EP0619692A2 - Temperaturregelung für eine hochfrequenz Induktionheizer - Google Patents

Temperaturregelung für eine hochfrequenz Induktionheizer Download PDF

Info

Publication number
EP0619692A2
EP0619692A2 EP94302487A EP94302487A EP0619692A2 EP 0619692 A2 EP0619692 A2 EP 0619692A2 EP 94302487 A EP94302487 A EP 94302487A EP 94302487 A EP94302487 A EP 94302487A EP 0619692 A2 EP0619692 A2 EP 0619692A2
Authority
EP
European Patent Office
Prior art keywords
high frequency
resonance
temperature
induction heating
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94302487A
Other languages
English (en)
French (fr)
Other versions
EP0619692A3 (de
EP0619692B1 (de
Inventor
Isao Matsumoto
Tetsuo Fusato
Fumitoshi Kimura
Fujio C/O Fuji Jukogyo Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
DKK Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Fuji Jukogyo KK
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd, Fuji Jukogyo KK, Fuji Heavy Industries Ltd filed Critical Denki Kogyo Co Ltd
Publication of EP0619692A2 publication Critical patent/EP0619692A2/de
Publication of EP0619692A3 publication Critical patent/EP0619692A3/de
Application granted granted Critical
Publication of EP0619692B1 publication Critical patent/EP0619692B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/36Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils
    • G01K7/38Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils the variations of temperature influencing the magnetic permeability
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a heating temperature control method in high frequency induction heating and high frequency induction heating temperature control apparatus, and more particularly to a control method and apparatus suitable for accurately controlling a heating temperature of an object to be heated when a high frequency induction heating coil is used to high frequency induction heat the object.
  • a catalytic converter disposed on the way of an exhaust pipe of an automobile to purify exhaust gas is heated by the exhaust gas to a high temperature during traveling of the automobile and accordingly the purification of the exhaust gas by the catalytic converter is performed effectively, but while the catalytic converter is at the normal temperature upon starting of an engine of the automobile the purification is not performed effectively. Accordingly, in order to perform the purification of exhaust gas upon starting of the engine sufficiently, it is necessary to heat the catalytic converter forcedly upon starting of the engine.
  • a DC current flows in the catalytic converter directly to utilize the Joule heat.
  • Fig. 12 illustrates a control apparatus 50 for carrying out the conventional heating method.
  • the apparatus 50 serves to heat a catalytic converter (object to be heated) 51 to a previously set temperature.
  • the conventional temperature control apparatus 50 is configured to supply electric power from a DC power supply 52 to the catalytic converter 51 constituting the object to be heated and Joule-heat it and to detect a heating temperature of the catalytic converter 51 by means of a thermocouple temperature sensor 53 attached to the catalytic converter 51.
  • the thermocouple temperature sensor 53 produces a voltage signal proportional to a detected temperature to supply it to a comparator 54, which compares the voltage signal with a predetermined reference voltage.
  • thermocouple temperature sensor 53 When the temperature detected by the thermocouple temperature sensor 53 exceeds a predetermined reference voltage, the comparator 54 produces a predetermined control signal. The control signal switches a power switch 55 from an on state to an off state to cut off supply of electric power to the catalytic converter 51, so that heating of the catalytic converter 51 is stopped.
  • the catalytic converter 51 is heated to the predetermined set temperature and is controlled not to exceed the set temperature.
  • thermocouple temperature sensor 53 is used as detection means of the heating temperature of the catalytic converter 51 and the thermocouple temperature sensor 53 is brought into contact with the catalytic converter 51 to detect the temperature thereof, there are defects as follows. During traveling of the automobile (during continuous operation of an engine), the catalytic converter 51 is heated to a high temperature by exhaust gas heated at a high temperature and the thermocouple temperature sensor 53 is also heated to a high temperature correspondingly. Accordingly, the thermocouple temperature sensor 53 tends to be deteriorated in its early stage. Hence, the durability of the thermocouple temperature sensor 53 comes into question and there is a possibility that an accurate temperature can not be detected.
  • thermocouple temperature sensor 53 In addition, mechanical vibration is transmitted to the thermocouple temperature sensor 53 through the catalytic converter 51 easily, so that the thermocouple temperature sensor 53 is separated from the catalytic converter 51 due to large mechanical vibration and there is a possibility that the thermocouple temperature sensor can not attain the temperature detection function.
  • a heating time is set to a predetermined time by a timer and high frequency induction heating is performed for the predetermined time without using the thermocouple temperature sensor 53, while in this case the heating time is scattered due to variation in dimension and quality of material of the object to be heated and deterioration in aging of the quality of material, so that high frequency induction heating with high accuracy can not be attained.
