasser spannt die Druckspeicherfeder 5b über den am Kolben 5a angreifenden Treibwasserdruck (Druckspeicherphase), bis der Druck auf seine Fläche abzüglich der Fläche des Ventilsitzes 6 die Kraft der Rückstell- bzw. Stoßheberventil-Schließfeder 3b überwindet. Daraufhin öffnet das Stoßheberventil 3 schlagartig, da mit dem Beginn des Öffnens der Treibwasserdruck auf die Fläche des gesamten Druckspeicher-Kolbens 5a wirkt. Die Druckspeicherfeder 5b entspannt sich nunmehr (Entspannungsphase), indem sie die Wassermasse in der Förderleitung 2 über eine Hubbewegung des Kolbens 5a beschleunigt, wodurch der Druck in dieser Leitung fällt, bis die Kraft der Schließfeder 3b den Druck auf die gesamte Fläche des Druckspeicher-Kolbens 3a überwindet und das Stoßheberventil schließt. In der sich nunmehr anschließenden erneuten Druckspeicherphase saugt das weiterströmende Wasser in der Förderleitung 2 Wasser aus dem Bodenventil 4, bis die Wasserströmung aufgrund des Gegendrucks durch die Förderhöhe zum Erliegen kommt. Daraufhin laufen zyklisch weitere Entspannungs- und Druckspeicherphasen ab.
In Fig. 2 ist zusätzlich in einem Freiraum des Gehäuses 10 über dem Kolben 3b ein luftgefüllter Schlauch 8 angeordnet, der die pulsierenden Bewegungen des Stoßheberventilkolbens 3b und des Wassers in der Förderleitung 2 abpuffert, wodurch am Stoßheberaustritt 9 ein relativ ruhiger Massenstrom gewährleistet wird. Grundsätzlich können auch andere bekannte Mittel zur Pufferung verwendet werden.
Die Aufgabe der vorliegenden Erfindung besteht darin, einen hydraulischen Stoßheber bereitzustellen, der bei kompaktem Aufbau einen hohen Wirkungsgrad und eine lange Standzeit gewährleistet, und sowohl druck- wie volumenstromerhöhend betrieben werden kann.
Gelöst wird diese Aufgabe durch die Merkmale des Anspruchs 1. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
Demnach ist der erfindungsgemäße hydraulische Stoßheber vom Prinzip her so aufgebaut, wie in Fig. 1 und 2 gezeigt und vorstehend erläutert. Eine Besonderheit des erfindungsgemäßen Stoßhebers besteht in einer mechanischen Kopplung des Ventilsitzes des Stoßheberventils mit dem Ventilsitz des Bodenventils derart, daß die kinetische Energie, die beim Schließen des einen Ventils auftritt, auf das andere Ventil zum Öffnen dessen Ventilorgans übertragen wird. Erreicht wird dadurch zusätzlich zu den vorstehend bereits abgehandelten Vorteilen eines derartigen Stoßhebers ein energetisch günstiger Betrieb. Ein weiterer Vorteil ist, daß die schädliche Strecke zwischen den beiden Ventilen, die beim Stand der Technik ein Problem darstellt, weil die kinetische Energie des Wassers in dieser Verbindungsstrecke nicht genutzt werden kann und beim Schließen des Stoßhebers zu Kavitation an diesem führen kann, optimal kurz gehalten werden kann. Schließlich wird dadurch ein kompakter Aufbau des Stoßhebers gewährleistet, daß das Stoßheberventil und das Bodenventil in unmittelbarer Nachbarschaft sowie axial angeordnet sind.
Dem kompakten Aufbau zugute kommt eine Ausbildung des Druckspeichers in Gestalt eines Faltenbalgs, der an einem Ende das Ventilorgan des Stoßheberventils trägt. Ebenfalls zugunsten des kompakten Ausbaus wirkt sich die Anordnung der Rückstellfeder für das Ventilorgan des Stoßheberventils innerhalb des Druckspeicher-Faltenbalgs aus. Schließlich kommt erfindungsgemäß dem kompakten Aufbau eine Bildung der Rückstellfeder für das Bodenventil in Gestalt eines Faltenbalgs zugute, der in der Pumpe so angeordnet ist, daß er vom Förderwasser durchsetzt ist.
Nachfolgend wird die Erfindung anhand von Fig. 3 der Zeichnung beispielhaft näher erläutert; diese zeigt eine Längsschnittansicht durch eine bevorzugte Ausführungsform des erfindungsgemäßen Stoßhebers. Funktionell gleiche Teile wie in Fig. 1 und 2 sind in Fig. 3 mit denselben Bezugsziffern bezeichnet.
