EP0577450B1 - Ammunition with target detection means - Google Patents

Ammunition with target detection means Download PDF

Info

Publication number
EP0577450B1
EP0577450B1 EP93401446A EP93401446A EP0577450B1 EP 0577450 B1 EP0577450 B1 EP 0577450B1 EP 93401446 A EP93401446 A EP 93401446A EP 93401446 A EP93401446 A EP 93401446A EP 0577450 B1 EP0577450 B1 EP 0577450B1
Authority
EP
European Patent Office
Prior art keywords
axis
munition
detection
submunition
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93401446A
Other languages
German (de)
French (fr)
Other versions
EP0577450A1 (en
Inventor
Emmanuel Marchand
Philippe Martin
Christophe Redaud
Thierry Bredy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giat Industries SA
Original Assignee
Giat Industries SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giat Industries SA filed Critical Giat Industries SA
Publication of EP0577450A1 publication Critical patent/EP0577450A1/en
Application granted granted Critical
Publication of EP0577450B1 publication Critical patent/EP0577450B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C13/00Proximity fuzes; Fuzes for remote detonation
    • F42C13/02Proximity fuzes; Fuzes for remote detonation operated by intensity of light or similar radiation

Definitions

  • the present invention relates mainly to ammunition, in particular to a submunition comprising means for detecting targets.
  • vectors comprising a seeker associated with means for orienting its detection axis in elevation and in bearing with respect to said vectors.
  • These vectors typically missiles, generally include self-tracking means ensuring their guidance towards the target to be hit.
  • This type of vector has an extremely high manufacturing cost.
  • GB-A-2 090 950 describes a submunition animated by a complex movement, comprising a charge generating a nucleus and means for detecting targets.
  • the orientation of the target detection means is fixed relative to the submunition, the target detection axis being parallel to the firing axis of the nucleus.
  • the complex movement of the submunition ensures scanning of a large surface of the ground by the target detection means.
  • fire is triggered.
  • the nucleus is sent substantially in the direction of the target.
  • the Applicant has discovered that the delay between the detection time and the firing time, mainly due to the processing time, on the one hand, and to the speed of the submunition at the time of the firing necessary to obtain the trajectory complex ensuring scanning, on the other hand, induces a shooting inaccuracy which can reach and even exceed ten meters.
  • This error cannot be assimilated to a fixed bias capable of being completely corrected by a fixed offset of the detection axis with respect to the shooting axis.
  • the residual error is sufficient to greatly reduce the probability of hitting the target.
  • a munition or submunition comprising target detection means having a plurality of non-parallel target detection axes and means for selecting the target detection axis which at the instant t provides the greatest probability of reaching the target detected at this time t.
  • the main object of the invention is a munition, in particular submunition comprising a charge firing a projectile, in particular a charge generating a nucleus, a firing axis ⁇ and target detection means comprising several detection axes ⁇ 1 and ⁇ n, ammunition intended to be animated with a movement relative to the ground allowing it to search for a target, movement comprising a rotation around an axis A and a translation of instantaneous speed v 0 , characterized in that the detection means are selectable, and in that it comprises means making it possible to select, at each instant for detection, a detection axis ⁇ i for which the distance E between the point Mi of intersection of the axis ⁇ i with the ground and the point M 'd' impact of the projectile on the ground is minimal.
  • the invention also relates to ammunition, characterized in that the detection axes ⁇ i and ⁇ n of the target detection means are fixed relative to the axis ⁇ .
  • Another subject of the invention is a munition, characterized in that the means making it possible to select the detection axis ⁇ i, for which the distance E is minimum, include measuring means making it possible to determine at any time what is the axis quii which has the most forward orientation of the ammunition in the direction given by the speed v 0 of the center of gravity of the ammunition.
  • the invention also relates to a munition capable of rotating around an axis of rotation A inclined relatively to the vertical, characterized in that the measuring means comprise a rangefinder capable of measuring the distance of the munition to the ground.
  • Another subject of the invention is a munition, characterized in that the measuring means comprise a gyroscope or a gyrometer making it possible to measure its angular position relative to the speed vector v 0 .
  • Another subject of the invention is a munition, characterized in that the means making it possible to select the detection axis ⁇ i, for which the distance E is minimum, combine means, such as a gyroscope or a gyrometer, making it possible to measure its position angular with respect to the speed vector v 0 of the center of gravity of the ammunition with means for measuring the distance to the ground and / or means for measuring the instantaneous speed v 0 .
  • combine means such as a gyroscope or a gyrometer, making it possible to measure its position angular with respect to the speed vector v 0 of the center of gravity of the ammunition with means for measuring the distance to the ground and / or means for measuring the instantaneous speed v 0 .
  • the invention also relates to ammunition, characterized in that the detection means comprise a single sensor comprising a plurality of detectors, in particular a mosaic of detectors.
  • the invention also relates to a munition, characterized in that the detection axes ⁇ 1 to ⁇ n are regularly distributed around its periphery and are inclined towards the outside by the same angle relative to the axis ⁇ .
  • the invention also relates to ammunition, characterized in that the target detection means comprise a single detector associated with a plurality of optics having non-parallel axes.
  • the invention also relates to ammunition, characterized in that it comprises a shutter making it possible to illuminate the detector at each instant t by the radiation transmitted by a single optic with axis ⁇ i.
  • FIGS. 1 to 16 the same references have been used to designate the same elements.
  • a submunition 1 of known type comprising a charge 2 generating a nucleus comprising, in known manner, an explosive charge and a coating 3 intended to form the nucleus, means 4 for detecting targets having an axis ⁇ and a chamber 5 containing electronic equipment (not shown).
  • An axis ⁇ of submunition 1 (axis along which the nucleus is pulled) is shown vertical in FIG. 1, although at an instant t, it has a non-zero angle ⁇ with a vertical axis of rotation A of the submunition as illustrated in FIG. 2.
  • be the angle at an instant t between the projection on the ground 6 (supposed plane) and the speed v 0 of the center of gravity of the submunition and the projection on the ground of the axis ⁇ .
  • the axes ⁇ and ⁇ are separated by a small distance d, substantially equal to half the diameter of the submunition.
  • the target detection means of the ammunition 7 according to the invention comprise a plurality of selectable target detection means 41, 42, 43, ..., 4n having detection axes respectively ⁇ 1, ⁇ 2, ⁇ 3, ... , ⁇ n not parallel, for example inclined outwards by the same angle relative to the axis ⁇ and means 8 for measuring the position to determine at any time which is the axis ⁇ i which has the orientation further forward of the submunition in the direction given by the speed v 0 , comprising for example a gyroscope or a rangefinder.
  • the means 8 for measuring the position of the submunition 7 comprise an inertial unit and / or a range finder or an altimeter.
  • the ammunition 7 is equipped with a single target detector associated with means for orienting the detection axis in predetermined non-parallel directions relative to the submunition or associated with a plurality of sighting means, for example a plurality of objectives having non-parallel optical axes and switching means for selecting a objective, for example a servo shutter having a single opening.
  • the submunition comprises detection means which consist of a mosaic of detectors associated with a single optic. These detection means are arranged along a generator of the envelope of the submunition, as illustrated in FIGS. 13 and 14, or else in the extension of the axis ⁇ , as illustrated in FIG. 15.
  • FIG. 5 we can see a submunition 7 according to the invention rotating around the axis A with an angular speed ⁇ and whose center of gravity follows a ballistic trajectory 9 in the orthogonal coordinate system (x, y, z), the trace of the axis ⁇ on the ground 6 (symbolized by the plane (x, z)) bearing the reference 10.
  • the trace 10 corresponds to a large area of the ground 6 ensuring the scanning of a large area for the detection of targets.
  • the distance E between the point of impact on the ground 6 of the core generated by the coating 3 (for a shot triggered at an instant t of detection of a target by a target detection means 4i having a detection axis ⁇ i) and the intersection of the axis ⁇ with the ground 6, varies and depends on the orientation of the axis ⁇ i relative to the axis ⁇ .
  • this distance corresponds to the shooting error.
  • the core 3 misses the target.
  • the distance E depends on the orientation of the detection axis ⁇ i
  • the means 4i at each instant one selects from the means 41 to 4n of target detection, the means 4i whose axis of target detection ⁇ i corresponds to a minimum distance E between the intersection Mi of the ground 6 with the axis ⁇ i and the point of impact M 'of the core on the ground 6.
  • the axes of detection of targets ⁇ 1 to ⁇ n are arranged relative to the axis A of rotation of the submunition, in such a way that during each revolution, each of the axes ⁇ i of the target detection means, at a given instant of the revolution, corresponds to a minimum distance E.
  • FIG. 6 one can see four successive positions of the orientation of the four axes ⁇ 1 to ⁇ 4 during a revolution of the submunition 7 of FIGS. 2 and 3 for which the axes ⁇ 1 to ⁇ 4 are inclined towards the outside of the submunition at the same angle relative to the axis of ⁇ .
  • the numbers 1 to 4 are placed in rectangles corresponding respectively to the orientation of the axes ⁇ 1 to ⁇ 4.
  • the rectangles surrounded correspond to the axis ⁇ i which gives a minimum distance E for each of the four successive positions of the submunition.
  • FIG. 7 one can see a flowchart of an operating mode of a submunition according to the present invention.
  • the angle ⁇ is measured between the vector v 0 of the speed of the center of gravity of the submunition 7 and the projection onto the ground 6 of the axis ⁇ of the munition 7.
  • FIG. 8 one can see the orientation of the detection axes projected in a plane defined by the axis of rotation A of the submunition and by the axis ⁇ .
  • the axes ⁇ 3, ⁇ and ⁇ 1 respectively form the angles ⁇ 3, ⁇ and ⁇ 1 with the axis A.
  • H represents the altitude of the munition 7 and D the distance between the munition and the intersection M of the axis ⁇ with the floor 6.
  • the invention is not limited to the arrangement of the axes ⁇ 1 to ⁇ 4 in FIGS. 2 and 3, but applies generally to the choice at any time t, of a detection axis, advantageously preset, minimizing at this instant the distance E between the point of impact of the nucleus and the position of the target (assumed to be stationary).
  • the detection axes are oriented, during the manufacture of the submunition, according to the present invention, so as to obtain a large scanning surface on the ground by taking account of the switching between the various detection axes used at various times. during the ballistic trajectory of the submunition.
  • FIGS. 13, 14 and 15 one can see two examples of submunitions according to the invention, the detection means of which comprise a single sensor 40 comprising an optic 38 illuminating a plurality of detectors 41 to 4n.
  • n 4
  • the detectors 41 to 4n for example infrared detectors capable of detecting the thermal radiation of a target, are advantageously diffused in a single semiconductor wafer 39.
  • the axes of sight ⁇ i corresponding to the various detectors 4i are not parallel.
  • the angle between an axis ⁇ i and the axis ⁇ depends on the distance between the detector 4i and the intersection of an axis of the optics 38 with the semiconductor wafer 39.
  • the sensor 40 is placed on the envelope of the submunition, while in the example illustrated in FIG. 15, it is placed in front of the covering 3 which must form the core.
  • the axis of the optics 38 merges with the axis ⁇ .
  • the devices of FIGS. 13 to 15 make it possible to select the detector 4i whose axis ⁇ i has the most forward orientation (direction of v 0 ) of the submunition.
  • the selection of the detector 4i can be carried out by electronic control means incorporated or not in the wafer 39, the detectors 41 to 4n being illuminated simultaneously.
  • the trace 10 of the axis ⁇ and the trace 22 of the axis ⁇ i are represented by circles.
  • the target at point M is detected at time t 0 and the shot is triggered at time t 1 , t 1 - t 0 corresponding to the processing time.
  • Let r be the distance between the center of gravity of the coating of the charge generating the nucleus and the axis of rotation A.
  • the angle ⁇ 1 equal to ⁇ (t 1 - t 0 ) corresponds to the rotation of the submunition 7 and makes point M point M "of circle 10.
  • the angle ⁇ 2 equal to arctg (r ⁇ / V), V being the speed (assumed to be constant) of the nucleus after firing, corresponds to the offset induced by the speed d 'training (r ⁇ ) of the submunition on the speed of the nucleus and makes point M' of circle 10 correspond to a point M 'of circle 22.
  • ⁇ 1 + ⁇ 2.
  • the angular error ( ⁇ 1 + ⁇ 2) is constant over time and always in the same direction.
  • the point of impact is always ahead of the detected point, in the direction of rotation. It is therefore possible, with a fixed offset from the detection axis ⁇ i relative to the axis ⁇ of the submunition by an angle ( ⁇ 1 + ⁇ 2) in the ground plane 6, reduce the distance Er to M1M ', M1 being the point of the circle 10 offset with respect to M by an angle ( ⁇ 1 + ⁇ 2).
  • the error between M1 and M ', to be corrected, would require an additional offset of the detection axis, this time in the plane containing the axis A and the axis ⁇ , this offset having to be variable, in particular with altitude H.
  • Such a device would require a controlled detection axis, which is very expensive.
  • the center of gravity of the submunition 7 carries the reference 23 when the target is detected and the reference 24 when fired.
  • the error Ev is due, on the one hand, to the delay t 1 - t 0 between detection and firing (distance between points 23 and 24) and, on the other hand, to the drive speed v 0 communicated to core 3 at the time of the shot.
  • FIG. 16 schematically shows such a submunition as well as the trace 10 of the axis ⁇ on the ground 6. It is noted that, during the rotation of the submunition, the distance D to the ground along the axis ⁇ varies between a value Dmax and a Dmin value.
  • the output signal of the rangefinder can be used directly to determine at any time what is the axis ⁇ i which has the most forward orientation of the munition in the direction given by the speed v 0 .
  • the means 8 for measuring the position of the submunition 7 comprise an inertial unit and / or a range finder making it possible to measure in particular the distance D as well as the distance between the center of gravity of submunition 7 and point M '. For example, we measure the speed v 0 , the speed of rotation ⁇ and the altitude H.
  • FIG. 12 one can see a flowchart illustrating the operation of this improved embodiment of the submunition 7.
  • the error E is calculated for an aiming axis ⁇ i.
  • the axis ⁇ i is selected corresponding to the minimum error Ei.
  • the invention applies to the production of ammunition and submunitions.
  • the invention mainly applies to the production of anti-tank submunitions.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Gyroscopes (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