  • the present invention has been made in order to solve the above problems and an aim of the present invention is to provide a heating temperature control method in high frequency induction heating and a high frequency induction heating temperature control apparatus capable of detecting a temperature of an object to be heated accurately in the non-contact manner without using a contact type thermocouple temperature sensor to high frequency induction heat the object to a desired temperature and having excellent durability.
  • a resonance circuit having a high frequency induction heating coil is set to a resonance state and a heating temperature of an object to be heated is controlled on the basis of a resonance frequency varying with increased temperature of the object in the resonance state.
  • a high frequency induction heating means has an inverter for changing a direct current into an alternating current with a high frequency and a coil connected to said inverter for generating a heat by an induction of said high frequency, comprising the steps of: deciding an inductance by resonating said high frequency; deriving a relative permeability in proportion to said inductance of said coil; calculating a corresponding to said relative permeability in accordance with a data stored in a memory; and controlling said temperature responsive to a change of said high frequency so as to accurately heat said coil at a high speed.
  • the object heated may be a catalytic converter for purifying exhaust gas of an automobile in the above heating temperature control method.
  • control apparatus comprises:
  • Operation of the present invention is as follows. That is, the resonance frequency in the case where the resonance circuit including the high frequency induction heating coil is set to the resonance state is varied with the increased temperature of the object to be heated. Accordingly, variation of the temperature of the object to be heated is previously obtained for a parameter of the resonance frequency in the case where the resonance circuit is always set to the resonance state, so that a heating temperature of the object to be heated can be detected on the basis of the resonance frequency and heating of the object can be stopped in response to the detection to control the heating temperature.
  • Fig. 1 schematically illustrates a portion of a high frequency induction heating temperature control apparatus 1 used to implement a heating temperature control method in high frequency induction heating according to the present invention.
  • numeral 2 denotes a DC power supply
  • 3 an inverter for converting electric power supplied from the DC power supply 2 into high frequency electric power
  • 4 a resonance circuit constituted by a series circuit of a resonance condenser 5 and a high frequency induction heating coil 6 supplied with the high frequency electric power from the inverter 3
  • 7 a current transformer (CT) for detecting a high frequency current flowing through the high frequency induction heating coil 6
  • 8 a PLL oscillation circuit supplied with a current flowing through the current transformer 7 and an output voltage of the inverter 3.
  • CT current transformer
  • numeral 9 denotes an object to be high frequency induction heated by the high frequency induction heating coil 6, and the object to be heated of the embodiment is a catalytic converter for purifying exhaust gas used in an exhaust pipe of an automobile.
  • the catalytic converter 9 includes a sheet of steel plate wound spirally and having a catalytic layer of platinum or the like formed on the surface thereof.
  • the high frequency induction hating coil 6 is disposed about the catalytic converter 9 concentrically.
  • the inverter 3 is controlled to be operated on the basis of a frequency f of a control signal produced by the PLL oscillation circuit 8 and the inverter 3 produces high frequency electric power having the same frequency as the frequency f so that the resonance circuit 4 is always set to the resonance state.
  • an impedance Zo as viewed from the power supply side is expressed as described by the following equation (b) since the resonance condenser C and the high frequency induction heating coil 6 constitute a series circuit.
  • Zr r + i ⁇ 2 ⁇ f ⁇ L
  • r a pure resistance component of the coil 6 when the catalytic converter 9 is inserted into the high frequency induction heating coil 6
  • L is an inductance of the coil 6
  • f a frequency.
  • a relation of the relative permeability ⁇ s and a temperature T of the object to be heated is in correlative relation as shown in Fig. 4 and has a linear function in its specific area R as shown in the following equation (f).
  • a relation of the temperature T of the object and the inductance L of the high frequency induction heating coil 6 is as shown in Fig. 5.
  • ⁇ s F ( T )
  • the temperature T and the resonance frequency f o have one-to-one correspondence to each other in the specific range. Accordingly, it can be understood that the temperature T of the object to be heated (catalytic converter 9) can be detected on the basis of the resonance frequency f o .
  • the resonance circuit 4 is set to the resonance state always by means of operation of the PLL oscillation circuit 8 so as to follow the variation of the relative permeability. In this manner, when the resonance frequency is gradually changed and reaches a predetermined frequency, supply of electric power from the high frequency power supply unit 10 is stopped.