Der in Fig. 3 gezeigte Stoßheber weist ein allgemein rohrförmiges Gehäuse 20 auf, mit einem zylindrischen Mantel 21, der an einem, in Fig. 3 unteren Ende, durch einen Boden 22 verschlossen ist, und der an seinem anderen, in Fig. 3 oberen Ende, durch einen Deckel 23 verschlossenen ist. Das Innere des rohrförmigen Gehäuses 20 ist durch eine Trennwand 24 axial in eine volumengrößeren Teilkammer 24 und eine volumenkleineren Teilkammer 26 unterteilt.
Der Boden 22 des Gehäuses 20 ist in der dargestellten Ausführungsform zweiteilig gebildet und umfaßt einen Ring 27, dessen Außenumfang dem Außenumfang des Mantel 21 entspricht, und dessen azentrischer Innenumfang ein Innengewinde aufweist, in das ein Verschlußstopfen 28 mit Außengewinde eingeschraubt ist. Zur Abdichtung der Teile 27 und 28 in bezug aufeinander ist am Außenumfang des Verschlußstopfens 28 eine Ringnut ausgebildet, in welcher ein O-Ring 29 sitzt, der sich am Innenumfang des Rings 27 abstützt.
Eine nicht dargestellte Treibwasserleitung ist an ein Einlaßrohr 30 angeschlossen, das eine Bohrung im Deckel 23 und eine entsprechende Bohrung in der Trennwand 24 durchsetzt. Zumindest mit der Trennwand 24 ist das Einlaßrohr 30 dicht verbunden. In eine weitere Bohrung der Trennwand 24 ist dicht ein rohrförmiger Ventilsitzträger 31 eingesetzt, der einen in die kleinere Teilkammer 26 ragenden Ringteil 4a aufweist, der mit seiner zum Deckel 23 weisenden Außenseite einen Ventilsitz 4a des Bodenventils 4 bildet, das außerdem eine Rückstellfeder 4c aufweist, die als Faltenbalg gebildet ist, mit dessen einem Ende das Ventilorgan 4b fest verbunden ist, und dessen anderes Ende fest mit einem Rohranschluß 32 verbunden ist, der eine Bohrung im Deckel 23, durchsetzt fest mit diesem verbunden und an eine nicht gezeigte Förderleitung angeschlossen ist. Am anderen Ende des Ventilsitzträgers 31 ist ein Ventilsitz 6 in Gestalt einer Konusfläche gebildet, die sich in Richtung auf den Ventilsitz 4a des Bodenventils 4 verjüngt und zur Zusammenwirkung mit einer komplementär dazu gebildeten Kugelfläche am Ventilorgan 3a des Stoßheberventils 3 zusammenwirkt, das ebenfalls in Gestalt einer Kreisscheibe gebildet ist, die fest mit dem einen, in Fig. 3 oberen Ende eines Faltenbalgs 5 verbunden ist, der, wie nachfolgend erläutert, den Druckspeicher des Stoßhebers bildet und mit dem anderen Ende fest mit der Innenfläche des Verschlußstopfens 28 im Boden des Gehäuses 20 verbunden ist. An der Innenseite des ringförmigen Stoßheberventilorgans 3 stützt sich eine Rückstellfeder 3b ab, deren anderes Ende am oberen Ende eines Stützrohrs 33 abgestützt ist, das mit seinem anderen Ende in einer Bohrung des Verschlußstopfens 28 eingesetzt und mit diesem fest verbunden ist. Am unteren Ende wird das Stützrohr 33 radial von Bohrungen 34 durchsetzt, die einerseits in das Innere des Rohrs 33 und andererseits in den durch den Faltenbalg 5 umschlossenen Innenraum mündet.
Der Ventilkörper 3a des Stoßheberventils 3 hat eine zentrale Bohrung, die von einem zylindrischen Körper 35 durchsetzt ist, der mit seinem zum Bodenventil 4 weisenden Ende in den vom Ventilsitzträger 31 umschlossenen Innenraum vorsteht, und der am anderen Ende flanschartig verbreitert ist, wobei dieses flanschartige Endteil zur Befestigung des Ventilkörpers 3 am Faltenbalg 5 dient. Auf der zum Faltenbalg 5 weisenden Seite des Flansches ist ein Halterungskörper für die Rückstellfeder 3b gebildet, der von dieser Feder umgriffen wird. Dieser Körper sowie das Flanschende des zylindrischen Körpers 35 und dieser selbst ist von einer Kapillarbohrung vollständig durchsetzt, die ihre Verlängerung in einem Kapillarrohr 36 findet, das sich bis in den Bodenbereich des Halterohrs 33 erstreckt.
