EP0704657A2 - Brenner - Google Patents

Brenner Download PDF

Info

Publication number
EP0704657A2
EP0704657A2 EP95810587A EP95810587A EP0704657A2 EP 0704657 A2 EP0704657 A2 EP 0704657A2 EP 95810587 A EP95810587 A EP 95810587A EP 95810587 A EP95810587 A EP 95810587A EP 0704657 A2 EP0704657 A2 EP 0704657A2
Authority
EP
European Patent Office
Prior art keywords
flow
burner according
section
swirl generator
mixing section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95810587A
Other languages
English (en)
French (fr)
Other versions
EP0704657A3 (de
EP0704657B1 (de
Inventor
Thomas Ruck
Thomas Dr. Sattelmayer
Christian Dr. Steinbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AG Germany
Original Assignee
ABB Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Management AG filed Critical ABB Management AG
Publication of EP0704657A2 publication Critical patent/EP0704657A2/de
Publication of EP0704657A3 publication Critical patent/EP0704657A3/de
Application granted granted Critical
Publication of EP0704657B1 publication Critical patent/EP0704657B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/40Inducing local whirls around flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2202/00Liquid fuel burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements
    • F23D2209/10Flame flashback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements
    • F23D2209/20Flame lift-off / stability

Definitions

  • the present invention relates to a burner according to the preamble of claim 1.
  • a cone-shaped burner known as a double-cone burner, consisting of several shells, is known for generating a closed swirl flow in the cone head, which becomes unstable due to the increasing swirl along the cone tip and changes into an annular swirl flow with backflow in the core.
  • Fuels such as gaseous fuels, are injected along the channels formed by the individual adjacent shells, also called air inlet slots, and mixed homogeneously with the air before the combustion starts by ignition at the stagnation point of the backflow zone or backflow bubble, which is used as a flame holder.
  • Liquid fuels are preferably injected via a central nozzle on the burner head and then evaporate in the cone cavity.
  • the invention seeks to remedy this.
  • the invention as characterized in the claims, is based on the object of proposing precautions for a burner of the type mentioned at the outset by which a perfect premixing of fuels of different types is achieved.
  • the proposed burner has a swirl generator on the head side and upstream of a mixing section, which can preferably be designed such that the basic aerodynamic principles of the so-called double-cone burner according to EP-A1-0 321 809 are used. In principle, however, the use of an axial or radial swirl generator is also possible.
  • the mixing section itself preferably consists of a tubular mixing element, hereinafter referred to as the mixing tube, which permits perfect premixing of fuels of various types.
  • the flow from the swirl generator is seamlessly introduced into the mixing tube: this is done by means of a transition geometry that consists of transition channels that are excluded in the initial phase of this mixing tube and that convert the flow into the subsequent effective flow cross-section of the mixing tube.
  • This lossless Initiation of flow between the swirl generator and the mixing tube initially prevents the immediate formation of a backflow zone at the outlet of the swirl generator.
  • the swirl strength in the swirl generator is selected via its geometry so that the swirl does not burst in the mixing tube, but further downstream at the combustion chamber inlet, the length of this mixing tube being dimensioned such that there is sufficient mixing quality for all types of fuel. If, for example, the swirl generator used is constructed according to the basic principles of the double-cone burner, the swirl strength results from the design of the corresponding cone angle, the air inlet slots and their number.
  • the axial speed profile has a pronounced maximum on the axis and thus prevents reignitions in this area.
  • the axial speed drops towards the wall.
  • various precautions are provided: For example, the entire speed level can be raised by using a mixing tube with a sufficiently small diameter.
  • Another possibility is to only increase the speed in the outer region of the mixing tube, in that a small part of the combustion air flows into the mixing tube via an annular gap or through filming holes downstream of the transition channels.
  • Part of the pressure loss that may be generated can be compensated for by attaching a diffuser to the end of the mixing tube.
  • the combustion chamber connects with a cross-sectional jump.
  • a central backflow zone is formed here, the properties of which are those of a flame holder.
  • transition channels mentioned for introducing the flow from the swirl generator into the mixing tube it can be said that the course of these transition channels turns out to be spiraling narrowing or widening, in accordance with the effective subsequent flow cross-section of the mixing tube.
  • Fig. 1 shows the overall structure of a burner.
  • a swirl generator 100 is effective, the design of which is shown and described in more detail in the following FIGS. 2-5.
  • This swirl generator 100 is a conical structure which is acted upon tangentially several times by a tangentially flowing combustion air flow 115.
  • the flow formed here is seamlessly transferred to a transition piece 200 using a transition geometry provided downstream of the swirl generator 100, in such a way that no separation areas can occur there.
  • the confiquration of this transition geometry is described in more detail in FIG. 6.
  • This transition piece 200 is extended on the outflow side of the transition geometry by a tube 20, both parts forming the actual mixing tube 220 of the burner.
  • the mixing tube 220 can consist of a single piece, that is to say then that the transition piece 200 and tube 20 are fused into a single coherent structure, the characteristics of each part being retained. If the transition piece 200 and the tube 20 are created from two parts, they are connected by a bushing ring 10, the same bushing ring 10 serving as an anchoring surface for the swirl generator 100 on the head side. Such a bushing ring 10 also has the advantage that different mixing tubes are used can be.
  • the actual combustion chamber 30 is located on the outflow side of the tube 20 and is here only symbolized by the flame tube.
  • the mixing tube 220 fulfills the condition that a defined mixing section is provided downstream of the swirl generator 100, in which a perfect premixing of fuels of different types is achieved.
  • This mixing section i.e. the mixing tube 220, furthermore enables loss-free flow guidance, so that no backflow zone can initially form even in operative connection with the transition geometry, so that the length of the mixing tube 220 can influence the quality of the mixture for all types of fuel.
  • this mixing tube 220 has yet another property, which consists in the fact that in the mixing tube 220 itself the axial speed profile has a pronounced maximum on the axis, so that the flame cannot be re-ignited from the combustion chamber. However, it is correct that with such a configuration this axial speed drops towards the wall.
  • the mixing tube 220 is provided with a number of regularly or irregularly distributed bores 21 of various cross-sections and directions in the flow and circumferential direction, through which an amount of air flows into the interior of the mixing tube 220 and one along the wall Increase in speed indicated.
  • Another possibility of achieving the same effect is that the flow cross section of the mixing tube 220 is narrowed on the downstream side of the transition channels 201, which form the transition geometry already mentioned, as a result of which the overall speed level within the mixing tube 220 is increased.
  • the outlet of the transition channels 201 corresponds to the narrowest flow cross-section of the mixing tube 220.
  • the said transition channels 201 therefore bridge the respective cross-sectional difference without adversely affecting the flow formed.
  • a diffuser (not shown in the figure) at the end of the mixing tube.
  • a combustion chamber 30 adjoins the end of the mixing tube 220, a cross-sectional jump occurring between the two flow cross sections. Only here does a central backflow zone 50 form, which has the properties of a flame holder. If a flow-like edge zone forms in this cross-sectional jump during operation, in which vortex detachments arise due to the prevailing negative pressure, this leads to an increased ring stabilization of the backflow zone 50.
  • the combustion chamber 30 has a number of openings 31 through which an air quantity flows directly into the cross-sectional jump flows, and there contributes the others below that the ring stabilization of the backflow zone 50 is strengthened.
  • the generation of a stable backflow zone 50 also requires a sufficiently high number of twists in a pipe. If this is initially undesirable, stable backflow zones can be created by supplying small, strongly swirled air flows at the pipe end, for example through tangential openings. It is assumed here that the amount of air required for this is about 5-20% of the total amount of air.
  • FIG. 3 is used at the same time as FIG. 2. Furthermore, in order not to make this FIG. 2 unnecessarily confusing, the guide plates 121a, 121b shown schematically according to FIG. 3 have only been hinted at in it. In the description of FIG. 2, reference is made below to the figures mentioned as required.
  • the first part of the burner according to FIG. 1 forms the swirl generator 100 shown in FIG. 2.
  • This consists of two hollow ones conical partial bodies 101, 102 which are nested in one another offset.
  • the number of conical partial bodies can of course be greater than two, as shown in FIGS. 4 and 5; This depends on the mode of operation of the entire burner, as will be explained in more detail below. In certain operating constellations, it is not excluded to provide a swirl generator consisting of a single spiral.
  • the offset of the respective central axis or longitudinal symmetry axes 201b, 202b of the conical partial bodies 101, 102 to one another creates a tangential channel, that is to say an air inlet slot 119, 120 (FIG.
  • the conical shape of the partial bodies 101, 102 shown in the flow direction has a specific fixed angle.
  • the partial bodies 101, 102 can have an increasing or decreasing cone inclination in the direction of flow, similar to a trumpet or. Tulip. The last two forms are not included in the drawing, since they can be easily understood by a person skilled in the art.
  • the two tapered partial bodies 101, 102 each have a cylindrical starting part 101a, 102a, which, similarly to the conical partial bodies 101, 102, also run offset from one another, so that the tangential air inlet slots 119, 120 are present over the entire length of the swirl generator 100.
  • a nozzle 103 is preferably accommodated for a liquid fuel 112, the injection 104 of which coincides approximately with the narrowest cross section of the conical cavity 114 formed by the conical partial bodies 101, 102.
  • the injection capacity and the type of this nozzle 103 depend on the given parameters of the respective burner.
  • the swirl generator 100 can be designed in a purely conical manner, that is to say without cylindrical starting parts 101a, 102a.
  • the tapered body 101, 102 furthermore each have a fuel line 108, 109, which are arranged along the tangential air inlet slots 119, 120 and are provided with injection openings 117, through which a gaseous fuel 113 is preferably injected into the combustion air 115 flowing through there, as shown by the arrows 116 want.
  • These fuel lines 108, 109 are preferably placed at the latest at the end of the tangential inflow, before entering the cone cavity 114, in order to obtain an optimal air / fuel mixture.
  • the fuel 112 brought in through the nozzle 103 is normally a liquid fuel, and it is readily possible to form a mixture with another medium. This fuel 112 is injected into the cone cavity 114 at an acute angle.
  • a cone-shaped fuel spray 105 is thus formed from the nozzle 103 and is enclosed by the rotating combustion air 115 flowing in tangentially.
  • the concentration of the injected fuel 112 is continuously reduced by the inflowing combustion air 115 to mix in the direction of evaporation.
  • a gaseous fuel 113 is introduced via the opening nozzles 117, the fuel / air mixture is formed directly at the end of the air inlet slots 119, 120.
  • the combustion air 115 is additionally preheated or, for example, enriched with a recirculated flue gas or exhaust gas, this provides lasting support the vaporization of the liquid fuel 112 before this mixture flows into the downstream stage.
  • liquid fuels should be supplied via lines 108, 109.
  • the conical partial bodies 101, 102 with respect to the cone angle and the width of the tangential air inlet slots 119, 120, strict limits must be observed per se so that the desired flow field of the combustion air 115 can be set at the outlet of the swirl generator 100.
  • a downsizing of the tangential air inlet slots 119, 120 favors the faster formation of a backflow zone already in the area of the swirl generator.
  • the axial speed within the swirl generator 100 can be changed by a corresponding supply, not shown, of an axial combustion air flow.
  • a corresponding swirl generation prevents the formation of flow separations within the mixing tube downstream of the swirl generator 100.
  • the design of the swirl generator 100 is furthermore excellently suitable for changing the size of the tangential air inlet slots 119, 120, with which a relatively large operational bandwidth can be recorded without changing the overall length of the swirl generator 100.
  • the partial bodies 101, 102 can also be displaced relative to one another in another plane, as a result of which an overlap thereof can even be provided. It is also possible to interleave the partial bodies 101, 102 in a spiral manner by counter-rotating movement. It is thus possible to vary the shape, size and configuration of the tangential air inlet slots 119, 120 as desired, with which the swirl generator 100 can be used universally without changing its overall length.
  • FIG. 3 now shows the geometric configuration of the guide plates 121a, 121b. They have a flow introduction function, which, depending on their length, extend the respective end of the tapered partial bodies 101, 102 in the direction of flow relative to the combustion air 115.
  • the channeling of the combustion air 115 into the cone cavity 114 can be optimized by opening or closing the guide plates 121a, 121b about a pivot point 123 located in the region of the entry of this channel into the cone cavity 114, in particular this is necessary if the original gap size of the tangential air inlet slots 119, 120 should be changed dynamically.
  • these dynamic arrangements can also be provided statically, by having a fixed component as required form the tapered partial bodies 101, 102.
  • the swirl generator 100 can also be operated without baffles, or other aids can be provided for this.
  • the swirl generator 100 is now composed of four partial bodies 130, 131, 132, 133.
  • the associated longitudinal symmetry axes for each partial body are marked with the letter a.
  • this configuration it should be said that, due to the lower swirl strength generated in this way and in cooperation with a correspondingly enlarged slot width, it is ideally suited to prevent the vortex flow from bursting in the mixing tube on the downstream side of the swirl generator, so that the mixing tube can best fulfill the role intended for it .
  • FIG. 5 differs from FIG. 4 in that the partial bodies 140, 141, 142, 143 have a blade profile shape which is provided to provide a certain flow. Otherwise the mode of operation of the swirl generator has remained the same.
  • the admixture of the fuel 116 in the combustion air flow 115 takes place from the inside of the blade profiles, i.e. the fuel line 108 is now integrated in the individual blades.
  • the longitudinal axes of symmetry to the individual partial bodies are identified by the letter a.
  • the transition geometry is constructed for a swirl generator 100 with four partial bodies, corresponding to FIG. 4 or 5. Accordingly, the transition geometry as a natural extension of the upstream partial body four transition channels 201, whereby the conical quarter surface of the partial body is extended until it the wall of the tube 20 or. of the mixing tube 220 cuts.
  • the same considerations also apply if the swirl generator works on a principle different from that described under FIG. 2. is constructed.
  • the surface of the individual transition channels 201 which runs downward in the flow direction has a shape which runs spirally in the flow direction and which describes a crescent-shaped course, corresponding to the fact that in the present case the flow cross section of the transition piece 200 widens conically in the flow direction.
  • the swirl angle of the transition channels 201 in the flow direction is selected such that the pipe flow then still has a sufficiently large distance up to the cross-sectional jump at the combustion chamber inlet in order to achieve a perfect premixing with the injected fuel. Furthermore, the above-mentioned measures also increase the axial speed on the mixing tube wall downstream of the swirl generator. The transition geometry and the measures in the area of the mixing tube bring about a significant increase in the axial speed profile towards the center of the mixing tube, so that the risk of early ignition is decisively counteracted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Air Supply (AREA)