  • Fig. 7 schematically illustrates a definite example using the circuit of Fig. 1, that is, a high frequency induction heating control apparatus 12 according to the present invention.
  • Fig. 7 like elements to those of Fig. 1 are designated by like numerals and its detailed description is omitted.
  • the apparatus 12 of this example includes the high frequency power supply unit 10 composed of the DC power supply 2 and the inverter 3, the resonance circuit 4 composed of the resonance condenser 5 and the high frequency induction heating coil 6, a phase control circuit 15 composed of the PLL oscillation circuit 8 and first and second gate circuits 13 and 14, a flag signal generating circuit 16 for generating a predetermined flag signal on the basis of an output frequency of the PLL oscillation circuit 8, and a flip-flop 18 for producing a change-over signal for changing over a change-over switch 17 for stopping of the heating from an on state to an off state on the basis of the flag signal.
  • the PLL oscillation circuit 8 includes a phase comparator 20 for comparing a phase of the high frequency voltage v from the inverter 3 with a phase of the high frequency current i from the current transformer 7, a low pass filter 21 through which an output of the phase comparator 20 passes, and a voltage controlled oscillator 22 which is operated on the basis of a control voltage from the low pass filter 21.
  • the flag signal generating circuit 16 includes a frequency counter 24 supplied with an output of the voltage controlled oscillator 22 of the PLL oscillation circuit 8, a frequency setting device 25 capable of setting a desired frequency, and a frequency comparator 26 for comparing an output of the frequency counter 24 with an output of the frequency setting device 25 to supply the flag signal to the flip-flop 18 when a predetermined condition is satisfied.
  • the output of the voltage controlled oscillator 22 of the PLL oscillation circuit 8 is supplied to the first gate circuit 13.
  • the second gate circuit 14 is supplied with an output signal of the flip-flop 18 and is also supplied with a predetermined input voltage +V through the change-over switch 17.
  • an output signal from the second gate circuit 14 is supplied to the first gate circuit 13 and an output signal of the first gate circuit 13 is supplied to the inverter 3 as the frequency control signal.
  • the change-over switch is turned on and the output frequency of the PLL oscillation circuit 8 is supplied through the first gate circuit 13 to the inverter 3.
  • the high frequency voltage v is supplied to the resonance circuit 4, so that the high frequency current flows into the high frequency induction heating coil 6 to thereby induction-heat the catalytic converter 9 (object to be heated) inserted into the high frequency induction heating coil 6 so that temperature of the catalytic converter is increased.
  • the catalytic converter 9 is gradually heated from its outer periphery as shown in Fig. 8 and the temperature T of the catalytic converter 9 is varied with the elapse of the heating time t as shown in Fig. 9.
  • the high frequency current flowing through the high frequency induction heating coil 6 is supplied to the phase comparator 20 through the current transformer 7.
  • the phase comparator 20 compares the phase of the high frequency current i from the current transformer 7 with the phase of the output voltage v from the inverter 3 to produce the voltage signal proportional to a phase difference between the high frequency current i and the output voltage v.
  • An output voltage of the phase comparator 20 is supplied to the low pass filter 21 in which harmonics of the output voltage are removed to be converted into a DC voltage.
  • the DC voltage is supplied to the voltage controlled oscillator 22.
  • the PLL oscillation circuit 8 is operated so that the frequency f of the oscillation output of the voltage controlled oscillator 22 is made high when the phase of the high frequency current i is advanced ( ⁇ 0°)as compared with the phase of the output voltage v and on the contrary the frequency f is made low when the phase of the high frequency current i is delayed ( ⁇ >0°) as compared with the phase of the output voltage v.
  • the oscillation circuit 4 including the series circuit of the resonance condenser 5 and the high frequency induction heating 6, when the frequency of the power supply voltage supplied from the inverter 3 (that is, the oscillation frequency f of the voltage controlled oscillator 22) is made high, the phase of the high frequency current i is delayed as compared with the phase of the output voltage v and on the contrary when the frequency f of the power supply voltage is made low, the phase of the high frequency current i is advanced as compared with the phase of the output voltage v.
  • the output voltage of the phase comparator 20 in the PLL oscillation circuit 8 is in the negative feedback state with respect to the oscillation frequency f of the voltage controlled oscillator 22 and finally the phase difference 8 of the output voltage v and the high frequency current i automatically controlled to be equal to 0°, that is, the resonance circuit 4 is automatically controlled to be in the resonance state.