La présente invention se rapporte principalement à une munition, notamment à une sous-munition comportant des moyens de détection de cibles.The present invention relates mainly to ammunition, in particular to a submunition comprising means for detecting targets.

D'une part, l'on connaît des vecteurs comportant un autodirecteur associé à des moyens d'orientation de son axe de détection en site et en gisement par rapport auxdits vecteurs. Ces vecteurs, typiquement des missiles, comportent généralement des moyens d'autopoursuite assurant leur guidage vers la cible à atteindre.On the one hand, vectors are known comprising a seeker associated with means for orienting its detection axis in elevation and in bearing with respect to said vectors. These vectors, typically missiles, generally include self-tracking means ensuring their guidance towards the target to be hit.

Ce type de vecteurs est d'un coût de fabrication extrêmement élevé.This type of vector has an extremely high manufacturing cost.

D'autre part, GB-A-2 090 950 décrit une sous-munition animée d'un mouvement complexe, comportant une charge génératrice de noyau et des moyens de détection de cibles. L'orientation des moyens de détection de cibles est fixe par rapport à la sous-munition, l'axe de détection de cibles étant parallèle à l'axe de tir du noyau. Comme il sera expliqué plus loin, le mouvement complexe de la sous-munition assure un balayage d'une surface importante du sol par les moyens de détection de cibles. Lorsqu'une cible est détectée, le tir est déclenché. Dans la mesure où l'axe de détection de cibles est parallèle à l'axe de tir, ces deux axes étant rapprochés, le noyau est envoyé sensiblement dans la direction de la cible.On the other hand, GB-A-2 090 950 describes a submunition animated by a complex movement, comprising a charge generating a nucleus and means for detecting targets. The orientation of the target detection means is fixed relative to the submunition, the target detection axis being parallel to the firing axis of the nucleus. As will be explained below, the complex movement of the submunition ensures scanning of a large surface of the ground by the target detection means. When a target is detected, fire is triggered. Insofar as the target detection axis is parallel to the firing axis, these two axes being close together, the nucleus is sent substantially in the direction of the target.