Abstract

Bei einem Brenner, der anströmungsseitig aus einem Drallerzeuger (100) besteht, wird die hierin gebildete Strömung (40) nahtlos in eine Mischstrecke (220) überführt. Dies geschieht anhand einer am Anfang des Mischrohres (220) vorhandene Uebergangsgeometrie, welche aus Uebergangskanälen (201) besteht, welche sektoriell, entsprechend der Zahl der Teilkörper des Drallerzeugers (100), die Stirnfläche der Mischstrecke (220) erfassen und in Strömungsrichtung drallförmig verlaufen. Abströmungsseitig dieser Uebergangskanäle (201) ist die Mischstrecke (220) mit Filmlegungsbohrungen (21) durchsetzt, welche eine Erhöhung der Strömungs-Geschwindigkeit entlang der Rohrwand auslösen. Anschliessend folgt eine Brennkammer (30), in welcher sich im Bereich des Querschnittssprunges zwischen Mischstrecke (220) und Brennkammer (30) eine Rückströmzone (50) bildet. <IMAGE>

Description

    Technisches Gebiet
  • Die vorliegende Erfindung betrifft einen Brenner gemäss Oberbegriff des Anspruchs 1.
  • Stand der Technik
  • Aus EP-A1-0 321 809 ist ein aus mehreren Schalen bestehender kegelförmiger Brenner, sogenannter Doppelkegelbrenner, zur Erzeugung einer geschlossenen Drallströmung im Kegelkopf bekanntgeworden, welche aufgrund des zunehmenden Dralls entlang der Kegelspitze instabil wird und in eine annulare Drallströmung mit Rückströmung im Kern übergeht. Brennstoffe, wie beispielsweise gasförmige Brennstoffe, werden entlang der durch die einzelnen benachbarten Schalen gebildeten Kanäle, auch Lufteintrittsschlitze genannt, eingedüst und homogen mit der Luft vermischt, bevor die Verbrennung durch Zündung am Staupunkt der Rückströmzone oder Rückströmblase, welche als Flammenhalter benutzt wird, einsetzt. Flüssige Brennstoffe werden vorzugsweise über eine zentrale Düse am Brennerkopf eingedüst und verdampfen dann im Kegelhohlraum. Unter gasturbinentypischen Bedingungen findet die Zündung dieser flüssigen Brennstoffe schon früh in der Nähe der Brennstoffdüse statt, womit nicht zu umgehen ist, dass die NOx-Werte gerade aufgrund dieser mangelnden Vormischung kräftig ansteigen, was beispielsweise das Einspritzen von Wasser notwendig macht. Darüber hinaus musste festgestellt werden, dass der Versuch, wasserstoffhaltige Gase ähnlich wie Erdgas zu verbrennen, zu Frühzündproblemen an den Gasbohrungen mit anschliessender Ueberhitzung des Brenners geführt haben. Hiergegen hat man Abhilfe gesucht, indem am Brenneraustritt eine spezielle Injektionsmethode für solche gasförmige Brennstoffe eingeführt worden ist, deren Resultate aber nicht ganz zu befriedigen vermochten.
  • Darstellung der Erfindung
  • Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einem Brenner der eingangs genannten Art Vorkehrungen vorzuschlagen, durch welche eine perfekte Vormischung von Brennstoffen verschiedener Art erzielt wird.
  • Der vorgeschlagene Brenner weist kopfseitig und stromauf einer Mischstrecke einen Drallerzeuger auf, der vorzugsweise dahingehend ausgelegt werden kann, dass die aerodynamischen Grundprinzipien des sogenannten Doppelkegelbrenners nach EP-A1-0 321 809 benutzt werden. Grundsätzlich ist aber auch der Einsatz eines axialen oder radialen Drallerzeugers möglich. Die Mischstrecke selbst besteht vorzugsweise aus einem rohrförmigen Mischelement, im folgenden Mischrohr genannt, welches ein perfektes Vormischen von Brennstoffen verschiedener Art gestattet.
  • Die Strömung aus dem Drallerzeuger wird nahtlos in das Mischrohr eingeleitet: Dies geschieht durch eine Uebergangsgeometrie, die aus Uebergangskanälen besteht, welche in der Anfangsphase dieses Mischrohres ausgenommen sind, und welche die Strömung in den anschliessenden effektiven Durchflussquerschnitt des Mischrohres überführen. Diese verlustfreie Strömungseinleitung zwischen Drallerzeuger und Mischrohr verhindert zunächst die unmittelbare Bildung einer Rückströmzone am Ausgang des Drallerzeugers.
  • Zunächst wird die Drallstärke im Drallerzeuger über seine Geometrie so gewählt, dass das Aufplatzen des Wirbels nicht im Mischrohr, sondern weiter stromab am Brennkammereintritt erfolgt, wobei die Länge dieses Mischrohres so dimensioniert ist, dass sich eine ausreichende Mischungsgüte für alle Brennstoffarten ergibt. Ist beispielsweise der eingesetzte Drallerzeuger nach den Grundzügen des Doppelkegelbrenners aufgebaut, so ergibt sich die Drallstärke aus der Auslegung des entsprechenden Kegelwinkels, der Lufteintrittsschlitze und deren Anzahl.
  • Im Mischrohr besitzt das Axialgeschindigkeits-Profil ein ausgeprägtes Maximum auf der Achse und verhindert dadurch Rückzündungen in diesem Bereich. Die Axialgeschwindigkeit fällt zur Wand hin ab. Um Rückzündungen auch in diesem Bereich zu unterbinden, werden verschiedene Vorkehrungen vorgesehen: Beispielsweise zum einen lässt sich das gesamte Geschwindigkeitsniveau durch Verwendung eines Mischrohres mit einem ausreichend kleinen Durchmesser anheben. Eine andere Möglichkeit besteht darin, nur die Geschwindigkeit im Aussenbereich des Mischrohres zu erhöhen, indem ein kleiner Teil der Verbrennungsluft über einen Ringspalt oder durch Filmlegungsbohrungen stromab der Uebergangskanäle in das Mischrohr einströmt.
  • Ein Teil des allenfalls erzeugten Druckverlustes kann durch Anbringung eines Diffusors am Ende des Mischrohres wettgemacht werden.
  • Am Ende des Mischrohres schliesst sich die Brennkammer mit einem Querschnittssprung an. Hier bildet sich eine zentrale Rückströmzone, deren Eigenschaften die eines Flammenhalters sind.
  • Die Erzeugung einer stabilen Rückströmzone erfordert eine ausreichend hohe Drallzahl im Rohr. Ist aber eine solche zunächst unerwünscht, so können stabile Rückströmzonen durch die Zufuhr kleiner, stark verdrallter Luftmengen, 5-20% der Gesamtluftmenge, am Rohrende erzeugt werden.
  • In Verbindung mit dem erwähnten Querschnittssprung am Rohrende ergeben sich Rückströmzonen hoher räumlicher Stabilität, die sich gut zur Flammenstabilisierung eignen.
  • Was die erwähnten Uebergangskanäle zur Einleitung der Strömung aus dem Drallerzeuger in das Mischrohr betrifft, so ist zu sagen, dass der Verlauf dieser Uebergangskanäle spiralförmig verengend oder erweiternd ausfällt, entsprechend dem effektiven anschliessenden Durchflussquerschnitt des Mischrohres.
  • Im folgenden wird anhand der Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert. Alle für das unmittelbare Verständnis der Erfindung unwesentlichen Merkmale sind fortgelassen. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen angegeben.
  • Kurze Bezeichnung der Zeichnungen
  • Es zeigt:
  • Fig. 1
    einen Brenner mit anschliessender Brennkammer,
    Fig. 2
    einen Drallerzeuger in perspektivischer Darstellung, entsprechend aufgeschnitten,
    Fig. 3
    einen Schnitt durch den 2-Schalen-Drallerzeuger, nach Fig. 2,
    Fig. 4
    einen Schnitt durch einen 4-Schalen-Drallerzeuger,
    Fig. 5
    einen Schitt durch einen Drallerzeuger, dessen Schalen schaufelförmig profiliert sind und
    Fig. 6
    eine Darstellung der Form der Uebergangsgeometrie zwischen Drallerzeuger und Mischrohr.
    Wege zur Ausführung der Erfindung, gewerbliche Verwertbarkeit