  • the relative permeability ⁇ s is varied with increase of the heating temperature of the catalytic converter 9 as described above to thereby shift the resonance frequency f o , while the resonance state is always set automatically by means of the phase lock operation by the PLL oscillation circuit 8 and the following operation to the resonance state is automatically performed for a parameter of the oscillation frequency f.
  • the resonance frequency f o is varied with the elapse of the heating time t as shown in Fig. 10.
  • the output frequency of the voltage controlled oscillator 22 is supplied to the frequency counter 24 so that the oscillation frequency f is converted into a digital signal by the frequency counter 24.
  • the digital signal is supplied to the frequency comparator 26 to be compared with a set value of the frequency setting device 25.
  • the setting operation of the set value is made so that a relation of the resonance frequency and the heating temperature in the catalytic converter 9 to be heated is previously obtained and the output frequency of the voltage controlled oscillator is set to be equal to the numerical value of the resonance frequency corresponding to a desired heating temperature.
  • the flag signal is generated by the frequency comparator 26 and is supplied to the flip-flop 18 to be held in the flip-flop.
  • the flip-flop 18 produces a predetermined heating stop signal in response to the flag signal to be supplied to a controller not shown.
  • the heating stop signal is supplied to the second gate circuit 14 and the change-over switch 17 is changed over from the on state to the off state in accordance with the heating stop signal to thereby cut off supply of the electric power +V to the second gate circuit 14. Consequently, the frequency output of the PLL circuit 8 is cut off by the first gate circuit 13 and is not supplied to the inverter 3.
  • the resonance circuit 4 can be always set to the resonance state and the catalytic converter 9 can be induction-heated accurately to the desired temperature for a parameter of the resonance frequency f o varied with increase of the heating temperature of the catalytic converter 9. That is, since the temperature T of the catalytic converter 9 has one-to-one correspondence to the resonance frequency f o as shown in Fig. 11, the heating temperature of the catalytic converter 9 can be set to the desired temperature by previously inputting the numerical value of the resonance frequency f o to the frequency setting device 25. Accordingly, it can be prevented exactly that the catalytic converter 9 is heated to the set temperature or is overheated to a temperature higher than the set temperature.
  • the object to be heated is the catalytic converter 9, which is a spirally wound body as described above. Accordingly, when the catalytic converter is induction-heated, a large difference in temperature between the outer periphery and the inner periphery thereof occurs. Accordingly, how the heating temperature of the catalytic converter 9 is determined comes into question. Accordingly, for example, the relation of the heating temperature and the resonance frequency may be previously obtained on condition that a temperature of the outer peripheral portion having about 75 % of the whole sectional area perpendicular to an axial line of the catalytic converter 9 exceeds a desired heating temperature.
  • the detection means and the detection location of the flag signal, the heating cutting off means based on the flag signal, and the like can be changed properly if necessary.
  • the heating temperature control method and the high frequency induction heating temperature control apparatus of the present invention can be applied to not only the catalytic converter 9 but also various objects to be induction heated.
  • the resonance circuit having the high frequency induction heating coil is set to the resonance state and the heating temperature of the object to be heated is controlled on the basis of the resonance frequency varied with increased temperature of the object under the resonance state, the object can be heated to a desired temperature accurately and rapidly without using a thermocouple sensor and a timer.
  • the heating temperature of the object to be heated is detected for a parameter of the resonance frequency upon the induction heating, the object can be induction-heated with high accuracy and the heating temperature can be detected extremely rapidly as compared with the case where a thermocouple sensor is used, to thereby reduce a necessary time for heating.
  • the conventional method using a timer has the possibility that the object is not heated to a predetermined temperature due to scattering of a dimension of the object (deformation in shape and eccentricity) existing in no small quantities and deterioration in material quantity caused by secular change even if a predetermined electric power is supplied, although according to the present invention since the resonance frequency is utilized as the detection means of the heating temperature, the object can be always induction heated to a desired temperature without influence of secular change for individual objects and is very practical.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
  • Exhaust Gas After Treatment (AREA)
EP94302487A 1993-04-09 1994-04-08 Temperaturregelung für einen Hochfrequenz-Induktionsheizer Expired - Lifetime EP0619692B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP08295493A JP3398172B2 (ja) 1993-04-09 1993-04-09 高周波誘導加熱における加熱温度制御方法及び高周波誘導加熱温度制御装置
JP82954/93 1993-04-09