Der Mantel des Gehäuses 20 ist im Bereich der kleineren Teilkammer 26 vorzugsweise an mehreren Stellen durchbrochen, und in diesen Durchbrüchen sitzen Metallsiebe 37 und 38.
Wie in Fig. 3 schematisch durch eine Wellenlinie am oberen Ende des Stoßhebers dargestellt, ist dieser unter die Oberfläche eines Wasserreservoirs getaucht.
Nachfolgend wird die Funktionsweise des erfindungsgemäßen Stoßhebers erläutert, der wie vorstehend anhand von Fig. 3 erläutert, aufgebaut ist.
Von einer nicht dargestellten externen Pumpe wird Treibwasser über den Anschlußstutzen 30 in die untere Teil- bzw. Druckkammer 1 des Stoßhebers gepumpt. Da das Ventilorgan 3 durch die Rückstellfeder 3b in der Schließstellung gegen den Ventilsitz 6 des Stoßheberventils 3 gehalten wird, steigt der Druck in der Druckkammer außerhalb des Faltenbalgs 5, und dieser steigende Druck führt zu einer elastischen Verformung des bevorzugt aus Metall bestehenden Faltenbalgs 4. Das heißt, die Falten des Faltenbalgs 5 erfüllen die Funktion eines Federspeichers für den hydraulischen Saugwidder.
Der sich in der Teilkammer 25 aufbauende Flüssigkeitsdruck bewirkt eine steigende Kraft auf die das Stoßheberventilorgan 3a tragende Stirnfläche des Faltenbalgs 5, und dieser Druck überwindet schließlich die Schließkraft der Rückstellfeder 3b. Dadurch öffnet das Stoßheberventil 3 bzw. sein Ventilorgan 3a kommt von seinem Ventilsitz frei, und der in der Druckkammer 25 vorhandene Flüssigkeitsdruck wirkt nunmehr auf die gesamte Stirnfläche des Faltenbalgs 5 bzw. die Außenfläche des Ventilorgans 3a, wodurch das Stoßheberventil 3 noch weiter öffnet, und wodurch der Druck im Teilraum 25 geringfügig abfällt. Außerdem wirkt der Druck in der Teilkammer 25 bei offenem Stoßheberventil 3 auf den Innenraum des Faltenbalgs 4c, der die Rückstellfeder für das Bodenventil 4 bildet, das in diesem Zeitpunkt noch geschlossen, und das in diesem Innenraum vorhandene Förderwasser, und beschleunigt dieses, wodurch der Druck weiter abfällt, bis er denjenigen Wert unterschreitet, bei dem die Rückstellfeder 3b den Ventilkörper 3 wieder gegen seinen Ventilsitz drückt und dadurch das Stoßheberventil schließt, wobei der Druck in der Teilkammer 25 erneut aufgebaut wird.
Die durch das Schließen des Stoßheberventils 3 auf den zugehörigen Ventilsitz 6 übertragene kinetische Energie wird über den Ventilsitzträger 31 auf den Ventilsitz 4a des Bodenventils 4 übertragen, und durch diesen elastischen Stoß öffnet dieses Ventil. Gleichzeitig wird die dem Förderwasser mitgeteilte kinetische Energie verbraucht, indem das Förderwasser durch das nunmehr offene Bodenventil 4 - der Ventilkörper 4b ist vom Ventilsitz 4a abgehoben - entgegen der Schwerkraft des Förderwassers Wasser aus der Umgebung ansaugt. Dabei wird das Bodenventil 4 durch einen geringen Unterdruck im Faltenbalg 4c offengehalten. Sobald die im Förderwasser enthaltene Energie aufgebraucht ist, wird das Bodenventil 4 durch die im Faltenbalg 4c innewohnende Federkraft wieder geschlossen.
Die kinetische Energie dieses Schließvorgangs wird durch einen elastischen Stoß über den Ventilsitzträger 31 auf den Ventilsitz 6 des Stoßheberventils 3 und von diesem auf das Ventilorgan 3a des Stoßheberventils 3 übertragen, wodurch dieses geöffnet wird. Gleichzeitig schwingt das soeben stehengebliebene Förderwasser aufgrund der Elastizität des Faltenbalgs 4c geringfügig zurück und erzeugt einen kleinen Setzstoß, der das Öffnen des Stoßheberventils unterstützt.