  • Fig. 1 zeigt den Gesamtaufbau eines Brenners. Anfänglich ist ein Drallerzeuger 100 wirksam, dessen Ausgestaltung in den nachfolgenden Fig. 2-5 noch näher gezeigt und beschrieben wird. Es handelt sich bei diesem Drallerzeuger 100 um ein kegelförmiges Gebilde, das tangential mehrfach von einem tangential einströmenden Verbrennungsluftstromes 115 beaufschlagt wird. Die sich hierein bildende Strömung wird anhand einer stromab des Drallerzeugers 100 vorgesehenen Uebergangsgeometrie nahtlos in ein Uebergangsstück 200 übergeleitet, dergestalt, dass dort keine Ablösungsgebiete auftreten können. Die Konfiquration dieser Uebergangsgeometrie wird unter Fig. 6 näher beschrieben. Dieses Uebergangsstück 200 ist abströmungsseitig der Uebergangsgeometrie durch ein Rohr 20 verlängert, wobei beide Teile das eigentliche Mischrohr 220 des Brenners bilden. Selbstverständlich kann das Mischrohr 220 aus einem einzigen Stück bestehen, d.h. dann, dass das Uebergangsstück 200 und Rohr 20 zu einem einzigen zusammenhängenden Gebilde verschmolzen sind, wobei die Charakteristiken eines jeden Teils erhalten bleiben. Werden Uebergangsstück 200 und Rohr 20 aus zwei Teilen erstellt, so sind diese durch einen Buchsenring 10 verbunden, wobei der gleiche Buchsenring 10 kopfseitig als Verankerungsfläche für den Drallerzeuger 100 dient. Ein solcher Buchsenring 10 hat darüber hinaus den Vorteil, dass verschiedene Mischrohre eingesetzt werden können. Abströmungsseitig des Rohres 20 befindet sich die eigentliche Brennkammer 30, welche hier lediglich durch das Flammrohr versinnbildlicht ist. Das Mischrohr 220 erfüllt die Bedingung, dass stromab des Drallerzeugers 100 eine definierte Mischstrecke bereitgestellt wird, in welcher eine perfekte Vormischung von Brennstoffen verschiedener Art erzielt wird. Diese Mischstrecke, also das Mischrohr 220, ermöglicht des weiteren eine verlustfreie Strömungsführung, so dass sich auch in Wirkverbindung mit der Uebergangsgeometrie zunächst keine Rückströmzone bilden kann, womit über die Länge des Mischrohres 220 auf die Mischungsgüte für alle Brennstoffarten Einfluss ausgeübt werden kann. Dieses Mischrohres 220 hat aber noch eine andere Eigenschaft, welche darin besteht, dass im Mischrohr 220 selbst das Axialgeschwindigkeits-Profil ein ausgeprägtes Maximum auf der Achse besitzt, so dass eine Rückzündung der Flamme aus der Brennkammer nicht möglich ist. Allerdings ist es richtig, dass bei einer solchen Konfiguration diese Axialgeschwindigkeit zur Wand hin abfällt. Um Rückzündung auch in diesem Bereich zu unterbinden, wird das Mischrohr 220 in Strömungs- und Umfangsrichtung mit einer Anzahl regelmässig oder unregelmässig verteilten Bohrungen 21 verschiedenster Querschnitte und Richtungen versehen, durch welche eine Luftmenge in das Innere des Mischrohres 220 strömt, und entlang der Wand eine Erhöhung der Geschwindigkeit indiziert. Eine andere Möglichkeit die gleiche Wirkung zu erzielen, besteht darin, dass der Durchflussquerschnitt des Mischrohres 220 abströmungsseitig der Uebergangskanäle 201, welche die bereits genannten Uebergangsgeometrie bilden, eine Verengung erfährt, wodurch das gesamte Geschwindigkeitsniveau innerhalb des Mischrohres 220 angehoben wird. In der Figur entspricht der Auslauf der Uebergangskanäle 201 dem engsten Durchflussquerschnitt des Mischrohres 220. Die genannten Uebergangskanäle 201 überbrücken demnach den jeweiligen Querschnittsunterschied, ohne dabei die gebildete Strömung negativ zu beeinflussen. Wenn die gewählte Vorkehrung bei der Führung der Rohrströmung 40 entlang des Mischrohres 220 einen nicht tolerierbaren Druckverlust auslöst, so kann hiergegen Abhilfe geschaffen werden, indem am Ende des Mischrohres ein in der Figur nicht gezeigter Diffusor vorgesehen wird. Am Ende des Mischrohres 220 schliesst sich eine Brennkammer 30 an, wobei zwischen den beiden Durchflussquerschnitten ein Querschnittssprung vorhanden ist. Erst hier bildet sich eine zentrale Rückströmzone 50, welche die Eigenschaften eines Flammenhalters aufweist. Bildet sich innerhalb dieses Querschnittssprunges während des Betriebes eine strömungsmässige Randzone, in welcher durch den dort vorherrschenden Unterdruck Wirbelablösungen entstehen, so führt dies zu einer verstärkten Ringstabilisation der Rückströmzone 50. Stirnseitig weist die Brennkammer 30 eine Anzahl Oeffnungen 31 auf, durch welche eine Luftmenge direkt in den Querschnittssprung strömt, und dort unteren anderen dazu beiträgt, dass die Ringstabilisation der Rückströmzone 50 gestärkt wird. Danebst darf nicht unerwähnt bleiben, dass die Erzeugung einer stabilen Rückströmzone 50 auch eine ausreichend hohe Drallzahl in einem Rohr erfordert. Ist eine solche zunächst unerwünscht, so können stabile Rückströmzonen durch die Zufuhr kleiner stark verdrallter Luftströmungen am Rohrende, beispielsweise durch tangentiale Oeffnungen, erzeugt werden. Dabei geht man hier davon aus, dass die hierzu benötigte Luftmenge in etwa 5-20% der Gesamtluftmenge beträgt.
  • Um den Aufbau des Drallerzeugers 100 besser zu verstehen, ist es von Vorteil, wenn gleichzeitig zu Fig. 2 mindestens Fig. 3 herangezogen wird. Des weiteren, um diese Fig. 2 nicht unnötig unübersichtlich zu gestalten, sind in ihr die nach den Figur 3 schematisch gezeigten Leitbleche 121a, 121b nur andeutungsweise aufgenommen worden. Im folgenden wird bei der Beschreibung von Fig. 2 nach Bedarf auf die genannten Figuren hingewiesen.
  • Der erste Teil des Brenners nach Fig. 1 bildet den nach Fig. 2 gezeigten Drallerzeuger 100. Dieser besteht aus zwei hohlen kegelförmigen Teilkörpern 101, 102, die versetzt zueinander ineinandergeschachtelt sind. Die Anzahl der kegelförmigen Teilkörper kann selbstverständlich grösser als zwei sein, wie die Figuren 4 und 5 zeigen; dies hängt jeweils, wie weiter unten noch näher zur Erläuterung kommen wird, von der Betreibungsart des ganzen Brenners ab. Es ist bei bestimmten Betriebskonstellationen nicht ausgeschlossen, einen aus einer einzigen Spirale bestehenden Drallerzeuger vorzusehen. Die Versetzung der jeweiligen Mittelachse oder Längssymmetrieachsen 201b, 202b der kegeligen Teilkörper 101, 102 zueinander schafft bei der benachbarten Wandung, in spiegelbildlicher Anordnung, jeweils einen tangentialen Kanal, d.h. einen Lufteintrittsschlitz 119, 120 (Fig. 3), durch welche die Verbrennungsluft 115 in Innenraum des Drallerzeugers 100, d.h. in den Kegelhohlraum 114 desselben strömt. Die Kegelform der gezeigten Teilkörper 101, 102 in Strömungsrichtung weist einen bestimmten festen Winkel auf. Selbstverständlich, je nach Betriebseinsatz, können die Teilkörper 101, 102 in Strömungsrichtung eine zunehmende oder abnehmende Kegelneigung aufweisen, ähnlich einer Trompete resp. Tulpe. Die beiden letztgenannten Formen sind zeichnerisch nicht erfasst, da sie für den Fachmann ohne weiteres nachempfindbar sind. Die beiden kegeligen Teilkörper 101, 102 weisen je einen zylindrischen Anfangsteil 101a, 102a, die ebenfalls, analog den kegeligen Teilkörpern 101, 102, versetzt zueinander verlaufen, so dass die tangentialen Lufteintrittsschlitze 119, 120 über die ganze Länge des Drallerzeugers 100 vorhanden sind. Im Bereich des zylindrischen Anfangsteils ist eine Düse 103 vorzugsweise für einen flüssigen Brennstoff 112 untergebracht, deren Eindüsung 104 in etwa mit dem engsten Querschnitt des durch die kegeligen Teilkörper 101, 102 gebildeten Kegelhohlraumes 114 zusammenfällt. Die Eindüsungskapazität und die Art dieser Düse 103 richtet sich nach den vorgegebenen Parametern des jeweiligen Brenners. Selbstverständlich kann der Drallerzeuger 100 rein kegelig, also ohne zylindrische Anfangsteile 101a, 102a, ausgeführt sein. Die kegeligen Teilkörper 101, 102 weisen des weiteren je eine Brennstoffleitung 108, 109 auf, welche entlang der tangentialen Lufteintrittsschlitze 119, 120 angeordnet und mit Eindüsungsöffnungen 117 versehen sind, durch welche vorzugsweise ein gasförmiger Brennstoff 113 in die dort durchströmende Verbrennungsluft 115 eingedüst wird, wie dies die Pfeile 116 versinnbildlichen wollen. Diese Brennstoffleitungen 108, 109 sind vorzugsweise spätestens am Ende der tangentialen Einströmung, vor Eintritt in den Kegelhohlraum 114, plaziert, dies um eine optimale Luft/Brennstoff-Mischung zu erhalten. Bei dem durch die Düse 103 herangeführten