Publications (3)

Publication Number Publication Date
EP0619692A2 true EP0619692A2 (de) 1994-10-12
EP0619692A3 EP0619692A3 (de) 1994-11-17
EP0619692B1 EP0619692B1 (de) 1998-12-16

Family

ID=13788621

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94302487A Expired - Lifetime EP0619692B1 (de) 1993-04-09 1994-04-08 Temperaturregelung für einen Hochfrequenz-Induktionsheizer

Country Status (4)

Country Link
US (1) US5477035A (de)
EP (1) EP0619692B1 (de)
JP (1) JP3398172B2 (de)
DE (1) DE69415200T2 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921709A2 (de) * 1997-12-05 1999-06-09 Mitsubishi Heavy Industries, Ltd. Legierungssystem und Vorrichtung zum Überwachen des Aufheizen von galvanisiertes Edelstahlblech
WO2000003563A2 (en) * 1998-07-10 2000-01-20 Ameritherm, Inc. Rf power supply
EP1006757A2 (de) * 1998-12-01 2000-06-07 Mitsubishi International GmbH Magnetische Beheizungssystem
DE19714701B4 (de) * 1997-04-09 2011-02-10 Innovat Gesellschaft für Sondermaschinenbau, Meß- und Steuerungstechnik mbH Geregeltes induktives Erwärmungssystem
ITBO20090691A1 (it) * 2009-10-23 2011-04-24 Ada Applic Digitali E Analo Giche S R L Metodo e dispositivo per controllare la temperatura di un riscaldatore a induzione
CN102186271A (zh) * 2009-11-26 2011-09-14 E.G.O.电气设备制造股份有限公司 用于确定烹饪容器底部的温度的方法和感应加热装置
EP2518889A1 (de) * 2011-04-29 2012-10-31 AEG Power Solutions B.V. Schwingkreiswechselrichter mit regelbarem Arbeitspunkt
CN103163764A (zh) * 2011-12-13 2013-06-19 三星电子株式会社 感应加热定影装置和成像设备
EP2987975A1 (de) * 2014-08-23 2016-02-24 Advanced Technology Emission Solutions Inc. Katalysatorkonvertersystem und dazugehöriges steuerungsverfahren
US9657622B2 (en) 2013-09-18 2017-05-23 Advanced Technology Emission Solutions Inc. Catalytic converter system with control and methods for use therewith
EP3530896A1 (de) * 2018-02-27 2019-08-28 Advanced Technology Emission Solutions Inc. Emissionskontrollsystem mit resonanzfrequenzmessung und verfahren zur verwendung damit
US10450915B2 (en) 2013-09-18 2019-10-22 Advanced Technology Emission Solutions Inc. Emission control system with induction heating and methods for use therewith
US10557392B2 (en) 2013-09-18 2020-02-11 Advanced Technology Emission Solutions Inc. Emission control system with temperature measurement and methods for use therewith
US10590819B2 (en) 2013-09-18 2020-03-17 Advanced Technology Emission Solutions Inc. Emission control system with resonant frequency measurement and methods for use therewith
US10590818B2 (en) 2016-11-24 2020-03-17 Advanced Technology Emission Solutions Inc. Emission control system with frequency controlled induction heating and methods for use therewith