Aufgrund der erfindungsgemäß mechanisch gekoppelten bzw. einteilig gebildeten Ventilsitze für das Bodenventil 4 und das Stoßheberventil 3 wird die Schließenergie des jeweiligen Ventils vorteilhafterweise zum Öffnen des jeweils anderen Ventils verwendet. Dieser Vorteil ist bei herkömmlich aufgebauten Stoßhebern nicht erzielbar, weil die Ventilsitze der beiden in Rede stehenden Ventile (das Bodenventil ist ein Rückstellventil!) voneinander getrennt ausgebildet sind, so daß kinetische Energie nicht von einem Ventil zum anderen übertragen werden kann. Vielmehr wird die beim Schließen freiwerdende kinetische Energie durch Dämpfung, beispielsweise im Dichtgummi des Ventils vernichtet. Eine derartige Dämpfung ist herkömmlicherweise auch erforderlich, um das sogenannte Hüpfen des jeweiligen Ventilorgans auf dem Ventilsitz zu unterbinden. Dieses Hüpfen tritt bei den erfindungsgemäß ausgebildeten über den Ventilsitz miteinander verbundenen bzw. materialeinheitlich gebildeten Ventilen nicht auf, weil die kinetische Energie von dem schließenden Ventil in das andere Ventil eingeleitet wird, um dessen Öffnen auszulösen bzw. zu unterstützen.
Herkömmlicherweise wird ein Ventilorgan axial angeströmt, und die Strömung verläuft nach der Anströmung radial auseinander zwischen dem Ventilorgan und dem Ventilsitz hindurch. Im Gegensatz hierzu verläuft die Strömung bei den erfindungsgemäß mit gemeinsamem Ventilsitz ausgebildeten Ventilen zwischen den Ventilorganen und den zugehörigen Sitzen radial einwärts zusammen und daraufhin axial vom jeweiligen Ventil weg. Und nur dadurch ist die Möglichkeit eines gemeinsamen Ventilsitzes gegeben. Ein weiterer Vorteil der erfindungsgemäßen Kopplung der Ventilsitze der beiden Ventile besteht darin, daß die Strecke zwischen den beiden Ventilen vernachlässigbar kurz gehalten werden kann.
Durch eine einfache Maßnahme kann der vorstehend erläuterte erfindungsgemäße Stoßheber auch als normaler Widder betrieben werden. Hierzu ist es lediglich erforderlich, eine zusätzliche Feder vorzusehen, die bewirkt, daß das Bodenventil 4 in der Ruhelage geöffnet ist. Die Arbeitsweise dieses modifizierten Stoßhebers ist wie folgt:
Zunächst wird das Förderwasser aufgrund seines natürlichen Gefälles beschleunigt, und es tritt durch das geöffnete Bodenventil 4 über den Rohranschluß 32 ins Freie, bis ein hydrodynamischer Unterdruck zwischen dem Ventilorgan 4b und dem Ventilsitz 4a und ein Staudruck im Faltenbalg 4c das Schließen des Bodenventils 4 bewirken. Dadurch öffnet das Stoßheberventil 3, und die kinetische Energie des Förderwasser lädt den Federspeicher (Faltenbalg 5), wodurch das Stoßheberventil 3 wieder schließt und der Vorgang, wie vorstehend erläutert, von vorne beginnt. Ist der Federspeicher (Faltenbalg 5) jedoch bereits geladen (d.h. es wird kein Druckwasser verbraucht) schließt das Bodenventil 4 nicht, wenn das Förderwasser zum Stillstand gekommen ist, sondern erst nachdem die überschüssige Energie aus dem Federspeicher das Förderwasser in umgekehrter Weise bzw. rückwärts beschleunigt hat. Nach dem Schließen des Stoßheberventils 3 saugt dann das Förderwasser zunächst durch das Bodenventil 4 Wasser an, bis sich die Strömungsrichtung umkehrt. Das heißt, wird kein Druckwasser benötigt, geht auch der Verbrauch des Förderwassers auf ein Minimum zurück.
Der Zweck des Kapillarrohrs 36 bzw. der Kapillaröffnung im Ventilorgan (Fig. 3) besteht darin, daß der Druck im Innern des Faltenbalgs 5 gleich dem mittleren Druck im Faltenbalg 4c bzw. in der Förderleitung wird. Damit wird erreicht, daß die Druckdifferenz zwischen Treibwasser und Förderwasser, bei der das Stoßheberventil öffnet, unabhängig von der Förderhöhe ist. Und dadurch ist die Last an der externen Treibwasserpumpe immer die gleiche, unabhängig davon, ob der Stoßheber eingesetzt wird, um große Mengen von Oberflächenwasser oder geringe Mengen von Wasser aus großer Tiefe zu fördern.