Brennstoff 112 handelt es sich, wie erwähnt, im Normalfall um einen flüssigen Brennstoff, wobei eine Gemischbildung mit einem anderen Medium ohne weiteres möglich ist. Dieser Brennstoff 112 wird unter einem spitzen Winkel in den Kegelhohlraum 114 eingedüst. Aus der Düse 103 bildet sich sonach ein kegeliges Brennstoffspray 105, das von der tangential einströmenden rotierenden Verbrennungsluft 115 umschlossen wird. In axialer Richtung wird die Konzentration des eingedüsten Brennstoffes 112 fortlaufend durch die einströmenden Verbrennungsluft 115 zu einer Vermischung Richtung Verdampfung abgebaut. Wird ein gasförmiger Brennstoff 113 über die Oeffnungsdüsen 117 eingebracht, geschieht die Bildung des Brennstoff/Luft-Gemisches direkt am Ende der Lufteintrittsschlitze 119, 120. Ist die Verbrennungsluft 115 zusätzlich vorgeheizt, oder beispielsweise mit einem rückgeführten Rauchgas oder Abgas angereichert, so unterstützt dies nachhaltig die Verdampfung des flüssigen Brennstoffes 112, bevor dieses Gemisch in die nachgeschaltete Stufe strömt. Die gleichen Ueberlegungen gelten auch, wenn über die Leitungen 108, 109 flüssige Brennstoffe zugeführt werden sollten. Bei der Gestaltung der kegeligen Teilkörper 101, 102 hinsichtlich des Kegelwinkels und der Breite der tangentialen Lufteintrittsschlitze 119, 120 sind an sich enge Grenzen einzuhalten, damit sich das gewünschte Strömungsfeld der Verbrennungsluft 115 am Ausgang des Drallerzeugers 100 einstellen kann. Allgemein ist zu sagen, dass eine Verkleinerung der tangentialen Lufteintrittsschlitze 119, 120 die schnellere Bildung einer Rückströmzone bereits im Bereich des Drallerzeugers begünstigt. Die Axialgeschwindigkeit innerhalb des Drallerzeugers 100 lässt sich durch eine entsprechende nicht gezeigte Zuführung eines axialen Verbrennungsluftstromes verändern. Eine entsprechende Drallerzeugung verhindert die Bildung von Strömungsablösungen innerhalb des dem Drallerzeuger 100 nachgeschalteten Mischrohr. Die Konstruktion des Drallerzeugers 100 eignet sich des weiteren vorzüglich, die Grösse der tangentialen Lufteintrittsschlitze 119, 120 zu verändern, womit ohne Veränderung der Baulänge des Drallerzeugers 100 eine relativ grosse betriebliche Bandbreite erfasst werden kann. Selbstverständlich sind die Teilkörper 101, 102 auch in einer anderen Ebene zueinander verschiebbar, wodurch sogar eine Ueberlappung derselben vorgesehen werden kann. Es ist des weiteren möglich, die Teilkörper 101, 102 durch eine gegenläufig drehende Bewegung spiralartig ineinander zu verschachteln. Somit ist es möglich, die Form, die Grösse und die Konfiguration der tangentialen Lufteintrittsschlitze 119, 120 beliebig zu variieren, womit der Drallerzeuger 100 ohne Veränderung seiner Baulänge universell einsetzbar ist.
  • Aus Fig. 3 geht nunmehr die geometrische Konfiguration der Leitbleche 121a, 121b hervor. Sie haben Strömungseinleitungsfunktion, wobei diese, entsprechend ihrer Länge, das jeweilige Ende der kegeligen Teilkörper 101, 102 in Anströmungsrichtung gegenüber der Verbrennungsluft 115 verlängern. Die Kanalisierung der Verbrennungsluft 115 in den Kegelhohlraum 114 kann durch Oeffnen bzw. Schliessen der Leitbleche 121a, 121b um einen im Bereich des Eintritts dieses Kanals in den Kegelhohlraum 114 plazierten Drehpunkt 123 optimiert werden, insbesondere ist dies vonnöten, wenn die ursprüngliche Spaltgrösse der tangentialen Lufteintrittsschlitze 119, 120 dynamisch verändert werden soll. Selbstverständlich können diese dynamische Vorkehrungen auch statisch vorgesehen werden, indem bedarfsmässige Leitbleche einen festen Bestandteil mit den kegeligen Teilkörpern 101, 102 bilden. Ebenfalls kann der Drallerzeuger 100 auch ohne Leitbleche betrieben werden, oder es können andere Hilfsmittel hierfür vogesehen werden.
  • Fig. 4 zeigt gegenüber Fig. 3, dass der Drallerzeuger 100 nunmehr aus vier Teilkörpern 130, 131, 132, 133 aufgebaut ist. Die dazugehörigen Längssymmetrieachsen zu jedem Teilkörper sind mit der Buchstabe a gekennzeichnet. Zu dieser Konfiguration ist zu sagen, dass sie sich aufgrund der damit erzeugten, geringeren Drallstärke und im Zusammenwirken mit einer entsprechend vergrösserten Schlitzbreite bestens eignet, das Aufplatzen der Wirbelströmung abströmungsseitig des Drallerzeugers im Mischrohr zu verhindern, womit das Mischrohr die ihm zugedachte Rolle bestens erfüllen kann.
  • Fig. 5 unterscheidet sich gegenüber Fig. 4 insoweit, als hier die Teilkörper 140, 141, 142, 143 eine Schaufelprofilform haben, welche zur Bereitstellung einer gewissen Strömung vorgesehen wird. Ansonsten ist die Betreibungsart des Drallerzeugers die gleiche geblieben. Die Zumischung des Brennstoffes 116 in den Verbrennungsluftstromes 115 geschieht aus dem Innern der Schaufelprofile heraus, d.h. die Brennstoffleitung 108 ist nunmehr in die einzelnen Schaufeln integriert. Auch hier sind die Längssymmetrieachsen zu den einzelnen Teilkörpern mit der Buchstabe a gekennzeichnet.
  • Fig. 6 zeigt das Uebergangsstück 200 in dreidimensionaler Ansicht. Die Uebergangsgeometrie ist für einen Drallerzeuger 100 mit vier Teilkörpern, entsprechend der Fig. 4 oder 5, aufgebaut. Dementsprechend weist die Uebergangsgeometrie als natürliche Verlängerung der stromauf wirkenden Teilkörper vier Uebergangskanäle 201 auf, wodurch die Kegelviertelfläche der genannten Teilkörper verlängert wird, bis sie die Wand des Rohres 20 resp. des Mischrohres 220 schneidet. Die gleichen Ueberlegungen gelten auch, wenn der Drallerzeuger aus einem anderen Prinzip, als den unter Fig. 2 beschriebenen, aufgebaut ist. Die nach unten in Strömungsrichtung verlaufende Fläche der einzelnen Uebergangskanäle 201 weist eine in Strömungsrichtung spiralförmig verlaufende Form auf, welche einen sichelförmigen Verlauf beschreibt, entsprechend der Tatsache, dass sich vorliegend der Durchflussquerschnitt des Uebergangsstückes 200 in Strömungsrichtung konisch erweitert. Der Drallwinkel der Uebergangskanäle 201 in Strömungsrichtung ist so gewählt, dass der Rohrströmung anschliessend bis zum Querschnittssprung am Brennkammereintritt noch eine genügend grosse Strecke verbleibt, um eine perfekte Vormischung mit dem eingedüsten Brennstoff zu bewerkstelligen. Ferner erhöht sich durch die oben genannten Massnahmen auch die Axialgeschwindigkeit an der Mischrohrwand stromab des Drallerzeugers. Die Uebergangsgeometrie und die Massnahmen im Bereich des Mischrohres bewirken eine deutliche Steigerung des Axialgeschwindigkeitsprofils zum Mittelpunkt des Mischrohres hin, so dass der Gefahr einer Frühzündung entscheidend entgegengewirkt wird.
  • Bezugszeichenliste
  • 10
    Buchenring
    20
    Rohr
    21
    Bohrungen, Oeffnungen
    30
    Brennkammer
    31
    Oeffnungen
    40
    Strömung, Rohrströmung im Mischrohr
    50
    Rückströmzone
    100
    Drallerzeuger
    101, 102
    Teilkörper
    101a, 102b
    Zylindrische Anfangsteile
    101b, 102b
    Längssymmetrieachsen
    103
    Brennstoffdüse
    104
    Brennstoffeindüsung
    105
    Brennstoffspray (Brennstoffeindüsungsprofil)
    108, 109
    Brennstoffleitungen
    112
    Flüssiger Brennstoff
    113
    Gasförmiger Brennstoff
    114
    Kegelhohlraum
    115
    Verbrennungsluft (Verbrennungsluftstrom)
    116
    Brennstoff-Eindüsung aus den Leitungen 108, 109
    117
    Brennstoffdüsen
    119, 120
    Tangentiale Lufteintrittsschlitze
    121a, 121b
    Leitbleche
    123
    Drehpunkt der Leitbleche
    130, 131, 132, 133
    Teilkörper
    131a, 131a, 132a, 133a
    Längssymmetrieachsen
    140, 141, 142, 143
    Schaufelprofilförmige Teilkörper
    140a, 141a, 142a, 143a
    Längssymmetrieachsen
    200
    Uebergangsstück
    201
    Uebergangskanäle
    220
    Mischrohr