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH690252A5 (de) * 1995-04-27 2000-06-15 Buehler Ag Vorrichtung zum Bestimmen des Feststoffanteiles.
DE10253198B4 (de) * 2002-11-15 2007-07-05 Electrolux Home Products Corporation N.V. Verfahren und Vorrichtung zur thermischen Überwachung eines induktiv erwärmbaren Gargefäßes
ES2246640B1 (es) * 2003-05-15 2006-11-01 Bsh Electrodomesticos España, S.A. Regulacion de la temperatura para un elemento calentador de calentamiento inducido.
JP2005015906A (ja) 2003-06-30 2005-01-20 Kikuchi Co Ltd 薄板製物品の誘導加熱方法及びその装置
US6864108B1 (en) * 2003-10-20 2005-03-08 Texas Instruments Incorporated Measurement of wafer temperature in semiconductor processing chambers
WO2005104622A1 (ja) * 2004-04-23 2005-11-03 Japan Science And Technology Agency コイル装置及び磁界発生装置
DE102005050036A1 (de) * 2005-10-14 2007-05-31 E.G.O. Elektro-Gerätebau GmbH Induktionsheizeinrichtung und zugehöriges Betriebs- und Topferkennungsverfahren
JP5764283B2 (ja) * 2007-12-27 2015-08-19 エドワーズ株式会社 真空ポンプ
JP4821791B2 (ja) * 2008-03-19 2011-11-24 パナソニック株式会社 誘導加熱調理器
WO2010071038A1 (ja) 2008-12-15 2010-06-24 カルソニックカンセイ株式会社 熱交換器及びその製造方法
US8379412B2 (en) 2010-08-16 2013-02-19 Empire Technology Development Llc Converter and converter control method
RU2595971C2 (ru) 2011-09-06 2016-08-27 Бритиш Америкэн Тобэкко (Инвестментс) Лимитед Нагревание курительного материала
US8667779B2 (en) * 2011-11-10 2014-03-11 Ford Global Technologies, Llc Systems and methods for an exhaust gas treatment system
KR20130073477A (ko) * 2011-12-23 2013-07-03 삼성전자주식회사 유도가열조리기 및 그 제어방법
DE102012207847A1 (de) * 2012-05-10 2013-11-14 Behr-Hella Thermocontrol Gmbh Vorrichtung zur induktiven Erwärmung eines Heizkörpers
US10267193B2 (en) * 2015-11-20 2019-04-23 Advanced Technology Emission Solutions Inc. Emission control system with controlled induction heating and methods for use therewith
US8795444B1 (en) 2014-02-21 2014-08-05 Ut-Battelle, Llc Method of and apparatus for thermomagnetically processing a workpiece
US20170055584A1 (en) 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Article for use with apparatus for heating smokable material
US11924930B2 (en) 2015-08-31 2024-03-05 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US20170119046A1 (en) 2015-10-30 2017-05-04 British American Tobacco (Investments) Limited Apparatus for Heating Smokable Material
CN106363030B (zh) * 2016-08-22 2018-08-03 重庆伟铭金属有限公司 基于阻抗测量的pc钢筋电感应激励频率控制装置及方法
GB201705206D0 (en) 2017-03-31 2017-05-17 British American Tobacco Investments Ltd Apparatus for a resonance circuit
JP6866729B2 (ja) * 2017-03-31 2021-04-28 スミダコーポレーション株式会社 位相調整回路、インバータ回路及び給電装置
GB201705208D0 (en) * 2017-03-31 2017-05-17 British American Tobacco Investments Ltd Temperature determination
US20200018488A1 (en) * 2018-07-13 2020-01-16 Haier Us Appliance Solutions, Inc. Determining cookware location on a cooktop appliance based on response to an electromagnetic pulse
GB2582930B (en) * 2019-04-08 2023-01-11 Edwards Ltd Induction heating method and apparatus
CN111928969B (zh) * 2019-05-13 2022-06-03 惠州拓邦电气技术有限公司 锅具温度检测装置、电磁加热装置及锅具温度检测方法
JP7341408B2 (ja) * 2019-06-04 2023-09-11 三菱重工業株式会社 磁場加熱成形システム及び磁場加熱成形方法
EP3796755A1 (de) * 2019-09-18 2021-03-24 Siemens Aktiengesellschaft Kompaktes induktionsheizsystem mit bewegbarer spule
KR102226324B1 (ko) * 2019-11-21 2021-03-11 (주)링크솔루션 마이크로파를 활용한 3d 프린터 노즐 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581489A (en) * 1968-12-17 1971-06-01 Sun Oil Co Apparatus for inductive heating nonconductive exhaust treatment catalyst
WO1982002593A1 (en) * 1981-01-21 1982-08-05 Nicholas John Payne Sensing temperature variations in a material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2945112A (en) * 1958-07-28 1960-07-12 Allis Chalmers Mfg Co Motor generator induction heating system
US3761667A (en) * 1971-12-27 1973-09-25 Gen Electric Output power control of induction cooking inverter
DE2425468C3 (de) * 1974-05-27 1979-01-04 Siemens Ag, 1000 Berlin Und 8000 Muenchen Vorrichtung zum tiegellosen Zonenschmelzen eines kristallisierbaren Stabes
US4280038A (en) * 1978-10-24 1981-07-21 Ajax Magnethermic Corporation Method and apparatus for inducting heating and melting furnaces to obtain constant power
US4392040A (en) * 1981-01-09 1983-07-05 Rand Robert W Induction heating apparatus for use in causing necrosis of neoplasm
US4578552A (en) * 1985-08-01 1986-03-25 Inductotherm Corporation Levitation heating using single variable frequency power supply
JPH0349561A (ja) * 1989-07-14 1991-03-04 Mitsubishi Heavy Ind Ltd 合金化用誘導加熱における電源制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581489A (en) * 1968-12-17 1971-06-01 Sun Oil Co Apparatus for inductive heating nonconductive exhaust treatment catalyst
WO1982002593A1 (en) * 1981-01-21 1982-08-05 Nicholas John Payne Sensing temperature variations in a material