Toutefois, la Demanderesse a découvert que le retard entre le moment de détection et le moment de tir, dû principalement au temps de traitement, d'une part, et à la vitesse de la sous-munition au moment du tir nécessaire pour obtenir la trajectoire complexe assurant le balayage, d'autre part, induit une imprécision de tir pouvant atteindre et même dépasser une dizaine de mètres. Cette erreur ne peut pas être assimilée à un biais fixe susceptible d'être complètement corrigé par un décalage fixe de l'axe de détection par rapport à l'axe de tir. L'erreur résiduelle est suffisante pour diminuer très fortement la probabilité de toucher la cible.However, the Applicant has discovered that the delay between the detection time and the firing time, mainly due to the processing time, on the one hand, and to the speed of the submunition at the time of the firing necessary to obtain the trajectory complex ensuring scanning, on the other hand, induces a shooting inaccuracy which can reach and even exceed ten meters. This error cannot be assimilated to a fixed bias capable of being completely corrected by a fixed offset of the detection axis with respect to the shooting axis. The residual error is sufficient to greatly reduce the probability of hitting the target.

La Demanderesse a envisagé l'utilisation des moyens de détection de cibles dont l'axe de détection serait orientable dans la direction de la cible. Bien que réalisable techniquement, cette solution suggérée par le document CH-A-592890, à base du préambule de la revendication indépendante 1, est trop coûteuse pour être adaptée à ce type de sous-munition.The Applicant has envisaged the use of target detection means, the detection axis of which would be orientable in the direction of the target. Although technically feasible, this solution suggested by document CH-A-592890, based on the preamble of independent claim 1, is too expensive to be adapted to this type of submunition.

C'est par conséquent un but de la présente invention d'offrir une munition ou une sous-munition ayant une haute probabilité d'atteindre la cible.It is therefore an object of the present invention to provide ammunition or submunition having a high probability of hitting the target.

C'est également un but de la présente invention d'offrir une munition ou une sous-munition d'un coût de revient modéré.It is also an object of the present invention to offer ammunition or submunition of moderate cost price.

C'est aussi un but de la présente invention d'offrir une munition ou une sous-munition dont la charge génératrice de noyau n'est pas déclenchée en cas de détection d'une cible, s'il s'avère que la probabilité d'atteindre cette cible est inférieure à un seuil prédéterminé.It is also an object of the present invention to provide a munition or a submunition whose charge generating nucleus is not triggered in the event of detection of a target, if it turns out that the probability of 'hitting this target is below a predetermined threshold.

Ces buts sont atteints par une munition ou sous-munition comportant des moyens de détection de cibles ayant une pluralité d'axes de détection de cibles non parallèles et des moyens de sélection de l'axe de détection de cibles qui à l'instant t procure la plus grande probabilité d'atteindre la cible détectée à cet instant t.These aims are achieved by a munition or submunition comprising target detection means having a plurality of non-parallel target detection axes and means for selecting the target detection axis which at the instant t provides the greatest probability of reaching the target detected at this time t.

L'invention a principalement pour objet une munition, notamment sous-munition comportant une charge tirant un projectile, notamment une charge génératrice de noyau, d'axe de tir Δ et des moyens de détection de cibles comportant plusieurs axes de détection δ1 et δn, munition destinée à être animée d'un mouvement relativement au sol lui permettant de rechercher une cible, mouvement comprenant une rotation autour d'un axe A et une translation de vitesse instantanée v0, caractérisée en ce que les moyens de détection sont sélectionnables, et en ce qu'elle comprend des moyens permettant de sélectionner à chaque instant pour la détection, un axe de détection δi pour lequel la distance E entre le point Mi d'intersection de l'axe δi avec le sol et le point M' d'impact du projectile sur le sol est minimale.The main object of the invention is a munition, in particular submunition comprising a charge firing a projectile, in particular a charge generating a nucleus, a firing axis Δ and target detection means comprising several detection axes δ1 and δn, ammunition intended to be animated with a movement relative to the ground allowing it to search for a target, movement comprising a rotation around an axis A and a translation of instantaneous speed v 0 , characterized in that the detection means are selectable, and in that it comprises means making it possible to select, at each instant for detection, a detection axis δi for which the distance E between the point Mi of intersection of the axis δi with the ground and the point M 'd' impact of the projectile on the ground is minimal.

L'invention a également pour objet une munition, caractérisée en ce que les axes de détection δi et δn des moyens de détection de cibles sont fixes par rapport à l'axe Δ.The invention also relates to ammunition, characterized in that the detection axes δi and δn of the target detection means are fixed relative to the axis Δ.

L'invention a également pour objet une munition, caractérisée en ce que les moyens permettant de sélectionner l'axe de détection δi, pour lequel la distance E est minimale, comprennent des moyens de mesure permettant de déterminer à tout instant quel est l'axe δi qui possède l'orientation la plus vers l'avant de la munition dans la direction donnée par la vitesse v0 du centre de gravité de la munition.Another subject of the invention is a munition, characterized in that the means making it possible to select the detection axis δi, for which the distance E is minimum, include measuring means making it possible to determine at any time what is the axis quii which has the most forward orientation of the ammunition in the direction given by the speed v 0 of the center of gravity of the ammunition.

L'invention a également pour objet une munition susceptible de tourner autour d'un axe de rotation A incliné relativement à la verticale, caractérisée en ce que les moyens de mesure comprennent un télémètre susceptible de mesurer la distance de la munition au sol.The invention also relates to a munition capable of rotating around an axis of rotation A inclined relatively to the vertical, characterized in that the measuring means comprise a rangefinder capable of measuring the distance of the munition to the ground.

L'invention a également pour objet une munition, caractérisée en ce que les moyens de mesure comprennent un gyroscope ou un gyromètre permettant de mesurer sa position angulaire relativement au vecteur vitesse v0.Another subject of the invention is a munition, characterized in that the measuring means comprise a gyroscope or a gyrometer making it possible to measure its angular position relative to the speed vector v 0 .

L'invention a également pour objet une munition, caractérisée en ce que les moyens permettant de sélectionner l'axe de détection δi, pour lequel la distance E est minimale, associent des moyens, tels un gyroscope ou un gyromètre, permettant de mesurer sa position angulaire relativement au vecteur vitesse v0 du centre de gravité de la munition avec des moyens de mesure de la distance au sol et/ou des moyens de mesure de la vitesse instantanée v0.Another subject of the invention is a munition, characterized in that the means making it possible to select the detection axis δi, for which the distance E is minimum, combine means, such as a gyroscope or a gyrometer, making it possible to measure its position angular with respect to the speed vector v 0 of the center of gravity of the ammunition with means for measuring the distance to the ground and / or means for measuring the instantaneous speed v 0 .

L'invention a également pour objet une munition, caractérisée en ce que les moyens de détection comportent un capteur unique comprenant une pluralité de détecteurs, notamment une mosaïque de détecteurs.The invention also relates to ammunition, characterized in that the detection means comprise a single sensor comprising a plurality of detectors, in particular a mosaic of detectors.

L'invention a également pour objet une munition, caractérisée en ce que les axes de détection δ1 à δn sont régulièrement répartis à sa périphérie et sont inclinés vers l'extérieur d'un même angle par rapport à l'axe Δ.The invention also relates to a munition, characterized in that the detection axes δ1 to δn are regularly distributed around its periphery and are inclined towards the outside by the same angle relative to the axis Δ.

L'invention a également pour objet une munition, caractérisée en ce que les moyens de détection de cibles comportent un unique détecteur associé à une pluralité d'optiques ayant des axes non parallèles.The invention also relates to ammunition, characterized in that the target detection means comprise a single detector associated with a plurality of optics having non-parallel axes.

L'invention a également pour objet une munition, caractérisée en ce qu'elle comporte un obturateur permettant d'illuminer le détecteur à chaque instant t par les radiations transmises par une unique optique d'axe δi.The invention also relates to ammunition, characterized in that it comprises a shutter making it possible to illuminate the detector at each instant t by the radiation transmitted by a single optic with axis δi.