Claims (14)

  1. Brenner für einen Wärmeerzeuger, im wesentlichen bestehend aus einem Drallerzeuger für einen Verbrennungsluftstrom und aus Mitteln zur Eindüsung eines Brennstoffes, dadurch gekennnzeichnet, dass stromab des Drallerzeugers (100) eine Mischstrecke (220) angeordnet ist, und dass die Mischstrecke (220) stromab des Drallerzeugers (100) innerhalb eines ersten Streckenteils (200) in Strömungsrichtung verlaufende Uebergangskanäle (201) zur Ueberführung einer im Drallerzeuger (100) gebildeten Strömung (40) in den stromab der Uebergangskanäle (201) nachgeschalteten Durchflussquerschnitt (20) der Mischstrecke (220) aufweist.
  2. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Mischstrecke (220) als rohrförmiges Mischelement ausgebildet ist.
  3. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Anzahl der Uebergangskanäle (201) in der Mischstrecke (220) der Anzahl der Teilkörper des Drallerzeugers (100) entspricht.
  4. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Mischstrecke (220) stromab der Uebergangskanäle (201) in Strömungsrichtung und in Umfangsrichtung mit Oeffnungen als Filmlegungsbohrungen (21) zur Eindüsung eines Luftstromes versehen ist.
  5. Brenner nach Anspruch 1, dass die Mischstrecke (220) stromab der Uebergangskanäle (201) mit tangentialen Oeffnungen zur Eindüsung eines Luftstromes versehen ist.
  6. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Durchflussquerschnitt (20) der Mischstrecke (220) stromab der Uebergangskanäle (201) kleiner, gleich gross oder grösser als der Querschnitt der im Drallerzeuger (100) gebildeten Strömung (40) ist.
  7. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Uebergangskanäle (201) sektoriell die Stirnfläche der Mischstrecke (220) erfassen und in Strömungsrichtung drallförmig verlaufen.
  8. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass am Ende der Mischstrecke (220) ein Diffusor vorhanden ist.
  9. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass stromab der Mischstrecke (220) eine Brennkammer (30) angeordnet ist, dass zwischen der Mischstrecke (220) und der Brennkammer (30) ein Querschnittssprung vorhanden ist, der den anfänglichen Strömungsquerschnitt der Brennkammer (30) indiziert, und dass im Bereich dieses Querschnittssprunges eine Rückströmzone (50) wirkbar ist.
  10. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Drallerzeuger (100) aus mindestens zwei hohlen, kegelförmigen, in Strömungsrichtung ineinandergeschachtelten Teilkörpern (101, 102; 130, 131, 132, 133; 140, 141, 142, 143) besteht, dass die jeweiligen Längssymmetrieachsen (101b, 102b; 130a, 131a, 132a, 133a; 140a, 141a, 142a, 143a) dieser Teilkörper gegeneinander versetzt verlaufen, dergestalt, dass die benachbarten Wandungen der Teilkörper in deren Längserstreckung tangentiale Kanäle (119, 120) für einen Verbrennungsluftstromes (115) bilden, und dass im von den Teilkörpern gebildeten Kegelhohlraum (114) mindestens eine Brennstoffdüse (103) angeordnet ist.
  11. Brenner nach Anspruch 10, dadurch gekennzeichnet, dass im Bereich der tangentialen Kanäle (119, 120) in deren Längserstreckung weitere Brennstoffdüsen (117) angeordnet sind.
  12. Brenner nach Anspruch 10, dadurch gekennzeichnet, dass die Teilkörper (140, 141, 142, 143) im Querschnitt eine schaufelförmige Profilierung aufweisen.
  13. Brenner nach Anspruch 10, dadurch gekennzeichnet, dass die Teilkörper in Strömungsrichtung einen festen Kegelwinkel, oder eine zunehmende Kegelneigung, oder eine abnehmende Kegelneigung aufweisen.
  14. Brenner nach Anspruch 10, dadurch gekennzeichnet, dass die Teilkörper spiralförmig ineinandergeschachtelt sind.
EP95810587A 1994-10-01 1995-09-20 Brenner Expired - Lifetime EP0704657B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4435266 1994-10-01
DE4435266A DE4435266A1 (de) 1994-10-01 1994-10-01 Brenner

Publications (3)

Publication Number Publication Date
EP0704657A2 true EP0704657A2 (de) 1996-04-03
EP0704657A3 EP0704657A3 (de) 1997-07-30
EP0704657B1 EP0704657B1 (de) 2001-11-07

Family

ID=6529801

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95810587A Expired - Lifetime EP0704657B1 (de) 1994-10-01 1995-09-20 Brenner

Country Status (8)