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19714701B4 (de) * 1997-04-09 2011-02-10 Innovat Gesellschaft für Sondermaschinenbau, Meß- und Steuerungstechnik mbH Geregeltes induktives Erwärmungssystem
US6114675A (en) * 1997-12-05 2000-09-05 Mitsubishi Heavy Industries, Ltd. Alloying system and heating control device for high grade galvanized steel sheet
EP0921709A3 (de) * 1997-12-05 1999-10-20 Mitsubishi Heavy Industries, Ltd. Legierungssystem und Vorrichtung zum Überwachen des Aufheizen von galvanisiertes Edelstahlblech
EP0921709A2 (de) * 1997-12-05 1999-06-09 Mitsubishi Heavy Industries, Ltd. Legierungssystem und Vorrichtung zum Überwachen des Aufheizen von galvanisiertes Edelstahlblech
US6316756B1 (en) 1998-07-10 2001-11-13 Ameritherm, Inc. Resonant frequency tracking system and method for use in a radio frequency (RF) power supply
WO2000003563A2 (en) * 1998-07-10 2000-01-20 Ameritherm, Inc. Rf power supply
US6255635B1 (en) 1998-07-10 2001-07-03 Ameritherm, Inc. System and method for providing RF power to a load
US6271508B1 (en) 1998-07-10 2001-08-07 Ameritherm, Inc. System and method for providing RF power to a load
US6521874B2 (en) 1998-07-10 2003-02-18 Ameritherm, Inc. RF power supply
US6730894B2 (en) 1998-07-10 2004-05-04 Ameritherm, Inc. Resonant frequency tracking system and method for use in a radio frequency (RF) power supply
WO2000003563A3 (en) * 1998-07-10 2000-03-30 Ameritherm Inc Rf power supply
EP1006757A2 (de) * 1998-12-01 2000-06-07 Mitsubishi International GmbH Magnetische Beheizungssystem
EP1006757A3 (de) * 1998-12-01 2001-11-21 Mitsubishi International GmbH Magnetische Beheizungssystem
ITBO20090691A1 (it) * 2009-10-23 2011-04-24 Ada Applic Digitali E Analo Giche S R L Metodo e dispositivo per controllare la temperatura di un riscaldatore a induzione
CN102186271B (zh) * 2009-11-26 2014-11-26 E.G.O.电气设备制造股份有限公司 用于确定烹饪容器底部的温度的方法和感应加热装置
EP2330866A3 (de) * 2009-11-26 2012-03-07 E.G.O. ELEKTRO-GERÄTEBAU GmbH Verfahren und Induktionsheizeinrichtung zum Ermitteln einer Temperatur eines mittels einer Induktionsheizspule erwärmten Kochgefäßbodens
CN102186271A (zh) * 2009-11-26 2011-09-14 E.G.O.电气设备制造股份有限公司 用于确定烹饪容器底部的温度的方法和感应加热装置
US10085303B2 (en) 2009-11-26 2018-09-25 E.G.O. Elektro-Geraetebau Gmbh Method and induction heating device for determining a temperature of a cooking vessel base
EP2518889A1 (de) * 2011-04-29 2012-10-31 AEG Power Solutions B.V. Schwingkreiswechselrichter mit regelbarem Arbeitspunkt
CN102761282A (zh) * 2011-04-29 2012-10-31 安奕极电源***有限责任公司 具有可调节工作点的振荡回路逆变器
CN102761282B (zh) * 2011-04-29 2016-07-06 安奕极电源***有限责任公司 振荡回路逆变器及其运行方法和相应的电路装置
US8976544B2 (en) 2011-04-29 2015-03-10 Aeg Power Solutions B.V. Resonant circuit inverter with controllable operating point
US9008528B2 (en) 2011-12-13 2015-04-14 Samsung Electronics Co., Ltd. Induction heating fusing device and image forming apparatus
US9256175B2 (en) 2011-12-13 2016-02-09 Samsung Electronics Co., Ltd. Induction heating fusing device and image forming apparatus
CN103163764A (zh) * 2011-12-13 2013-06-19 三星电子株式会社 感应加热定影装置和成像设备
CN103163764B (zh) * 2011-12-13 2016-08-17 三星电子株式会社 感应加热定影装置和成像设备
EP2605616A3 (de) * 2011-12-13 2013-10-02 Samsung Electronics Co., Ltd Induktionserwärmte Schmelzvorrichtung und Bilderzeugungsvorrichtung
US9657622B2 (en) 2013-09-18 2017-05-23 Advanced Technology Emission Solutions Inc. Catalytic converter system with control and methods for use therewith
US10450915B2 (en) 2013-09-18 2019-10-22 Advanced Technology Emission Solutions Inc. Emission control system with induction heating and methods for use therewith
US10557392B2 (en) 2013-09-18 2020-02-11 Advanced Technology Emission Solutions Inc. Emission control system with temperature measurement and methods for use therewith
US10590819B2 (en) 2013-09-18 2020-03-17 Advanced Technology Emission Solutions Inc. Emission control system with resonant frequency measurement and methods for use therewith
EP2987975A1 (de) * 2014-08-23 2016-02-24 Advanced Technology Emission Solutions Inc. Katalysatorkonvertersystem und dazugehöriges steuerungsverfahren
US10590818B2 (en) 2016-11-24 2020-03-17 Advanced Technology Emission Solutions Inc. Emission control system with frequency controlled induction heating and methods for use therewith
EP3530896A1 (de) * 2018-02-27 2019-08-28 Advanced Technology Emission Solutions Inc. Emissionskontrollsystem mit resonanzfrequenzmessung und verfahren zur verwendung damit