Claims (9)

  1. Hydraulischer Stoßheber, aufweisend:
    eine mit Treibwasser gespeiste Treibwasserleitung (bei 30),
    eine Förderleitung (bei 32), die über ein Bodenventil (4) mit Förderwasser in Verbindung bringbar ist,
    ein Stoßheberventil (3), das an die Treibwasserleitung (1) und Förderleitung (2) angeschlossen ist,
    wobei bei offenem Stoßheberventil (3) das Treibwasser in die Förderleitung strömt und nach dem Schließen des Stoßheberventils die in der Förderleitung weiterströmende Wassersäule Förderwasser über das Bodenventil (4) ansaugt, dadurch gekennzeichnet, daß das Stoßheberventil (3) durch Federkraft in seiner die Treibwasserleitung von der Förderleitung trennenden Schließstellung gehalten wird, und ein Druckspeicher (5) vorgesehen ist, der in Strömungsrichtung vor dem Stoßheberventil (3) mit der Treibwasserleitung in Verbindung steht, wobei ein Ventilorgan (4b) des Bodenventils (4) ringförmig gebildet, axial beweglich und mit der Förderleitung dicht verbunden ist, wobei der Wirkquerschnitt dieser Verbindung größer als der Querschnitt eines Verntilsitzes (4a) des Bodenventils (4) ist, und wobei der Ventilsitz (6) des Stoßheberventils (3) und der Ventilsitz (4a) des Bodenventils (4) zur Übertragung von kinetischer Energie mechanisch gekoppelt sind.
  2. Hydraulischer Stoßheber nach Anspruch 1, dadurch gekennzeichnet, daß das Stoßheberventil (3) und das Bodenventil (4) mit aneinander grenzenden Ventilsitzen im wesentlichen koaxial angeordnet sind.
  3. Hydraulischer Stoßheber nach Anspruch 2, dadurch gekennzeichnet, daß die beiden Ventilsitze (4a, 6) an den gegenüberliegenden Enden eines Ventilsitzträgers (24) gebildet sind.
  4. Hydraulischer Stoßheber nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Druckspeicher (5) einen Faltenbalg aufweist, der mit einem Ende in einer Teilkammer (25) eines zweiteiligen Gehäuses abgestützt und außen vom Treibwasser beaufschlagt ist, das über die Treibwasserleitung (30) in diese Teilkammer (25) geleitet wird, und der am anderen Ende das Ventilorgan (3a) das Stoßheberventils (3) trägt, dessen Ventilsitz (6) in einer das Gehäuse (20) unterteilenden Trennwand (24) sitzt und mit dem Ventilsitz (4a) des Bodenventils (4) verbunden ist, und das in der anderen Teilkammer angeordnet ist, die mit dem Förderwasser kommuniziert.
  5. Hydraulischer Stoßheber nach Anspruch 4, dadurch gekennzeichnet, daß der Faltenbalg (5) als elastisches, volumenveränderliches Bauteil des Druckspeichers dient, ohne zur Druckspeicherung seine axiale Ausdehnung zu ändern.
  6. Hydraulischer Stoßheber nach Anspruch 4, dadurch gekennzeichnet, daß eine Rückstellfeder (3b) für das Stoßheberventil (3) im Innern des Druckspeicher-Faltenbalgs (5) angeordnet ist, koaxial zu diesem verläuft und mit einem Ende an der Innenseite des Ventilorgans (6) des Stoßheberventils (3) und mit ihrem anderen Ende am Gehäuse (2) abgestützt ist.
  7. Hydraulischer Stoßheber nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der Ventilsitz (6) des Stoßheberventils (3) von einer Kapillarbohrung durchgesetzt ist, die das Innere des Druckspeicher-Faltenbalgs (5) mit dem Raum zwischen dem Ventilsitz (4a) des Bodenventils (4) und dem Ventilsitz (6) des Stoßheberventils (3) verbindet.
  8. Hydraulischer Stoßheber nach Anspruch 6, dadurch gekennzeichnet, daß an die Kapillarbohrung ein Kapillarrohr (36) angeschlossen ist, das sich bis in den Bodenbereich des Druckspeicher-Faltenbalgs (5) erstreckt.
  9. Hydraulischer Stoßheber nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß das Bodenventil (4) einen Faltenbalg (4c) aufweist, der an seinem einen Ende den Ventilsitz (4a) des Bodenventils (4) trägt, und der mit seinem anderen Ende am Gehäuse (20) so abgestützt ist, daß dieses Ventilorgan (4b) in der Schließstellung gegen seinen Ventilsitz (4a) gedrängt ist.
EP96119475A 1996-04-19 1996-12-04 Hydraulischer Stossheber Expired - Lifetime EP0802328B1 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
AU16354/97A AU708806B2 (en) 1996-04-19 1997-03-14 Hydraulic ram pump
NZ331397A NZ331397A (en) 1996-04-19 1997-04-16 Hydraulic ram pump with closing energy of one valve used to open another valve
JP53770097A JP3853847B2 (ja) 1996-04-19 1997-04-16 水圧ラムポンプ
CN97192909A CN1081758C (zh) 1996-04-19 1997-04-16 液压水锤泵
RU98120702A RU2159361C2 (ru) 1996-12-04 1997-04-16 Гидравлический плунжерный насос
PCT/EP1997/001908 WO1997040277A1 (en) 1996-04-19 1997-04-16 Hydraulic ram pump
KR10-1998-0708318A KR100383489B1 (ko) 1996-04-19 1997-04-16 수압 램 펌프
US09/142,312 US6234764B1 (en) 1996-04-19 1997-04-16 Hydraulic ram pump
PL97329346A PL182664B1 (pl) 1996-04-19 1997-04-16 Pompa nurnikowa hydrauliczna
AU26380/97A AU2638097A (en) 1996-04-19 1997-04-16 Hydraulic ram pump
IL12589397A IL125893A (en) 1996-04-19 1997-04-16 Hydraulic ram pump
CA002249263A CA2249263C (en) 1996-04-19 1997-04-16 Hydraulic ram pump
CZ983322A CZ332298A3 (cs) 1996-04-19 1997-04-16 Hydraulické plunžrové čerpadlo
IDP971312A ID16633A (id) 1996-04-19 1997-04-21 Pompa pelantak hidrolik