Country Link
US (1) US5588826A (de)
EP (1) EP0704657B1 (de)
JP (1) JP3649785B2 (de)
KR (1) KR960014753A (de)
CN (1) CN1090728C (de)
AT (1) ATE208480T1 (de)
CA (1) CA2154941A1 (de)
DE (2) DE4435266A1 (de)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797051A2 (de) * 1996-03-20 1997-09-24 Abb Research Ltd. Brenner für einen Wärmeerzeuger
EP0833104A2 (de) 1996-09-25 1998-04-01 Abb Research Ltd. Brenner zum Betrieb einer Brennkammer
EP0845639A1 (de) 1996-11-29 1998-06-03 Abb Research Ltd. Brennkammer
EP0851172A2 (de) 1996-12-23 1998-07-01 Abb Research Ltd. Brenner zum Betrieb einer Brennkammer mit einem flüssigen und/oder gasförmigen Brennstoff
EP0780630A3 (de) * 1995-12-21 1998-07-29 Abb Research Ltd. Brenner für einen Wärmeerzeuger
EP0780629A3 (de) * 1995-12-21 1998-08-19 ABB Research Ltd. Brenner für einen Wärmeerzeuger
EP0833105A3 (de) * 1996-09-30 1998-10-21 Abb Research Ltd. Vormischbrenner
EP0899508A1 (de) * 1997-08-25 1999-03-03 Abb Research Ltd. Brenner für einen Wärmeerzeuger
EP0902233A1 (de) 1997-09-15 1999-03-17 Abb Research Ltd. Kombinierte Druckzerstäuberdüse
EP0924460A1 (de) 1997-12-22 1999-06-23 Abb Research Ltd. Zweistufige Druckzerstäuberdüse
EP0924461A1 (de) 1997-12-22 1999-06-23 Abb Research Ltd. Zweistufige Druckzerstäuberdüse
US5954496A (en) * 1996-09-25 1999-09-21 Abb Research Ltd. Burner for operating a combustion chamber
US6106278A (en) * 1997-05-17 2000-08-22 Abb Research Ltd. Combustion chamber
US6192669B1 (en) 1997-03-20 2001-02-27 Asea Brown Boveri Ag Combustion chamber of a gas turbine
EP0892219B1 (de) * 1997-07-15 2002-10-23 Alstom Verfahren und Vorrichtung zum Minimieren thermoakustischer Schwingungen in Gasturbinenbrennkammern
DE10160907A1 (de) * 2001-12-12 2003-08-14 Alstom Switzerland Ltd Verfahren zur Verhinderung von Strömungsinstabilitäten in einem Brenner
EP1389713A1 (de) 2002-08-12 2004-02-18 ALSTOM (Switzerland) Ltd Stromabwärtiger Pilotringbrenner für Vormischbrenner
DE19912701B4 (de) * 1999-03-20 2006-01-19 Alstom Brennkammerwand
DE19654009B4 (de) * 1996-12-21 2006-05-18 Alstom Vormischbrenner zum Betrieb einer Brennkammer mit einem flüssigen und/oder gasförmigen Brennstoff
US7082768B2 (en) 2001-12-20 2006-08-01 Alstom Technology Ltd Method for injecting a fuel-air mixture into a combustion chamber
US7241138B2 (en) 2001-12-24 2007-07-10 Alstom Technology Ltd. Burner with stepped fuel injection
WO2009019114A2 (de) * 2007-08-07 2009-02-12 Alstom Technology Ltd Brenner für eine brennkammer einer turbogruppe
WO2009019113A2 (de) 2007-08-07 2009-02-12 Alstom Technology Ltd Brenner für eine brennkammer einer turbogruppe
US7491056B2 (en) 2004-11-03 2009-02-17 Alstom Technology Ltd. Premix burner
EP2068076A2 (de) 2007-12-03 2009-06-10 Siemens Aktiengesellschaft Verbesserungen in oder in Bezug auf Brenner für ein Gasturbinentriebwerk
EP2090830A1 (de) 2008-02-13 2009-08-19 ALSTOM Technology Ltd Brennstoffzufuhranordnung
US7780437B2 (en) 2004-10-11 2010-08-24 Stefano Bernero Premix burner
WO2010115980A2 (de) 2009-04-11 2010-10-14 Alstom Technology Ltd. Brennkammer mit helmholtzdämpfer
WO2011026732A1 (de) 2009-09-03 2011-03-10 Alstom Technology Ltd. Gasturbogruppe
EP2299178A1 (de) 2009-09-17 2011-03-23 Alstom Technology Ltd Verfahren und Gasturbinenverbrennungssystem zum sicheren Mischen von H2-reichen Brennstoffen mit Luft
US7972133B2 (en) 2006-03-27 2011-07-05 Alstom Technology Ltd. Burner for the operation of a heat generator and method of use
US8033821B2 (en) 2007-11-27 2011-10-11 Alstom Technology Ltd. Premix burner for a gas turbine
US8057224B2 (en) 2004-12-23 2011-11-15 Alstom Technology Ltd. Premix burner with mixing section
US8210797B2 (en) 2008-05-26 2012-07-03 Alstom Technology Ltd Gas turbine with a stator blade
US8272220B2 (en) 2008-02-20 2012-09-25 Alstom Technology Ltd Impingement cooling plate for a hot gas duct of a thermal machine
WO2012136787A1 (de) 2011-04-08 2012-10-11 Alstom Technology Ltd Gasturbogruppe und zugehöriges betriebsverfahren
US8413449B2 (en) 2008-02-20 2013-04-09 Alstom Technology Ltd Gas turbine having an improved cooling architecture
US8459985B2 (en) 2008-03-07 2013-06-11 Alstom Technology Ltd Method and burner arrangement for the production of hot gas, and use of said method
US8459934B2 (en) 2008-03-28 2013-06-11 Alstom Technology Ltd Varying cross-sectional area guide blade
US8468833B2 (en) 2008-03-07 2013-06-25 Alstom Technology Ltd Burner arrangement, and use of such a burner arrangement
WO2014001230A1 (en) 2012-06-29 2014-01-03 Alstom Technology Ltd Method for a part load co reduction operation for a sequential gas turbine
EP2685172A2 (de) 2012-07-09 2014-01-15 Alstom Technology Ltd Rohr-Ringkammer-Gasturbinenverbrennungssystem mit gestufter Vormisch-Verbrennung
EP2685161A1 (de) 2012-07-10 2014-01-15 Alstom Technology Ltd Brenneranordnung, insbesondere für eine Gasturbine
EP2700878A2 (de) 2012-08-24 2014-02-26 Alstom Technology Ltd Verfahren zum Mischen einer Verdünnungsluft in einem sequenziellen Verbrennungssystem einer Gasturbine
EP2700879A2 (de) 2012-08-24 2014-02-26 Alstom Technology Ltd Verfahren zum Mischen einer Verdünnungsluft in einem sequenziellen Verbrennungssystem einer Gasturbine
EP2703721A1 (de) 2012-08-31 2014-03-05 Alstom Technology Ltd Vormischbrenner
EP2725300A1 (de) 2012-10-24 2014-04-30 Alstom Technology Ltd Dämpferanordnung zur Reduzierung der Brennkammerschwingungen
US8783044B2 (en) 2007-12-29 2014-07-22 Alstom Technology Ltd Turbine stator nozzle cooling structure
US8801366B2 (en) 2008-03-28 2014-08-12 Alstom Technology Ltd. Stator blade for a gas turbine and gas turbine having same
EP2796789A1 (de) 2013-04-26 2014-10-29 Alstom Technology Ltd Rohrbrennkammer für eine Rohr-Ring Anordnung in einer Gasturbine
US20140318107A1 (en) * 2012-08-08 2014-10-30 Hino Motors, Ltd. Burner for exhaust purifying device
US8950192B2 (en) 2008-02-20 2015-02-10 Alstom Technology Ltd. Gas turbine
EP2863018A1 (de) 2013-10-17 2015-04-22 Alstom Technology Ltd Kühlstruktur für ein Gasturbinenübergangsstück
EP2960436A1 (de) 2014-06-27 2015-12-30 Alstom Technology Ltd Kühlstruktur für ein Gasturbinenübergangsstück
EP2993404A1 (de) 2014-09-08 2016-03-09 Alstom Technology Ltd Verdünnungsgas oder Luftmischer für eine Brennkammer einer Gasturbine
EP2993315A1 (de) 2014-09-05 2016-03-09 Alstom Technology Ltd Vorrichtung für ein Werkzeug zur Montage oder Demontage, Ersetzung und Wartung eines Bauteils eines Motors
EP2993314A1 (de) 2014-09-05 2016-03-09 Alstom Technology Ltd Vorrichtung und Verfahren zur Montage oder Demontage, zum Austausch und zur Wartung eines CAN-Verbrenners
EP3026347A1 (de) 2014-11-25 2016-06-01 Alstom Technology Ltd Brennkammer mit ringförmigem Wirbelkörper
EP3037725A1 (de) 2014-12-22 2016-06-29 Alstom Technology Ltd Mischer zur Vermischung einer Verdünnungsluft mit einem Heißgasstrom
EP3037728A1 (de) 2014-12-22 2016-06-29 Alstom Technology Ltd Axial gestufte Mischer mit Verdünnungslufteinspritzung
EP3037726A1 (de) 2014-12-22 2016-06-29 Alstom Technology Ltd Getrennte Zufuhr von Kühlungs- und Verdünnungsluft
US10208960B2 (en) 2007-11-27 2019-02-19 Ansaldo Energia Switzerland AG Method for operating a gas turbine installation and equipment for carrying out the method

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523094A1 (de) * 1995-06-26 1997-01-02 Abb Management Ag Brennkammer
DE19545309A1 (de) * 1995-12-05 1997-06-12 Asea Brown Boveri Vormischbrenner
KR100381719B1 (ko) * 1995-12-29 2003-08-14 고려화학 주식회사 수용성 방청도료 조성물
DE19549143A1 (de) * 1995-12-29 1997-07-03 Abb Research Ltd Gasturbinenringbrennkammer
KR100461575B1 (ko) * 1996-12-30 2005-06-27 고려화학 주식회사 아크릴에멀젼수지를이용한수계방청도료조성물
DE59709791D1 (de) * 1997-09-19 2003-05-15 Alstom Switzerland Ltd Brenner für den Betrieb eines Wärmeerzeugers
DE59709446D1 (de) * 1997-10-31 2003-04-10 Alstom Switzerland Ltd Brenner für den Betrieb eines Wärmeerzeugers
EP0918190A1 (de) * 1997-11-21 1999-05-26 Abb Research Ltd. Brenner für den Betrieb eines Wärmeerzeugers
DE19859829A1 (de) 1998-12-23 2000-06-29 Abb Alstom Power Ch Ag Brenner zum Betrieb eines Wärmeerzeugers
DE10049205A1 (de) * 2000-10-05 2002-05-23 Alstom Switzerland Ltd Verfahren und Vorrichtung zur Brennstoffversorgung eines Vormischbrenners
EP1439349A1 (de) * 2003-01-14 2004-07-21 Alstom Technology Ltd Verbrennungsverfahren sowie Brenner zur Durchführung des Verfahrens
MXPA06008994A (es) * 2004-02-12 2006-12-14 Alstom Tehcnology Ltd Arreglo de quemador de premezclado para operar una camara de combustion y metodo para operar una camara de combustion.
JP4913746B2 (ja) * 2004-11-30 2012-04-11 アルストム テクノロジー リミテッド 予混合バーナー内の水素を燃焼する方法及び装置
EP2058590B1 (de) * 2007-11-09 2016-03-23 Alstom Technology Ltd Verfahren zum Betrieb eines Brenners
EP2220433B1 (de) * 2007-11-27 2013-09-04 Alstom Technology Ltd Verfahren und vorrichtung zur verbrennung von wasserstoff in einem vormischbrenner
EP2071156B1 (de) 2007-12-10 2013-11-06 Alstom Technology Ltd Brennstoffverteilungssystem für eine Gasturbine mit mehrstufiger Brenneranordnung
EP2072899B1 (de) * 2007-12-19 2016-03-30 Alstom Technology Ltd Kraftstoffeinspritzsystem
MY158901A (en) * 2008-02-20 2016-11-30 General Electric Technology Gmbh Gas turbine having an annular combustion chamber
EP2260238B1 (de) * 2008-03-07 2015-12-23 Alstom Technology Ltd Verfahren zum Betrieb eines Vormischbrenners
WO2009118234A1 (de) * 2008-03-28 2009-10-01 Alstom Technology Ltd Schaufel für eine rotierende thermische maschine
JP2011516269A (ja) * 2008-03-31 2011-05-26 アルストム テクノロジー リミテッド ガスタービン用ブレード
EP2299091A1 (de) * 2009-09-07 2011-03-23 Alstom Technology Ltd Verfahren zum Umschalten des Betriebes eines Gasturbinenbrenners von flüssigen auf gasförmigen Brennstoff und umgekehrt.
KR101221335B1 (ko) * 2012-07-16 2013-01-11 금호환경 주식회사 무화염 연소 혼합장치 및 이 장치가 구비된 축열식 연소산화 시스템
EP2722591A1 (de) * 2012-10-22 2014-04-23 Alstom Technology Ltd Mehrfach-Kegelbrenner für eine Gasturbine
JP6602004B2 (ja) * 2014-09-29 2019-11-06 川崎重工業株式会社 燃料噴射器及びガスタービン
EP3062019B1 (de) 2015-02-27 2018-11-21 Ansaldo Energia Switzerland AG Verfahren und vorrichtung zur flammenstabilisation in einem brennersystem einer stationären brennkraftmaschine
CN107339698B (zh) * 2017-08-15 2023-05-12 安徽科达洁能股份有限公司 一种燃烧器
CN110454781A (zh) * 2019-08-20 2019-11-15 广东万和电气有限公司 一种分气盘及灶具燃烧器
WO2021197654A1 (de) * 2020-03-31 2021-10-07 Siemens Aktiengesellschaft Brennerkomponente eines brenners und brenner einer gasturbine mit einer solchen
CN113694631A (zh) * 2021-09-17 2021-11-26 盐城市锐砂环保科技有限公司 一种脉冲放大式滤芯清灰装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321809A1 (de) 1987-12-21 1989-06-28 BBC Brown Boveri AG Verfahren für die Verbrennung von flüssigem Brennstoff in einem Brenner