L'invention sera mieux comprise au moyen de la description ci-après et des figures annexées données comme des exemples non limitatifs et sur lesquelles :

  • la figure 1 est une vue en coupe d'une sous-munition de type connu ;
  • la figure 2 est un schéma explicatif ;
  • la figure 3 est une vue latérale d'un premier exemple de réalisation d'une sous-munition selon la présente invention ;
  • la figure 4 est une vue de dessus schématique de la sous-munition de la figure 3 ;
  • la figure 5 est une vue schématique en perspective illustrant le balayage effectué par la sous-munition selon la présente invention ;
  • la figure 6 est un schéma explicatif ;
  • la figure 7 est un organigramme de fonctionnement d'un premier exemple de réalisation du dispositif selon la présente invention ;
  • la figure 8 est un schéma explicatif du fonctionnement du dispositif selon la présente invention ;
  • la figure 9 est un schéma explicatif du fonctionnement du dispositif selon la présente invention ;
  • la figure 10 est un schéma explicatif des inconvénients des dispositifs de type connu ;
  • la figure 11 est un schéma explicatif des inconvénients des dispositifs de type connu ;
  • la figure 12 est un organigramme illustrant le fonctionnement d'un deuxième exemple de réalisation du dispositif selon la présente invention ;
  • la figure 13 est une vue latérale d'un troisième exemple de réalisation d'une sous-munition selon la présente invention ;
  • la figure 14 est une vue de dessous schématique de la sous-munition de la figure 13 ;
  • la figure 15 est une vue latérale d'un quatrième exemple de réalisation d'une sous-munition selon la présente invention ;
  • la figure 16 est un schéma, explicatif de fonctionnement d'un cinquième exemple de réalisation d'une sous-munition selon la présente invention.
The invention will be better understood by means of the description below and the appended figures given as nonlimiting examples and in which:
  • Figure 1 is a sectional view of a known type of submunition;
  • Figure 2 is an explanatory diagram;
  • Figure 3 is a side view of a first embodiment of a submunition according to the present invention;
  • Figure 4 is a schematic top view of the submunition of Figure 3;
  • Figure 5 is a schematic perspective view illustrating the scanning performed by the submunition according to the present invention;
  • Figure 6 is an explanatory diagram;
  • FIG. 7 is an operating flow diagram of a first embodiment of the device according to the present invention;
  • Figure 8 is an explanatory diagram of the operation of the device according to the present invention;
  • Figure 9 is an explanatory diagram of the operation of the device according to the present invention;
  • FIG. 10 is an explanatory diagram of the drawbacks of the devices of known type;
  • FIG. 11 is an explanatory diagram of the drawbacks of the devices of known type;
  • Figure 12 is a flowchart illustrating the operation of a second embodiment of the device according to the present invention;
  • Figure 13 is a side view of a third embodiment of a submunition according to the present invention;
  • Figure 14 is a schematic bottom view of the submunition of Figure 13;
  • Figure 15 is a side view of a fourth embodiment of a submunition according to the present invention;
  • FIG. 16 is a diagram explaining the operation of a fifth embodiment of a submunition according to the present invention.

Sur les figures 1 à 16, l'on a utilisé les mêmes références pour désigner les mêmes éléments.In FIGS. 1 to 16, the same references have been used to designate the same elements.

Sur la figure 1, l'on peut voir une sous-munition 1 de type connu comportant une charge 2 génératrice de noyau comprenant, de façon connue, une charge explosive et un revêtement 3 destinés à former le noyau, des moyens 4 de détection de cibles ayant un axe δ et une chambre 5 contenant des équipements électroniques (non représentés). Un axe Δ de la sous-munition 1 (axe suivant lequel est tiré le noyau) est représenté vertical sur la figure 1, bien qu'à un instant t, il présente un angle non nul α avec un axe de rotation vertical A de la sous-munition telle qu'illustrée sur la figure 2.In FIG. 1, one can see a submunition 1 of known type comprising a charge 2 generating a nucleus comprising, in known manner, an explosive charge and a coating 3 intended to form the nucleus, means 4 for detecting targets having an axis δ and a chamber 5 containing electronic equipment (not shown). An axis Δ of submunition 1 (axis along which the nucleus is pulled) is shown vertical in FIG. 1, although at an instant t, it has a non-zero angle α with a vertical axis of rotation A of the submunition as illustrated in FIG. 2.

Soit β l'angle à un instant t entre la projection au sol 6 (supposé plan) et la vitesse v0 du centre de gravité de la sous-munition et la projection au sol de l'axe Δ. Les axes δ et Δ sont séparés d'une distance d faible, sensiblement égale à la moitié du diamètre de la sous-munition.Let β be the angle at an instant t between the projection on the ground 6 (supposed plane) and the speed v 0 of the center of gravity of the submunition and the projection on the ground of the axis Δ. The axes δ and Δ are separated by a small distance d, substantially equal to half the diameter of the submunition.

Sur les figures 3 et 4, l'on peut voir l'exemple de réalisation préféré d'une munition 7 selon la présente invention. Les moyens de détection de cibles de la munition 7 selon l'invention comportent une pluralité de moyens de détection de cibles sélectionnables 41, 42, 43,..., 4n ayant des axes de détection respectivement δ1, δ2, δ3,..., δn non parallèles, par exemple inclinés vers l'extérieur d'un même angle par rapport à l'axe Δ et des moyens 8 de mesure de la position pour déterminer à tout instant quel est l'axe δi qui possède l'orientation la plus vers l'avant de la sous-munition dans la direction donnée par la vitesse v0, comportant par exemple un gyroscope ou un télémètre.In Figures 3 and 4, we can see the preferred embodiment of ammunition 7 according to the present invention. The target detection means of the ammunition 7 according to the invention comprise a plurality of selectable target detection means 41, 42, 43, ..., 4n having detection axes respectively δ1, δ2, δ3, ... , δn not parallel, for example inclined outwards by the same angle relative to the axis Δ and means 8 for measuring the position to determine at any time which is the axis δi which has the orientation further forward of the submunition in the direction given by the speed v 0 , comprising for example a gyroscope or a rangefinder.

Dans un autre mode de réalisation plus perfectionné, les moyens 8 de mesure de la position de la sous-munition 7 comportent une centrale à inertie et/ou un télémètre ou un altimètre.In another more sophisticated embodiment, the means 8 for measuring the position of the submunition 7 comprise an inertial unit and / or a range finder or an altimeter.

Dans une variante de réalisation, la munition 7 est équipée d'un unique détecteur de cibles associé à des moyens d'orientation de l'axe de détection dans des directions non parallèles prédéterminées par rapport à la sous-munition ou associé à une pluralité de moyens de visée, par exemple une pluralité d'objectifs ayant des axes optiques non parallèles et des moyens de commutation pour sélectionner un objectif, par exemple un obturateur asservi comportant une seule ouverture. Dans une autre variante de réalisation, la sous-munition comporte des moyens de détection qui sont constitués par une mosaïque de détecteurs associés à une seule optique. Ces moyens de détection sont disposés le long d'une génératrice de l'enveloppe de la sous-munition, comme illustré sur les figures 13 et 14, ou bien dans le prolongement de l'axe Δ, comme illustré sur la figure 15.In an alternative embodiment, the ammunition 7 is equipped with a single target detector associated with means for orienting the detection axis in predetermined non-parallel directions relative to the submunition or associated with a plurality of sighting means, for example a plurality of objectives having non-parallel optical axes and switching means for selecting a objective, for example a servo shutter having a single opening. In another alternative embodiment, the submunition comprises detection means which consist of a mosaic of detectors associated with a single optic. These detection means are arranged along a generator of the envelope of the submunition, as illustrated in FIGS. 13 and 14, or else in the extension of the axis Δ, as illustrated in FIG. 15.

Sur la figure 5, l'on peut voir une sous-munition 7 selon l'invention en rotation autour de l'axe A avec une vitesse angulaire ω et dont le centre de gravité suit une trajectoire balistique 9 dans le repère orthogonal (x,y,z), la trace de l'axe Δ au sol 6 (symbolisée par le plan (x,z)) portant la référence 10. Comme l'on peut le voir sur la figure 5, la trace 10 correspond à une surface importante du sol 6 assurant le balayage d'une superficie importante pour la détection des cibles.In FIG. 5, we can see a submunition 7 according to the invention rotating around the axis A with an angular speed ω and whose center of gravity follows a ballistic trajectory 9 in the orthogonal coordinate system (x, y, z), the trace of the axis Δ on the ground 6 (symbolized by the plane (x, z)) bearing the reference 10. As can be seen in FIG. 5, the trace 10 corresponds to a large area of the ground 6 ensuring the scanning of a large area for the detection of targets.