Also Published As

Publication number Publication date
JPH06295782A (ja) 1994-10-21
EP0619692A3 (de) 1994-11-17
DE69415200T2 (de) 1999-07-15
EP0619692B1 (de) 1998-12-16
JP3398172B2 (ja) 2003-04-21
US5477035A (en) 1995-12-19
DE69415200D1 (de) 1999-01-28

Similar Documents

Publication Publication Date Title
EP0619692A2 (de) Temperaturregelung für eine hochfrequenz Induktionheizer
KR910001322A (ko) 전자조리기
GB2153111A (en) Induction heat cooking apparatus
EP0482900A2 (de) Adaptiver Regler in einem Prozessregelsystem und Verfahren dafür
US3746825A (en) System and method for measuring input energy for an induction heating installation
US6350971B1 (en) Apparatus and method for detecting vessel movement on a cooktop surface
EP0319582B1 (de) Laserabtastvorrichtung
US4677275A (en) Method and sensor arrangement for tool/workpiece spacing control in electric arc processing machines
KR101946872B1 (ko) 휴대형 인덕션 가열기의 용기 인식 방법 및 장치
JPH08334419A (ja) 透磁率温度計測装置
US6988047B1 (en) Method for determining the instantaneous temperature of a medium
JP7238677B2 (ja) 共振インバータ装置
JPS568563A (en) Measuring device for reactance change
RU2156964C1 (ru) Устройство для регистрации температуры заготовок металлических изделий в процессе их технологической обработки
JPH0434890A (ja) 高周波加熱装置
JPH07229626A (ja) 加熱調理装置における温度制御方法
JPS6122436B2 (de)
SU933378A1 (ru) Оптимизатор режимов резани
SU1168912A1 (ru) Способ программного регулировани температуры и устройство дл его осуществлени
SU1662018A1 (ru) Способ управлени нагревом в многозонной индукционной установке
SU742064A1 (ru) Способ регулировани процесса сварки тонкостенных изделий на повышенных скорост х
KR100360224B1 (ko) 복합조리기및그의제어방법
JPS61168891A (ja) 高周波誘導炉のライニング損耗検出装置
SU1654952A1 (ru) Способ регулировани тока нагрузки инвертора
JPH04249883A (ja) 誘導加熱装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE GB

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19950126

17Q First examination report despatched

Effective date: 19970324

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 69415200

Country of ref document: DE

Date of ref document: 19990128

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090402

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090408

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100408