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1778194A (en) * 1928-08-24 1930-10-14 Barque Royalty Inc Burner
US3220460A (en) * 1963-04-12 1965-11-30 Colt Ventilation & Heating Ltd Heat generators
US3691762A (en) * 1970-12-04 1972-09-19 Caterpillar Tractor Co Carbureted reactor combustion system for gas turbine engine
US3656692A (en) * 1971-01-05 1972-04-18 Texaco Inc Oil burner
US3859786A (en) * 1972-05-25 1975-01-14 Ford Motor Co Combustor
US3853273A (en) * 1973-10-01 1974-12-10 Gen Electric Axial swirler central injection carburetor
US3859787A (en) * 1974-02-04 1975-01-14 Gen Motors Corp Combustion apparatus
US4044553A (en) * 1976-08-16 1977-08-30 General Motors Corporation Variable geometry swirler
US4561841A (en) * 1980-11-21 1985-12-31 Donald Korenyi Combustion apparatus
US4464108A (en) * 1980-11-21 1984-08-07 Donald Korenyi Combustion apparatus
US5193995A (en) * 1987-12-21 1993-03-16 Asea Brown Boveri Ltd. Apparatus for premixing-type combustion of liquid fuel
CH680467A5 (de) * 1989-12-22 1992-08-31 Asea Brown Boveri
JP2564513Y2 (ja) * 1991-03-23 1998-03-09 株式会社ガスター 旋回式燃焼器
US5307634A (en) * 1992-02-26 1994-05-03 United Technologies Corporation Premix gas nozzle
JPH06101815A (ja) * 1992-09-18 1994-04-12 Hitachi Ltd 予混合燃焼用バーナ及び燃焼器
JP2586388Y2 (ja) * 1992-11-11 1998-12-02 株式会社ガスター 旋回予混合装置
DE4316474A1 (de) * 1993-05-17 1994-11-24 Abb Management Ag Vormischbrenner zum Betrieb einer Brennkraftmaschine, einer Brennkammer einer Gasturbogruppe oder Feuerungsanlage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321809A1 (de) 1987-12-21 1989-06-28 BBC Brown Boveri AG Verfahren für die Verbrennung von flüssigem Brennstoff in einem Brenner

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780630A3 (de) * 1995-12-21 1998-07-29 Abb Research Ltd. Brenner für einen Wärmeerzeuger
EP0780629A3 (de) * 1995-12-21 1998-08-19 ABB Research Ltd. Brenner für einen Wärmeerzeuger
EP0797051A3 (de) * 1996-03-20 1998-05-20 Abb Research Ltd. Brenner für einen Wärmeerzeuger
EP0797051A2 (de) * 1996-03-20 1997-09-24 Abb Research Ltd. Brenner für einen Wärmeerzeuger
US5954496A (en) * 1996-09-25 1999-09-21 Abb Research Ltd. Burner for operating a combustion chamber
EP0833104A2 (de) 1996-09-25 1998-04-01 Abb Research Ltd. Brenner zum Betrieb einer Brennkammer
EP0833104A3 (de) * 1996-09-25 1998-07-29 Abb Research Ltd. Brenner zum Betrieb einer Brennkammer
EP0833105A3 (de) * 1996-09-30 1998-10-21 Abb Research Ltd. Vormischbrenner
EP0845639A1 (de) 1996-11-29 1998-06-03 Abb Research Ltd. Brennkammer
US6050078A (en) * 1996-11-29 2000-04-18 Abb Research Ltd. Gas turbine combustion chamber with two stages and enhanced acoustic properties
DE19654009B4 (de) * 1996-12-21 2006-05-18 Alstom Vormischbrenner zum Betrieb einer Brennkammer mit einem flüssigen und/oder gasförmigen Brennstoff
EP0851172A2 (de) 1996-12-23 1998-07-01 Abb Research Ltd. Brenner zum Betrieb einer Brennkammer mit einem flüssigen und/oder gasförmigen Brennstoff
US5921770A (en) * 1996-12-23 1999-07-13 Abb Research Ltd. Burner for operating a combustion chamber with a liquid and/or gaseous fuel
EP0851172A3 (de) * 1996-12-23 1999-06-09 Abb Research Ltd. Brenner zum Betrieb einer Brennkammer mit einem flüssigen und/oder gasförmigen Brennstoff
US6192669B1 (en) 1997-03-20 2001-02-27 Asea Brown Boveri Ag Combustion chamber of a gas turbine
US6106278A (en) * 1997-05-17 2000-08-22 Abb Research Ltd. Combustion chamber
EP0892219B1 (de) * 1997-07-15 2002-10-23 Alstom Verfahren und Vorrichtung zum Minimieren thermoakustischer Schwingungen in Gasturbinenbrennkammern
US6102692A (en) * 1997-08-25 2000-08-15 Abb Alstom Power (Switzerland) Ltd Burner for a heat generator
EP0899508A1 (de) * 1997-08-25 1999-03-03 Abb Research Ltd. Brenner für einen Wärmeerzeuger
US6378787B1 (en) 1997-09-15 2002-04-30 Alstom Combined pressure atomizing nozzle
EP0902233A1 (de) 1997-09-15 1999-03-17 Abb Research Ltd. Kombinierte Druckzerstäuberdüse
EP0924460A1 (de) 1997-12-22 1999-06-23 Abb Research Ltd. Zweistufige Druckzerstäuberdüse
US6036479A (en) * 1997-12-22 2000-03-14 Abb Research Ltd. Two-stage pressure atomizer nozzle
EP0924461A1 (de) 1997-12-22 1999-06-23 Abb Research Ltd. Zweistufige Druckzerstäuberdüse
DE19912701B4 (de) * 1999-03-20 2006-01-19 Alstom Brennkammerwand
DE10160907A1 (de) * 2001-12-12 2003-08-14 Alstom Switzerland Ltd Verfahren zur Verhinderung von Strömungsinstabilitäten in einem Brenner
US7082768B2 (en) 2001-12-20 2006-08-01 Alstom Technology Ltd Method for injecting a fuel-air mixture into a combustion chamber
US7406827B2 (en) 2001-12-20 2008-08-05 Alstom Technology Ltd Apparatus for injecting a fuel-air mixture into a combustion chamber
US7241138B2 (en) 2001-12-24 2007-07-10 Alstom Technology Ltd. Burner with stepped fuel injection
EP1389713A1 (de) 2002-08-12 2004-02-18 ALSTOM (Switzerland) Ltd Stromabwärtiger Pilotringbrenner für Vormischbrenner
US7140183B2 (en) 2002-08-12 2006-11-28 Alstom Technology Ltd. Premixed exit ring pilot burner
US7780437B2 (en) 2004-10-11 2010-08-24 Stefano Bernero Premix burner
US7491056B2 (en) 2004-11-03 2009-02-17 Alstom Technology Ltd. Premix burner
US8057224B2 (en) 2004-12-23 2011-11-15 Alstom Technology Ltd. Premix burner with mixing section
US7972133B2 (en) 2006-03-27 2011-07-05 Alstom Technology Ltd. Burner for the operation of a heat generator and method of use
WO2009019114A2 (de) * 2007-08-07 2009-02-12 Alstom Technology Ltd Brenner für eine brennkammer einer turbogruppe
WO2009019113A3 (de) * 2007-08-07 2009-06-11 Alstom Technology Ltd Brenner für eine brennkammer einer turbogruppe
WO2009019113A2 (de) 2007-08-07 2009-02-12 Alstom Technology Ltd Brenner für eine brennkammer einer turbogruppe
US8069671B2 (en) 2007-08-07 2011-12-06 Alstom Technology Ltd. Burner fuel lance configuration and method of use
WO2009019114A3 (de) * 2007-08-07 2009-06-11 Alstom Technology Ltd Brenner für eine brennkammer einer turbogruppe
US10208960B2 (en) 2007-11-27 2019-02-19 Ansaldo Energia Switzerland AG Method for operating a gas turbine installation and equipment for carrying out the method
US8033821B2 (en) 2007-11-27 2011-10-11 Alstom Technology Ltd. Premix burner for a gas turbine
EP2068076A2 (de) 2007-12-03 2009-06-10 Siemens Aktiengesellschaft Verbesserungen in oder in Bezug auf Brenner für ein Gasturbinentriebwerk
US8783044B2 (en) 2007-12-29 2014-07-22 Alstom Technology Ltd Turbine stator nozzle cooling structure
EP2090830A1 (de) 2008-02-13 2009-08-19 ALSTOM Technology Ltd Brennstoffzufuhranordnung
US8196409B2 (en) 2008-02-13 2012-06-12 Alstom Technology Ltd Gas turbine engine fuel supply arrangement using plural distinct fuels
US8272220B2 (en) 2008-02-20 2012-09-25 Alstom Technology Ltd Impingement cooling plate for a hot gas duct of a thermal machine
US8950192B2 (en) 2008-02-20 2015-02-10 Alstom Technology Ltd. Gas turbine
US8413449B2 (en) 2008-02-20 2013-04-09 Alstom Technology Ltd Gas turbine having an improved cooling architecture
US8459985B2 (en) 2008-03-07 2013-06-11 Alstom Technology Ltd Method and burner arrangement for the production of hot gas, and use of said method
US8468833B2 (en) 2008-03-07 2013-06-25 Alstom Technology Ltd Burner arrangement, and use of such a burner arrangement
US8801366B2 (en) 2008-03-28 2014-08-12 Alstom Technology Ltd. Stator blade for a gas turbine and gas turbine having same
US8459934B2 (en) 2008-03-28 2013-06-11 Alstom Technology Ltd Varying cross-sectional area guide blade
US8210797B2 (en) 2008-05-26 2012-07-03 Alstom Technology Ltd Gas turbine with a stator blade
WO2010115980A2 (de) 2009-04-11 2010-10-14 Alstom Technology Ltd. Brennkammer mit helmholtzdämpfer
US8875483B2 (en) 2009-09-03 2014-11-04 Alstom Technology Ltd Gas turbine generator set
WO2011026732A1 (de) 2009-09-03 2011-03-10 Alstom Technology Ltd. Gasturbogruppe
WO2011032839A1 (en) 2009-09-17 2011-03-24 Alstom Technology Ltd A method and gas turbine combustion system for safely mixing h2-rich fuels with air
EP2299178A1 (de) 2009-09-17 2011-03-23 Alstom Technology Ltd Verfahren und Gasturbinenverbrennungssystem zum sicheren Mischen von H2-reichen Brennstoffen mit Luft
US10208958B2 (en) 2009-09-17 2019-02-19 Ansaldo Energia Switzerland AG Method and gas turbine combustion system for safely mixing H2-rich fuels with air
US10774740B2 (en) 2011-04-08 2020-09-15 Ansaldo Energia Switzerland AG Gas turbine assembly and corresponding operating method
WO2012136787A1 (de) 2011-04-08 2012-10-11 Alstom Technology Ltd Gasturbogruppe und zugehöriges betriebsverfahren
US10907549B2 (en) 2012-06-29 2021-02-02 Ansaldo Energia Switzerland AG Method for a part load CO reduction operation for a sequential gas turbine
WO2014001230A1 (en) 2012-06-29 2014-01-03 Alstom Technology Ltd Method for a part load co reduction operation for a sequential gas turbine
EP2685172A3 (de) * 2012-07-09 2014-04-16 Alstom Technology Ltd Rohr-Ringkammer-Gasturbinenverbrennungssystem mit gestufter Vormisch-Verbrennung
EP2685172A2 (de) 2012-07-09 2014-01-15 Alstom Technology Ltd Rohr-Ringkammer-Gasturbinenverbrennungssystem mit gestufter Vormisch-Verbrennung
US9810152B2 (en) 2012-07-09 2017-11-07 Ansaldo Energia Switzerland AG Gas turbine combustion system
EP2685161A1 (de) 2012-07-10 2014-01-15 Alstom Technology Ltd Brenneranordnung, insbesondere für eine Gasturbine
US9933163B2 (en) 2012-07-10 2018-04-03 Ansaldo Energia Switzerland AG Combustor arrangement with slidable multi-cone premix burner
RU2573090C2 (ru) * 2012-07-10 2016-01-20 Альстом Текнолоджи Лтд. Узел камеры сгорания, в частности для газовой турбины
US9476333B2 (en) * 2012-08-08 2016-10-25 Hino Motors, Ltd. Burner for exhaust purifying device
US20140318107A1 (en) * 2012-08-08 2014-10-30 Hino Motors, Ltd. Burner for exhaust purifying device
US9551491B2 (en) 2012-08-24 2017-01-24 General Electric Technology Gmbh Method for mixing a dilution air in a sequential combustion system of a gas turbine
EP2700878A2 (de) 2012-08-24 2014-02-26 Alstom Technology Ltd Verfahren zum Mischen einer Verdünnungsluft in einem sequenziellen Verbrennungssystem einer Gasturbine
EP2700879A2 (de) 2012-08-24 2014-02-26 Alstom Technology Ltd Verfahren zum Mischen einer Verdünnungsluft in einem sequenziellen Verbrennungssystem einer Gasturbine
US9400105B2 (en) 2012-08-31 2016-07-26 General Electric Technology Gmbh Premix burner
EP2703721A1 (de) 2012-08-31 2014-03-05 Alstom Technology Ltd Vormischbrenner
US10718520B2 (en) 2012-10-24 2020-07-21 Ansaldo Energia Switzerland AG Damper arrangement for reducing combustion-chamber pulsation
EP2725300A1 (de) 2012-10-24 2014-04-30 Alstom Technology Ltd Dämpferanordnung zur Reduzierung der Brennkammerschwingungen
US10422535B2 (en) 2013-04-26 2019-09-24 Ansaldo Energia Switzerland AG Can combustor for a can-annular combustor arrangement in a gas turbine
EP2796789A1 (de) 2013-04-26 2014-10-29 Alstom Technology Ltd Rohrbrennkammer für eine Rohr-Ring Anordnung in einer Gasturbine
EP2863018A1 (de) 2013-10-17 2015-04-22 Alstom Technology Ltd Kühlstruktur für ein Gasturbinenübergangsstück
US10443500B2 (en) 2013-10-17 2019-10-15 Ansaldo Energia Switzerland AG Combustor cooling structure
US9879605B2 (en) 2014-06-27 2018-01-30 Ansaldo Energia Switzerland AG Combustor cooling structure
EP2960436A1 (de) 2014-06-27 2015-12-30 Alstom Technology Ltd Kühlstruktur für ein Gasturbinenübergangsstück
EP2993315A1 (de) 2014-09-05 2016-03-09 Alstom Technology Ltd Vorrichtung für ein Werkzeug zur Montage oder Demontage, Ersetzung und Wartung eines Bauteils eines Motors
US10174637B2 (en) 2014-09-05 2019-01-08 Ansaldo Energia Switzerland AG Device and method for mounting or dismantling, replacement and maintenance of a can-combustor
EP2993314A1 (de) 2014-09-05 2016-03-09 Alstom Technology Ltd Vorrichtung und Verfahren zur Montage oder Demontage, zum Austausch und zur Wartung eines CAN-Verbrenners
CN105397463A (zh) * 2014-09-05 2016-03-16 阿尔斯通技术有限公司 安装或拆除、替换和维护发动机的构件的组装工具的设备
EP2993404A1 (de) 2014-09-08 2016-03-09 Alstom Technology Ltd Verdünnungsgas oder Luftmischer für eine Brennkammer einer Gasturbine
EP3026347A1 (de) 2014-11-25 2016-06-01 Alstom Technology Ltd Brennkammer mit ringförmigem Wirbelkörper
US10323574B2 (en) 2014-12-22 2019-06-18 Ansaldo Energia Switzerland AG Mixer for admixing a dilution air to the hot gas flow
EP3037726A1 (de) 2014-12-22 2016-06-29 Alstom Technology Ltd Getrennte Zufuhr von Kühlungs- und Verdünnungsluft
US10443849B2 (en) 2014-12-22 2019-10-15 Ansaldo Energia Switzerland AG Separate feedings of cooling and dilution air
US10247420B2 (en) 2014-12-22 2019-04-02 Ansaldo Energia Switzerland AG Axially staged mixer with dilution air injection
EP3037725A1 (de) 2014-12-22 2016-06-29 Alstom Technology Ltd Mischer zur Vermischung einer Verdünnungsluft mit einem Heißgasstrom
EP3037728A1 (de) 2014-12-22 2016-06-29 Alstom Technology Ltd Axial gestufte Mischer mit Verdünnungslufteinspritzung