Lors de chaque révolution, la distance E, entre le point d'impact au sol 6 du noyau engendré par le revêtement 3 (pour un tir déclenché à un instant t de détection d'une cible par un moyen de détection de cibles 4i ayant un axe de détection δi) et l'intersection de l'axe Δ avec le sol 6, varie et dépend de l'orientation de l'axe δi par rapport à l'axe Δ. Or, cette distance correspond à l'erreur de tir. Pour une distance E trop importante, le noyau 3 manque la cible. Dans la mesure où la distance E dépend de l'orientation de l'axe de détection δi, selon l'invention, à chaque instant l'on sélectionne parmi les moyens 41 à 4n de détection de cibles, le moyen 4i dont l'axe de détection de cibles δi correspond à une distance E minimale entre l'intersection Mi du sol 6 avec l'axe δi et le point d'impact M' du noyau sur le sol 6. Avantageusement, les axes de détection de cibles δ1 à δn sont disposés par rapport à l'axe A de rotation de la sous-munition, de telle manière qu'au cours de chaque révolution, chacun des axes δi des moyens de détection de cibles, à un instant donné de la révolution, correspond à une distance E minimale.During each revolution, the distance E, between the point of impact on the ground 6 of the core generated by the coating 3 (for a shot triggered at an instant t of detection of a target by a target detection means 4i having a detection axis δi) and the intersection of the axis Δ with the ground 6, varies and depends on the orientation of the axis δi relative to the axis Δ. However, this distance corresponds to the shooting error. For a distance E that is too great, the core 3 misses the target. Insofar as the distance E depends on the orientation of the detection axis δi, according to the invention, at each instant one selects from the means 41 to 4n of target detection, the means 4i whose axis of target detection δi corresponds to a minimum distance E between the intersection Mi of the ground 6 with the axis δi and the point of impact M 'of the core on the ground 6. Advantageously, the axes of detection of targets δ1 to δn are arranged relative to the axis A of rotation of the submunition, in such a way that during each revolution, each of the axes δi of the target detection means, at a given instant of the revolution, corresponds to a minimum distance E.

Sur la figure 6, l'on peut voir quatre positions successives de l'orientation des quatre axes δ1 à δ4 au cours d'une révolution de la sous-munition 7 des figures 2 et 3 pour laquelle les axes δ1 à δ4 sont inclinés vers l'extérieur de la sous-munition d'un même angle par rapport à l'axe de Δ. Les chiffres 1 à 4 sont placés dans des rectangles correspondant respectivement à l'orientation des axes δ1 à δ4. Les rectangles entourés correspondent à l'axe δi qui donne une distance E minimale pour chacune des quatre positions successives de la sous-munition.In FIG. 6, one can see four successive positions of the orientation of the four axes δ1 to δ4 during a revolution of the submunition 7 of FIGS. 2 and 3 for which the axes δ1 to δ4 are inclined towards the outside of the submunition at the same angle relative to the axis of Δ. The numbers 1 to 4 are placed in rectangles corresponding respectively to the orientation of the axes δ1 to δ4. The rectangles surrounded correspond to the axis δi which gives a minimum distance E for each of the four successive positions of the submunition.

Selon un premier mode de réalisation de l'invention, l'on peut considérer qu'à chaque instant l'axe δi qui correspond à une distance E minimale est celui qui, de tous les axes de détection, présente l'orientation la plus proche de celle du vecteur vitesse v0 du centre de gravité de la sous-munition 7. Dans l'exemple illustré comportant quatre axes δ1 à δ4, le sol 6 peut être, à chaque instant, divisé en quatre cadrans délimités par quatre demi-droites dont l'origine correspond au point d'intersection de l'axe vertical A avec le sol 6 et orientées avec les angles :
Q1 = 45°, Q2 = 135°, Q3 = 225° et Q4 = 315°.
According to a first embodiment of the invention, it can be considered that at every instant the axis δi which corresponds to a minimum distance E is that which, of all the detection axes, has the closest orientation that of the speed vector v 0 of the center of gravity of the submunition 7. In the example illustrated comprising four axes δ1 to δ4, the ground 6 can be, at any time, divided into four dials delimited by four half-lines whose origin corresponds to the point of intersection of the vertical axis A with the ground 6 and oriented with the angles:
Q1 = 45 °, Q2 = 135 °, Q3 = 225 ° and Q4 = 315 °.

Sur la figure 7, l'on peut voir un organigramme d'un mode de fonctionnement d'une sous-munition selon la présente invention.In FIG. 7, one can see a flowchart of an operating mode of a submunition according to the present invention.

En 11, l'on mesure l'angle β entre le vecteur v0 de la vitesse du centre de gravité de la sous-munition 7 et la projection sur le sol 6 de l'axe Δ de la munition 7.In 11, the angle β is measured between the vector v 0 of the speed of the center of gravity of the submunition 7 and the projection onto the ground 6 of the axis Δ of the munition 7.

On va en 12.We go to 12.

En 12, l'on vérifie si l'angle β est compris entre Q1 et Q2.In 12, it is checked whether the angle β is between Q1 and Q2.

Si oui, l'on va en 13.If yes, we go to 13.

Si non, l'on va en 15.If not, we go to 15.

En 13, l'on sélectionne l'axe δ4.In 13, we select the axis δ4.

On va en 14.We go to 14.

En 15, l'on vérifie si l'angle β est compris entre Q2 et Q3.In 15, it is checked whether the angle β is between Q2 and Q3.

Si oui, l'on va en 16.If yes, we go to 16.

Si non, l'on va en 17.If not, we go to 17.

En 16, l'on sélectionne l'axe δ3.In 16, we select the axis δ3.

On va en 14.We go to 14.

En 17, l'on vérifie si l'angle β est compris entre Q3 et Q4.In 17, it is checked whether the angle β is between Q3 and Q4.

Si oui, l'on va en 18.If yes, we go to 18.

Si non, l'on va en 20.If not, we go to 20.

En 18, l'on sélectionne l'axe δ2.In 18, we select the axis δ2.

On va en 14.We go to 14.

En 20, l'on sélectionne l'axe δ1.At 20, we select the axis δ1.

On va en 14.We go to 14.

En 14, l'on vérifie si une cible a été détectée avec l'axe δi sélectionné.In 14, it is checked whether a target has been detected with the axis δi selected.

Si non, l'on va en 11.If not, we go to 11.

Si oui, l'on va en 21.If yes, we go to 21.

En 21, l'on déclenche le tir.At 21, we fire.

Sur la figure 8, l'on peut voir l'orientation des axes de détection projetés dans un plan défini par l'axe de rotation A de la sous-munition et par l'axe Δ. Les axes δ3, Δ et δ1 forment respectivement les angles α3, α et α1 avec l'axe A. H représente l'altitude de la munition 7 et D la distance entre la munition et l'intersection M de l'axe Δ avec le sol 6.In FIG. 8, one can see the orientation of the detection axes projected in a plane defined by the axis of rotation A of the submunition and by the axis Δ. The axes δ3, Δ and δ1 respectively form the angles α3, α and α1 with the axis A. H represents the altitude of the munition 7 and D the distance between the munition and the intersection M of the axis Δ with the floor 6.

Sur la figure 9, l'on peut voir les points d'intersection M, M1, M2, M3 et M4, respectivement, des axes Δ, δ1, δ2, δ3 et δ4 avec le sol 6.In Figure 9, we can see the points of intersection M, M1, M2, M3 and M4, respectively, of the axes Δ, δ1, δ2, δ3 and δ4 with the ground 6.

Il est bien entendu que l'invention n'est pas limitée à la disposition des axes δ1 à δ4 des figures 2 et 3, mais s'applique d'une façon générale au choix à chaque instant t, d'un axe de détection, avantageusement préétabli, minimisant à cet instant la distance E entre le point d'impact du noyau et de la position de la cible (supposée immobile). De même, il est possible d'inhiber la détection pendant des intervalles de temps durant lesquels aucun axe de détection n'offre une probabilité suffisante, en cas de déclenchement d'un tir, d'atteindre la cible. Dans un tel cas, la sous-munition poursuit sa trajectoire avec une probabilité non nulle de détecter une seconde cible et de la détruire. Avantageusement, les axes de détection sont orientés, lors de la fabrication de la sous-munition, selon la présente invention, de manière à obtenir une grande surface de balayage au sol en tenant compte des commutations entre les divers axes de détection utilisés à divers moments lors de la trajectoire balistique de la sous-munition.It is understood that the invention is not limited to the arrangement of the axes δ1 to δ4 in FIGS. 2 and 3, but applies generally to the choice at any time t, of a detection axis, advantageously preset, minimizing at this instant the distance E between the point of impact of the nucleus and the position of the target (assumed to be stationary). Likewise, it is possible to inhibit detection during time intervals during which no axis of detection offers a sufficient probability, in the event of the launching of a shot, to reach the target. In such a case, the submunition continues its trajectory with a non-zero probability of detecting a second target and destroying it. Advantageously, the detection axes are oriented, during the manufacture of the submunition, according to the present invention, so as to obtain a large scanning surface on the ground by taking account of the switching between the various detection axes used at various times. during the ballistic trajectory of the submunition.

Sur les figures 13, 14 et 15, l'on peut voir deux exemples de sous-munition selon l'invention dont les moyens de détection comportent un capteur unique 40 comprenant une optique 38 illuminant une pluralité de détecteurs 41 à 4n. Dans les exemples illustrés, n = 4, mais il est bien entendu qu'un nombre n supérieur donnant avantageusement une meilleure précision ne sort pas du cadre de la présente invention. Les détecteurs 41 à 4n, par exemple des détecteurs infrarouges susceptibles de détecter le rayonnement thermique d'une cible, sont avantageusement diffusés dans une unique plaquette semi-conductrice 39. Les axes de visées δi correspondant aux divers détecteurs 4i ne sont pas parallèles. L'angle entre un axe δi et l'axe Δ dépend de la distance entre le détecteur 4i et l'intersection d'un axe de l'optique 38 avec la plaquette semi-conductrice 39. Dans l'exemple illustré sur les figures 13 et 14, le capteur 40 est disposé sur l'enveloppe de la sous-munition, tandis que dans l'exemple illustré sur la figure 15, il est disposé devant le revêtement 3 devant former le noyau. Avantageusement, dans ce dernier cas, l'axe de l'optique 38 se confond avec l'axe Δ. Les dispositifs des figures 13 à 15 permettent de sélectionner le détecteur 4i dont l'axe δi possède l'orientation la plus vers l'avant (direction de v0) de la sous-munition. La sélection du détecteur 4i peut être effectuée par des moyens de commande électronique incorporés ou non à la plaquette 39, les détecteurs 41 à 4n étant illuminés simultanément.In FIGS. 13, 14 and 15, one can see two examples of submunitions according to the invention, the detection means of which comprise a single sensor 40 comprising an optic 38 illuminating a plurality of detectors 41 to 4n. In the examples illustrated, n = 4, but it is understood that a higher number n advantageously giving better precision does not depart from the scope of the present invention. The detectors 41 to 4n, for example infrared detectors capable of detecting the thermal radiation of a target, are advantageously diffused in a single semiconductor wafer 39. The axes of sight δi corresponding to the various detectors 4i are not parallel. The angle between an axis δi and the axis Δ depends on the distance between the detector 4i and the intersection of an axis of the optics 38 with the semiconductor wafer 39. In the example illustrated in Figures 13 and 14, the sensor 40 is placed on the envelope of the submunition, while in the example illustrated in FIG. 15, it is placed in front of the covering 3 which must form the core. Advantageously, in the latter case, the axis of the optics 38 merges with the axis Δ. The devices of FIGS. 13 to 15 make it possible to select the detector 4i whose axis δi has the most forward orientation (direction of v 0 ) of the submunition. The selection of the detector 4i can be carried out by electronic control means incorporated or not in the wafer 39, the detectors 41 to 4n being illuminated simultaneously.

Sur la figure 10, l'on peut voir une approximation de la contribution Er apportée à l'erreur E totale par la rotation de la munition 7 autour de l'axe A avec une vitesse angulaire ω et pour un axe de détection δi donné.In FIG. 10, we can see an approximation of the contribution Er made to the total error E by the rotation of the ammunition 7 around the axis A with an angular speed ω and for a given detection axis δi.

Dans la mesure où, pour le calcul de cette contribution, l'on ne tient pas compte de la vitesse v0 du centre de gravité de la sous-munition, la trace 10 de l'axe Δ et la trace 22 de l'axe δi sont représentées par des cercles. La cible se trouvant au point M est détectée au temps t0 et le tir est déclenché au temps t1, t1 - t0 correspondant au temps de traitement. Soit, r la distance entre le centre de gravité du revêtement de la charge génératrice du noyau et l'axe de rotation A. L'angle β1 égal à ω (t1 - t0) correspond à la rotation de la sous-munition 7 et fait correspondre au point M un point M" du cercle 10. L'angle β2, égal à arctg(rω/V), V étant la vitesse (supposée constante) du noyau après le tir, correspond au décalage induit par la vitesse d'entraînement (rω) de la sous-munition sur la vitesse du noyau et fait correspondre au point M" du cercle 10 un point M' du cercle 22. β = β1 + β2.Insofar as, for the calculation of this contribution, the speed v 0 of the center of gravity of the submunition is not taken into account, the trace 10 of the axis Δ and the trace 22 of the axis δi are represented by circles. The target at point M is detected at time t 0 and the shot is triggered at time t 1 , t 1 - t 0 corresponding to the processing time. Let r be the distance between the center of gravity of the coating of the charge generating the nucleus and the axis of rotation A. The angle β1 equal to ω (t 1 - t 0 ) corresponds to the rotation of the submunition 7 and makes point M point M "of circle 10. The angle β2, equal to arctg (rω / V), V being the speed (assumed to be constant) of the nucleus after firing, corresponds to the offset induced by the speed d 'training (rω) of the submunition on the speed of the nucleus and makes point M' of circle 10 correspond to a point M 'of circle 22. β = β1 + β2.

L'on peut écrire en première approximation : Er = MM' = MM" + M"M' = ω H.((t 1 - t 0 ) tg(α) + r/V). cos(α))

Figure imgb0001
   (α étant l'angle entre Δ et A)We can write as a first approximation: Er = MM ' = MM "+ M" M ' = ω H. ((t 1 - t 0 ) tg (α) + r / V). cos (α))
Figure imgb0001
(α being the angle between Δ and A)

Il est à noter que l'erreur angulaire (β1 + β2) est constante dans le temps et toujours dans le même sens. Ainsi, le point d'impact est toujours en avant du point détecté, dans le sens de rotation. L'on peut donc, avec un décalage fixe de l'axe de détection δi par rapport à l'axe Δ de la sous-munition d'un angle (β1 + β2) dans le plan du sol 6, réduire la distance Er à M1M', M1 étant le point du cercle 10 décalé par rapport à M d'un angle (β1 + β2). L'erreur entre M1 et M', pour être corrigée, nécessiterait un décalage supplémentaire de l'axe de détection, cette fois-ci dans le plan contenant l'axe A et l'axe Δ, ce décalage devant être variable, notamment avec l'altitude H. Un tel dispositif exigerait un axe de détection asservi, ce qui est très coûteux.It should be noted that the angular error (β1 + β2) is constant over time and always in the same direction. Thus, the point of impact is always ahead of the detected point, in the direction of rotation. It is therefore possible, with a fixed offset from the detection axis δi relative to the axis Δ of the submunition by an angle (β1 + β2) in the ground plane 6, reduce the distance Er to M1M ', M1 being the point of the circle 10 offset with respect to M by an angle (β1 + β2). The error between M1 and M ', to be corrected, would require an additional offset of the detection axis, this time in the plane containing the axis A and the axis Δ, this offset having to be variable, in particular with altitude H. Such a device would require a controlled detection axis, which is very expensive.

Sur la figure 11, l'on peut voir une approximation de la contribution Ev apportée à l'erreur totale E par la vitesse v0 du centre de gravité de la sous-munition 1 à l'erreur E.In FIG. 11, we can see an approximation of the contribution Ev made to the total error E by the speed v 0 of the center of gravity of the submunition 1 to the error E.

Sur la figure 11, le centre de gravité de la sous-munition 7 porte la référence 23 au moment de la détection de la cible et la référence 24 au moment du tir. L'erreur Ev est due, d'une part, au retard t1 - t0 entre la détection et le tir (distance entre les points 23 et 24) et, d'autre part, à la vitesse d'entraînement v0 communiquée au noyau 3 au moment du tir.In FIG. 11, the center of gravity of the submunition 7 carries the reference 23 when the target is detected and the reference 24 when fired. The error Ev is due, on the one hand, to the delay t 1 - t 0 between detection and firing (distance between points 23 and 24) and, on the other hand, to the drive speed v 0 communicated to core 3 at the time of the shot.

L'on peut écrire en première approximation : Ev = MM' = MM" + M"M' = v 0 (t 1 - t 0 ) + Dv 0 /V

Figure imgb0002
We can write as a first approximation: Ev = MM ' = MM "+ M" M ' = v 0 (t 1 - t 0 ) + Dv 0 / V
Figure imgb0002

Comme on le voit, l'erreur dépend de la distance D entre le centre de gravité de la sous-munition et l'intersection de l'axe Δ avec le sol 6. Cette distance dépend de l'altitude H de la sous-munition 1 ainsi que de l'angle α au moment du tir. Pour un exemple de tir, l'on a obtenu les valeurs suivantes :

  • v0 = 50 m/s
  • H = 100 m
  • V = 2000 m/s
  • t1 - t0 = 0,5 10-3 s
  • α = 30°
  • E = 2,91 m.
As we can see, the error depends on the distance D between the center of gravity of the submunition and the intersection of the axis Δ with the ground 6. This distance depends on the altitude H of the submunition 1 as well as the angle α at the time of the firing. For an example of shooting, we obtained the following values:
  • v 0 = 50 m / s
  • H = 100 m
  • V = 2000 m / s
  • t 1 - t 0 = 0.5 10 -3 s
  • α = 30 °
  • E = 2.91 m.

Si l'on cherche à corriger l'erreur E par un décalage constant de l'axe β par rapport à l'axe Δ (de 1,2° dans l'exemple précédent), l'on constate que, si l'erreur est effectivement nulle lorsque la détection de cibles est faite quand le détecteur se trouve le plus en avant par rapport à la sous-munition dans le sens de parcours donné par vo, l'erreur se trouve au contraire amplifiée (égale à 5,8 m dans l'exemple précédent) quand la détection est faite avec le détecteur situé le plus en arrière par rapport à la sous-munition dans le sens du parcours donné par v0.If one seeks to correct the error E by a constant offset of the axis β relative to the axis Δ (of 1.2 ° in the preceding example), one notes that, if the error is effectively zero when the target detection is made when the detector is furthest forward relative to the submunition in the direction of travel given by v o , the error is on the contrary amplified (equal to 5.8 m in the previous example) when the detection is made with the detector located farthest from the submunition in the direction of the path given by v 0 .

Les modes de réalisation précédemment décrits prévoyaient d'utiliser un gyroscope ou un gyromètre pour déterminer quel est l'axe δi qui possède l'orientation la plus vers l'avant de la sous-munition dans la direction donnée par la vitesse v0. Dans le cas où l'axe de rotation A n'est pas vertical, il est possible de remplacer gyroscope ou gyromètre par un télémètre disposé de façon à mesurer la distance de la munition au sol le long de l'axe Δ ou encore le long d'une génératrice de l'enveloppe de la munition.The previously described embodiments provided for using a gyroscope or a gyrometer to determine which axis δi has the most forward orientation of the submunition in the direction given by the speed v 0 . In the case where the axis of rotation A is not vertical, it is possible to replace the gyroscope or gyrometer by a rangefinder arranged so as to measure the distance of the munition to the ground along the axis Δ or even along an ammunition envelope generator.

En effet, lorsque l'axe A n'est pas vertical, cette distance au sol varie en fonction de la position angulaire de la sous-munition. L'on se reportera à la figure 16 qui montre schématiquement une telle sous-munition ainsi que la trace 10 de l'axe Δ sur le sol 6. L'on remarque que, lors de la rotation de la sous-munition, la distance D au sol le long de l'axe Δ varie entre une valeur Dmax et une valeur Dmin. La position des moyens de détection relativement à l'axe du télémètre étant fixe, et l'orientation de l'axe A relativement au sol étant sensiblement constante, le signal de sortie du télémètre pourra être utilisé directement pour déterminer à tout instant quel est l'axe δi qui possède l'orientation la plus vers l'avant de la munition dans la direction donnée par la vitesse v0.Indeed, when the axis A is not vertical, this distance to the ground varies as a function of the angular position of the submunition. Reference is made to FIG. 16 which schematically shows such a submunition as well as the trace 10 of the axis Δ on the ground 6. It is noted that, during the rotation of the submunition, the distance D to the ground along the axis Δ varies between a value Dmax and a Dmin value. The position of the detection means relative to the axis of the rangefinder being fixed, and the orientation of the axis A relative to the ground being substantially constant, the output signal of the rangefinder can be used directly to determine at any time what is the axis δi which has the most forward orientation of the munition in the direction given by the speed v 0 .

Dans une variante particulièrement performante du dispositif selon la présente invention, les moyens 8 de mesure de la position de la sous-munition 7 comportent une centrale à inertie et/ou un télémètre permettant de mesurer notamment la distance D ainsi que la distance entre le centre de gravité de la sous-munition 7 et le point M'. Par exemple, l'on mesure la vitesse v0, la vitesse de rotation ω et l'altitude H.In a particularly efficient variant of the device according to the present invention, the means 8 for measuring the position of the submunition 7 comprise an inertial unit and / or a range finder making it possible to measure in particular the distance D as well as the distance between the center of gravity of submunition 7 and point M '. For example, we measure the speed v 0 , the speed of rotation ω and the altitude H.

Sur la figure 12, l'on peut voir un organigramme illustrant le fonctionnement de cet exemple de réalisation perfectionné de la sous-munition 7.In FIG. 12, one can see a flowchart illustrating the operation of this improved embodiment of the submunition 7.

En 25, l'on mesure l'angle β.In 25, the angle β is measured.

On va en 26.We're going to 26.

En 26, l'on mesure la vitesse v0 du centre de gravité de la sous-munition 7.In 26, the speed v 0 of the center of gravity of the submunition 7 is measured.

On va en 27.We're going to 27.

En 27, l'on mesure la vitesse de rotation de la sous-munition 7.At 27, the speed of rotation of the submunition 7 is measured.

On va en 28.We're going to 28.

En 28, l'on mesure l'altitude H de la sous-munition 7.At 28, the altitude H of submunition 7 is measured.

On va en 29.We are going to 29.

En 29, l'on initialise le compteur des divers axes de détection δi disponibles.In 29, the counter of the various detection axes δi available is initialized.

On va en 30.We're going to 30.

En 30, l'on calcule l'erreur E pour un axe de visée δi.At 30, the error E is calculated for an aiming axis δi.

On va en 31.We're going to 31.

En 31, l'on mémorise la valeur de l'erreur Ei et la référence de l'axe de détection δi associé.At 31, the value of the error Ei and the reference of the associated detection axis mémori are stored.

On va en 32.We are going to 32.

En 32, l'on vérifie s'il reste des axes de détection δi pour lesquels l'erreur E n'a pas été calculée.At 32, it is checked whether there are any detection axes δi for which the error E has not been calculated.

Si oui, l'on va en 33.If yes, we go to 33.

Si non, l'on va en 34.If not, we go to 34.

En 33, l'on incrémente le compteur des références des axes de détection δi.At 33, the counter of the detection axes δi is incremented.

On va en 30.We're going to 30.

En 34, l'on sélectionne l'axe δi correspondant à l'erreur Ei minimale.In 34, the axis δi is selected corresponding to the minimum error Ei.

On va en 35.We're going to 35.

En 35, l'on effectue une détection d'une éventuelle cible.At 35, a possible target is detected.

On va en 36.We're going to 36.

En 36, l'on va en 37 si une cible a été détectée et en 25 si l'on n'a pas détecté de cibles.In 36, we go to 37 if a target has been detected and in 25 if no target has been detected.

En 37, l'on déclenche le tir.In 37, we fire.

L'invention s'applique à la réalisation de munitions et de sous-munitions.The invention applies to the production of ammunition and submunitions.

L'invention s'applique principalement à la réalisation de sous-munitions anti-chars.The invention mainly applies to the production of anti-tank submunitions.

Claims (10)

  1. A munition, notably a submunition (7) comprising a charge (2) which fires a projectile, notably a slug generating charge, with firing axis Δ and target detection means (4) comprising several detection axes δ1 and δn, intended to be given a movement with respect to the ground enabling it to search for targets, a movement comprising a rotation around an axis A and instantaneous velocity displacement v0, characterised in that the detection means can be selected, and in that it comprises means (8) enabling the selection at any time for detection of a detection axis δi for which the distance E between the intersection point Mi of axis δi with the ground (6) and the impact point M' of the projectile on the ground is minimal.
  2. A munition according to Claim 1, characterised in that the detection axes δi to δn of the target detection means are fixed with respect to axis Δ.
  3. A munition according to one of Claims 1 or 2, characterised in that the means enabling the detection axis δi, for which the distance E is minimal, to be selected comprise measurement means (8) to determine at any time which of the axis δi is oriented foremost with respect to the munition in the direction given by the velocity v0 of the centre of gravity of the munition.
  4. A munition according to Claim 3 able to revolve around a rotational axis A inclined with respect to the vertical, characterised in that the measurement means (8) comprise a range-finder able to measure the distance of the munition from the ground (6).
  5. A munition according to Claim 3, characterised in that the measurement means (8) comprise a gyroscope or rate gyro enabling the angular position with respect to the velocity vector v0 to be measured.
  6. A munition according to one of Claims 1 or 2, characterised in that the means enabling the detection axis δi, for which the distance E is minimal, to be selected combine means such as a gyroscope or rate gyro, enabling measurement of its angular position with respect to the velocity vector v0 of the centre of gravity of the munition, with means to measure the distance from the ground and/or means to measure the instantaneous velocity v0.
  7. A munition according to one of Claims 1 to 6, characterised in that the detection means comprise a single sensor (40) incorporating a plurality of detectors (41, 42, 43, 44), and notably a mosaic (39) of detectors.
  8. A munition according to one of Claims 1 to 6, characterised in that the detection axes δ1 to δn are evenly spaced around its periphery and are inclined towards the outside at the same angle with respect to axis Δ.
  9. A munition according to one of Claims 1 to 6, characterised in that the target detection means comprise a single detector combined with a plurality of optics having non-parallel axes.
  10. A munition according to Claim 9, characterised in that it comprises an shutter enabling the detector to be illuminated at any time t by radiations emitted by a single optic having an axis δi.
EP93401446A 1992-07-02 1993-06-08 Ammunition with target detection means Expired - Lifetime EP0577450B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR929208141A FR2693265B1 (en) 1992-07-02 1992-07-02 Ammunition comprising means for detecting targets.
FR9208141 1992-07-02

Publications (2)

Publication Number Publication Date
EP0577450A1 EP0577450A1 (en) 1994-01-05
EP0577450B1 true EP0577450B1 (en) 1996-12-04

Family

ID=9431437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93401446A Expired - Lifetime EP0577450B1 (en) 1992-07-02 1993-06-08 Ammunition with target detection means

Country Status (5)

Country Link
US (1) US5448500A (en)
EP (1) EP0577450B1 (en)
CA (1) CA2098669C (en)
DE (1) DE69306317T2 (en)
FR (1) FR2693265B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE508651C2 (en) * 1995-10-05 1998-10-26 Bofors Ab Firearm gun intended for grenades
DE10207923B4 (en) * 2002-02-23 2005-09-22 Diehl Bgt Defence Gmbh & Co. Kg Proximity sensor, in particular for the triggering of the warhead of a defense grenade against an approaching projectile

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2187825A (en) * 1937-11-02 1940-01-23 United Shoe Machinery Corp Manufacture of shoe heels
US2427463A (en) * 1943-05-10 1947-09-16 Douglas Aircraft Co Inc Apparatus for making computations electrically
NL7503198A (en) * 1975-03-18 1976-09-21 Bofors Ab OPTICAL INSTRUMENT WITH DISCONTINUOUS WIDE ANGLE.
DE2614680A1 (en) * 1975-04-07 1976-10-21 Motorola Inc METHOD AND APPARATUS FOR MEASURING THE VECTOR OF A MINIMUM HIT DEPOSIT
US4356770A (en) * 1979-11-09 1982-11-02 Avco Corporation Overflying munitions device and system
FR2517818A1 (en) * 1981-12-09 1983-06-10 Thomson Brandt GUIDING METHOD TERMINAL AND MISSILE GUIDE OPERATING ACCORDING TO THIS METHOD
FR2623897B1 (en) * 1982-05-12 1990-09-28 Trt Telecom Radio Electr IMPROVEMENT TO A DEVICE FOR NEUTRALIZING MILITARY OBJECTIVES
DE3843006A1 (en) * 1988-12-21 1990-06-28 Messerschmitt Boelkow Blohm DEVICE FOR DETECTING AND IDENTIFYING SINGLE DESTINATIONS
US5076511A (en) * 1990-12-19 1991-12-31 Honeywell Inc. Discrete impulse spinning-body hard-kill (disk)
SE468261B (en) * 1991-04-08 1992-11-30 Bofors Ab SUBSTRATE PART ORGANIZED TO BE SEPARATED FROM AN AIRCRAFT
FR2695992B1 (en) * 1992-09-21 1994-12-30 Giat Ind Sa Under directed effect ammunition.

Also Published As

Publication number Publication date
US5448500A (en) 1995-09-05
DE69306317T2 (en) 1997-04-30
DE69306317D1 (en) 1997-01-16
FR2693265A1 (en) 1994-01-07
CA2098669C (en) 1997-06-17
FR2693265B1 (en) 1994-09-16
CA2098669A1 (en) 1994-01-03
EP0577450A1 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
EP0028966B1 (en) Method of piloting and guiding missiles in terminal flight
FR2517818A1 (en) GUIDING METHOD TERMINAL AND MISSILE GUIDE OPERATING ACCORDING TO THIS METHOD
FR2719659A1 (en) Method and device for correcting the trajectory of projectiles.
EP0589746B1 (en) Submunition with controlled activation
FR2918168A1 (en) METHOD FOR CONTROLLING THE RELEASE OF AN ATTACK MODULE AND DEVICE USING SUCH A METHOD
FR2722579A1 (en) DEVICE FOR CORRECTING MISSILES TRAJECTORY
EP0161962B1 (en) Weapon system and missile for destroying the structure of an aeral target using a focussed charge
FR2474686A1 (en) SIMPLIFIED SELF-GUIDING SYSTEM FOR OBUS OR ROQUETTE TYPE
FR2746494A1 (en) SEARCHING HEAD FOR MISSILES OR PROJECTILES
CA1073085A (en) Missile guiding
EP0577450B1 (en) Ammunition with target detection means
WO1998031985A1 (en) Device for determining the direction of a target in a predetermined index mark
FR2524978A1 (en) SIGHTING DEVICE
FR2571149A1 (en) TARGET ACQUISITION DEVICE FOR MISSILES
FR2683635A1 (en) MISSILE TRACKING SYSTEMS.
FR2742873A1 (en) DEVICE FOR REALIZING THE TRACKING AND MEASUREMENT OF MOBILE OBJECTS
EP1293751B1 (en) Method for adjusting the ignition time of a projectile, programming device and time fuse used in such a method
EP0089273B1 (en) Fire control system with a double measure of angles
JP3813744B2 (en) Rotating angle measuring device and measuring method of rotating projectile
FR2596162A2 (en) TARGET ACQUISITION DEVICE FOR MISSILES
FR2518737A1 (en) Projectile for area defence system against land assault - has auto-gyro rotor set at angle controlled by calculator of target course using infrared sensor data
FR2623897A1 (en) IMPROVEMENT TO A NEUTRALIZATION DEVICE FOR MILITARY OBJECTIVES
FR2634012A1 (en) Mobile anti-target projectile with a single correcting step, with control by oscillating reference and with three selectable detection modes
FR2518733A1 (en) Unmanned zone protection system against tank assault - uses rotating ejectable platform having scanning sensors supplying target coordinate to missile launcher
FR2615943A1 (en) Simplified detector for forward, pitch and yaw speed, for vehicles and missiles moving at Mach 3 to Mach 6

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT SE

17P Request for examination filed

Effective date: 19940215

17Q First examination report despatched

Effective date: 19950705

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19961204

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19961204

REF Corresponds to:

Ref document number: 69306317

Country of ref document: DE

Date of ref document: 19970116

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970128

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070528

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070530

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070530

Year of fee payment: 15

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080609