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19615689A DE19615689A1 (de) 1996-04-19 1996-04-19 Hydraulische Saugwidder-Trägheitspumpe
DE19615689 1996-04-19

Publications (2)

Publication Number Publication Date
EP0802328A1 EP0802328A1 (de) 1997-10-22
EP0802328B1 true EP0802328B1 (de) 2001-07-18

Family

ID=7791876

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96119475A Expired - Lifetime EP0802328B1 (de) 1996-04-19 1996-12-04 Hydraulischer Stossheber

Country Status (7)

Country Link
EP (1) EP0802328B1 (de)
KR (1) KR100383489B1 (de)
AT (1) ATE203307T1 (de)
BR (1) BR9708769A (de)
DE (2) DE19615689A1 (de)
ES (1) ES2160758T3 (de)
GR (1) GR3036876T3 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412134B1 (ko) * 2001-06-27 2003-12-31 주식회사 하이닉스반도체 넓은 범위의 전원전압에서 동작하는 데이터 출력 버퍼 및이를 이용하는 반도체 메모리 장치
GB202105296D0 (en) * 2021-04-14 2021-05-26 Thermofluidics Ltd Inlet end assemblies for hydraulic ram pumps

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE628113C (de) * 1934-10-31 1936-03-30 Harry Sauveur Dipl Ing Fluessigkeitspumpe
DE804288C (de) * 1949-06-28 1951-04-19 Wilhelm Raub Unterbrecherpumpe
CH666942A5 (de) * 1985-09-10 1988-08-31 Cyphelly Ivan J Saugwidder-pumpeinrichtung fuer einen schacht.

Also Published As

Publication number Publication date
EP0802328A1 (de) 1997-10-22
KR20000005524A (ko) 2000-01-25
DE59607317D1 (de) 2001-08-23
BR9708769A (pt) 1999-08-03
ES2160758T3 (es) 2001-11-16
ATE203307T1 (de) 2001-08-15
KR100383489B1 (ko) 2003-06-18
GR3036876T3 (en) 2002-01-31
DE19615689A1 (de) 1997-10-23

Similar Documents

Publication Publication Date Title
DE4291026C2 (de) Schwingungsdämpfer für ein gepumptes Flüssigkeitssystem
EP2294316B1 (de) Kolbenpumpe einer hydraulischen fahrzeugbremsanlage
DE1117412B (de) Hydropneumatische Abfederung, insbesondere fuer Kraftfahrzeuge
DE2162320A1 (de)
EP0594537A1 (de) Vorrichtung zur Erzeugung von hydrodynamischer Kraft
DE3900899A1 (de) Druckspeicher
DE3130830A1 (de) Federelement und dessen verwendung
DE7111463U (de) Schallimpulserzeuger
DE1528439C3 (de) Druckspeicher zur Aufrechterhaltung eines Druckarbeitsbereiches in einem hydraulischen System
DE1043102B (de) Hydropneumatische Abfederung, insbesondere fuer Kraftfahrzeuge
DE1294234B (de) Aus einem Teleskop-Fluessigkeitsschwingungsdaempfer und diesen umgebender Schraubenfeder gebildetes Federbein fuer Kraftfahrzeuge
DE19857595A1 (de) Selbstpumpendes hydropneumatisches Federbein mit innerer Niveauregelung
DE102006004659A1 (de) Klemmvorrichtung
DE1936858A1 (de) Stossdaempfer
DE1755237B1 (de) Selbstpumpendes hydropneumatisches Federbein mit innerer Niveauregelung fuer Fahrzeuge
DE19602166B4 (de) Selbstpumpender hydropneumatischer Schwingungsdämpfer mit Einrichtungen zur variablen Steuerung der Dämpfungskraft
DE2419010B2 (de) Ventilanordnung fuer eine fahrzeug- hydraulikanlage
DE3443768A1 (de) Schlauch-kolbenpumpe
WO1994000690A1 (de) Hochdruckreinigungsgerät
DE2715424A1 (de) Ventil fuer einen druckspeicher
EP0802328B1 (de) Hydraulischer Stossheber
DE1114684B (de) Federbelastetes UEberdruckventil fuer Fluessigkeiten, vorzugsweise zur Verwendung bei Teleskop-Grubenstempeln
DE2322354A1 (de) Arbeitszylinder, insbesondere hydraulikzylinder, mit einer daempfungseinrichtung fuer das ende des arbeitshubes des kolbens
DE2213104A1 (de) Ventil für eine Flüssigkeitspumpe
DE19926226C2 (de) Stoßventilanordnung für einen hydraulischen Widder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB GR IT LI

17P Request for examination filed

Effective date: 19980324

17Q First examination report despatched

Effective date: 19990914

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEBHOLZ, DIETMAR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: OBERMOSER, KARL

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB GR IT LI

REF Corresponds to:

Ref document number: 203307

Country of ref document: AT

Date of ref document: 20010815

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BUZZI, NOTARO&ANTONIELLI D'OULX

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BUECHEL, KAMINSKI & PARTNER PATENTANWAELTE ESTABLI

REF Corresponds to:

Ref document number: 59607317

Country of ref document: DE

Date of ref document: 20010823

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011018

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2160758

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20010401739

Country of ref document: GR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051229

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051230

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060123

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20060124

Year of fee payment: 10

Ref country code: CH

Payment date: 20060124

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060127

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061231

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070703

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061204

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061204

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061204

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20061205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070102

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071204