Also Published As

Publication number Publication date
DE59509802D1 (de) 2001-12-13
US5588826A (en) 1996-12-31
CN1090728C (zh) 2002-09-11
JP3649785B2 (ja) 2005-05-18
DE4435266A1 (de) 1996-04-04
CN1131737A (zh) 1996-09-25
ATE208480T1 (de) 2001-11-15
EP0704657A3 (de) 1997-07-30
EP0704657B1 (de) 2001-11-07
KR960014753A (ko) 1996-05-22
CA2154941A1 (en) 1996-04-02
JPH08114307A (ja) 1996-05-07

Similar Documents

Publication Publication Date Title
EP0704657B1 (de) Brenner
EP0780629B1 (de) Brenner für einen Wärmeerzeuger
EP0321809B1 (de) Verfahren für die Verbrennung von flüssigem Brennstoff in einem Brenner
EP0918191B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP0899508B1 (de) Brenner für einen Wärmeerzeuger
EP0780630B1 (de) Brenner für einen Wärmeerzeuger
EP0833105B1 (de) Vormischbrenner
EP0918190A1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP0777081B1 (de) Vormischbrenner
EP0797051B1 (de) Brenner für einen Wärmeerzeuger
DE19757189B4 (de) Verfahren zum Betrieb eines Brenners eines Wärmeerzeugers
EP0718561B1 (de) Brennkammer
EP0994300B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP0916894B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP0931980B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP0909921B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP0903540B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP0751351A1 (de) Brennkammer
EP0919768B1 (de) Brenner zum Betrieb eines Wärmeerzeugers
DE19537636B4 (de) Kraftwerksanlage
EP0833104B1 (de) Brenner zum Betrieb einer Brennkammer
EP0694730A2 (de) Brenner
DE19515082B4 (de) Vormischbrenner
EP0913630B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
DE19914666B4 (de) Brenner für einen Wärmeerzeuger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB IT LI NL SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PAIKERT, BETTINA, DR.

Inventor name: KNOEPFEL, HANS PETER

Inventor name: HAUMANN, JUERGEN, DR.

Inventor name: DOEBBELING, KLAUS, DR.

Inventor name: STEINBACH, CHRISTIAN, DR.

Inventor name: SATTELMAYER, THOMAS, DR.

Inventor name: RUCK, THOMAS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB MANAGEMENT AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19980122

17Q First examination report despatched

Effective date: 19991103

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB ALSTOM POWER (SCHWEIZ) AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011107

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20011107

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011107

REF Corresponds to:

Ref document number: 208480

Country of ref document: AT

Date of ref document: 20011115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM

REF Corresponds to:

Ref document number: 59509802

Country of ref document: DE

Date of ref document: 20011213

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ALSTOM

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020131

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59509802

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120621

Ref country code: DE

Ref legal event code: R081

Ref document number: 59509802

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM, PARIS, FR

Effective date: 20120621

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140922

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140919

Year of fee payment: 20

Ref country code: SE

Payment date: 20140918

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59509802

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20150919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150919

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG