EP0589746B1 - Submunition with controlled activation - Google Patents

Submunition with controlled activation Download PDF

Info

Publication number
EP0589746B1
EP0589746B1 EP93402200A EP93402200A EP0589746B1 EP 0589746 B1 EP0589746 B1 EP 0589746B1 EP 93402200 A EP93402200 A EP 93402200A EP 93402200 A EP93402200 A EP 93402200A EP 0589746 B1 EP0589746 B1 EP 0589746B1
Authority
EP
European Patent Office
Prior art keywords
submunition
axis
detection
target
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93402200A
Other languages
German (de)
French (fr)
Other versions
EP0589746A1 (en
Inventor
Chirstophe Redaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giat Industries SA
Original Assignee
Giat Industries SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giat Industries SA filed Critical Giat Industries SA
Publication of EP0589746A1 publication Critical patent/EP0589746A1/en
Application granted granted Critical
Publication of EP0589746B1 publication Critical patent/EP0589746B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C13/00Proximity fuzes; Fuzes for remote detonation
    • F42C13/006Proximity fuzes; Fuzes for remote detonation for non-guided, spinning, braked or gravity-driven weapons, e.g. parachute-braked sub-munitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C13/00Proximity fuzes; Fuzes for remote detonation
    • F42C13/02Proximity fuzes; Fuzes for remote detonation operated by intensity of light or similar radiation

Definitions

  • the present invention relates to a directed effect munition intended to be launched, by means of a vector, over an area containing a target, this ammunition comprising a military head consisting of a formed charge and a device for detection actuating a firing device.
  • the invention relates in particular to a submunition intended to be projected by means of a mine or a vector, the latter being itself launched by an aircraft or an artillery piece, in such a way that the submarine ammunition is driven by a translation speed v with a substantially vertical axis V and a rotation speed r with substantially the same axis.
  • Such a weapon system is known from US Pat. No. 4,858,532.
  • the axis of the detection device is inclined about 30 ° relative to the axis of rotation of the submunition, so that , during the downward movement of such a submunition, the fraction of surface covered by the detector device at a given instant moves in a spiral over the area, thus increasing the probability of detection of the target.
  • a signal produces the triggering of the charge formed, which acts vertically from top to bottom, while the submunition is in a substantially vertical part descending from its trajectory, but it can be observed that a head Military of this type could operate equally well in an upward trajectory, as in the case of the first part of the trajectory of a submunition launched by a landmine.
  • Such a system has the advantage of being able to engage targets at a distance, without requiring guidance and thanks to simple detection means.
  • the object of the present invention is to remedy the drawbacks of known submunitions and to propose a submunition making it possible to substantially reduce the inaccuracy of fire resulting from the translation and rotation speeds imparted to the submunition, and this by means of relatively inexpensive and space-saving simple means.
  • the device of the invention it becomes possible, by simple means to appreciably increase the accuracy of detection since, by an appropriate arrangement of the detection axes corresponding to the various angles u i , it is possible to largely correct the sources of imprecision of known submunitions.
  • the submunition is characterized in that the calculation means comprise means for comparing the minimum value of said deviation obtained for said angle with a threshold and for preventing the triggering of the military charge in the event of detection of a target if the minimum deviation is greater than said threshold.
  • the detection device comprises at least two detection units and can comprise at least two sensors, associated with a single optic and arranged so as to define detection axes with different orientations, these sensors being capable of being activated individually.
  • the different detection units consist of the same sensor with which an optic from a group of several optics can be associated.
  • the detectors are of the infrared or millimeter wave type.
  • the submunition applied to a submunition intended to be launched from the ground with a substantially vertical movement upwards before descending substantially vertically, the submunition comprises two detection units having one an average orientation for the ascending phase and the other an average orientation for the fallout phase, and means for recognizing the transition between the first and the second phase and for activating in each phase the appropriate detection unit.
  • FIGS. 1 to 5 relating to a conventional submunition, there is a submunition 1 comprising a shaped charge 2 which moves with a translation speed v along a substantially vertical axis V, and a rotation speed r around an axis substantially coincident with V, in the vicinity of a plane 3 containing a target 5, such as a land vehicle.
  • the charge formed 2 has a symmetry of revolution about an axis D making an angle t with the axis V.
  • a detector 7, of detection axis d substantially parallel to the axis D, can act on an igniter 8 placed at the rear of the formed charge 2.
  • the detection axis d rotates around the axis V by scanning a surface whose intersection with the plane 3 containing the target 5 forms a spiral 9.
  • the detection takes place in a solid angle of axis d, resting in plane 3 on a surface 4.
  • FIG. 1 shows a spiral 10, somehow encompassing spiral 9, and corresponding to the envelope in plane 3 of contour of the instant detection surface 4.
  • Figure 3 shows schematically the impact point deviation resulting from the single rotation of the load.
  • the plane of Figure 3 is parallel to the plane of the target, assumed to be horizontal.
  • the circle C with center O is the location of the points detected (intersection between the detection axis d and the ground), the circle C 'is the location of the points of impact with the ground.
  • the angle s1 is equal to r.a and it is induced by the rotation of the load during the calculation time. It matches point M with point M "on circle C.
  • the angle s2 is equal to arctg (n.r / Vnoy.sin t), Vnoy being the supposed constant speed of the nucleus after firing. This angle is induced by the driving speed n.r of the load on the speed of the core. It corresponds to point M "a point M 'of circle C'. The total error is equal to MM '.
  • the offset may be compensated for by shifting the detection axis d forward by an equal value, but the error M 1 M ' would still have to be compensated.
  • this error depends on the direction of movement of the submunition. When climbing, the impact is offset towards the outside of the spiral, and when descending, the impact is offset towards the inside of the spiral.
  • the impact difference is shown diagrammatically in FIG. 4 in the case of an ascending trajectory, of the load, the Z axis representing the vertical axis and the R axis representing the axis of the radial distances from the point d impact designated here by P.
  • the point Q symbolizing the position of the charge moves from axv and passes to Q 1 .
  • a first correction could be made simply by going from P to P 1 , the line Q 1 P 1 being parallel to QP, but an error P 1 P 'would remain.
  • Figures 6 to 11 relate to an embodiment of the invention applying to a shaped load similar to that of Figure 2, but allowing to overcome to a large extent the drawbacks explained above.
  • the detection device comprises a strip of four sensors or detectors 21 to 24 arranged radially with respect to the axis D of the charge formed.
  • To these detectors is associated a single optic 26 defining with each of them respective detection axes d 1 to d 4 , to which correspond respective angles u 1 to u 4 with the axis d, parallel to the axis D of the formed charge 2.
  • the detection axes d 1 to d 4 correspond to trace detection brushes 11 to 14 respectively on the target plane (see Figure 8).
  • the means for calculating the submunition have also been shown diagrammatically at 29. These means operate under conditions which will be specified below, during the description of the operation of the submunition with reference to FIGS. 9 to 11.
  • FIG. 7 represents a variant of the device of FIG. 6 in which the detectors 21 to 24 are distributed in a substantially symmetrical manner with respect to the axis D of the charge formed.
  • An optic 26 is required here for each pair of detectors 21, 22 and 23, 24.
  • the distances of the two optics 26 to the axis D must be adapted so that the elementary detection zones 11 to 14 are correctly arranged ( figure 8).
  • the speed v is known, either indirectly from the measurement of the altitude above the ground, symbolized at 31, or directly by the means 28 (see FIG. 9).
  • v we determine the value of u i best suited to trigger firing, by circuit 30. If no value of u i is suitable, firing is prohibited, otherwise the corresponding axis d i is selected by the circuit 32. If a target is detected by this axis, circuit 35 transmits the signal triggering of firing on circuit 38. Otherwise, we go back to a new calculation of speed v.
  • the choice of the value of u i best suited to trigger the firing may consist in calculating the point of impact deviation for each u i and in retaining the value which minimizes this deviation and which is less than a threshold u s .
  • This operating mode corresponds to the diagram in FIG. 10.
  • Another embodiment may consist (see FIG. 11) of defining a priori several speed ranges, for example four ranges limited by v 1 , v 2 , v 3 , v 4 , v 5 , to which detection axes are associated respectively. individuals d 1 , d 2 , d 3 , d 4 .
  • the means 28 provides at each instant an estimated value of the speed v.
  • the circuit 41 selects the direction detector d 1 . If v is not included in the first range of speeds, one passes to circuit 42 and possibly to circuits 43 then 44, the latter corresponding to the fourth range of speeds (v 4 ⁇ v ⁇ v 5 ).
  • the corresponding detection axis is selected. Under these conditions, if circuit 37 detects the target, there is triggering of the shot by the circuit 38, otherwise we come back to a new determination of the speed.
  • the number of detection means, or of detection axes is not limiting; the higher the number, the better the correction.
  • the detection means are not used simultaneously, it is possible to envisage a single sensor but with several associated optics making it possible to obtain different detection axes.
  • the speed measuring means for example an accelerometer, can control the step-by-step movement of a shutter which allows only the beam coming from a specific optic to pass. This solution has the advantage of having only one sensor, thereby saving space and reducing costs.
  • One direction will correspond to a particular minimization of the aiming error for the rising phase of the submunition and the other direction will correspond to a minimization for the falling phase.
  • the choice of one or the other detector will be made by the calculation means 28 on the basis of the “maximum altitude” information (therefore corresponding to the passage of the rising phase in the downward phase).
  • This information can be provided by an accelerometer (whether or not coupled to an integrator). It can also be given by an altimeter followed by a diverter.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Automotive Seat Belt Assembly (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Description

La présente invention concerne une munition à effet dirigé destinée à être lancée, au moyen d'un vecteur, au-dessus d'une zone contenant une cible, cette munition comportant une tête militaire constituée d'une charge formée et d'un dispositif de détection actionnant un dispositif de mise à feu.The present invention relates to a directed effect munition intended to be launched, by means of a vector, over an area containing a target, this ammunition comprising a military head consisting of a formed charge and a device for detection actuating a firing device.

L'invention concerne en particulier une sous-munition destinée à être projetée au moyen d'une mine ou d'un vecteur, ce dernier étant lui-même lancé par un aéronef ou une pièce d'artillerie, de telle manière que la sous-munition soit animée d'une vitesse de translation v d'axe V sensiblement vertical et d'une vitesse de rotation r sensiblement autour du même axe.The invention relates in particular to a submunition intended to be projected by means of a mine or a vector, the latter being itself launched by an aircraft or an artillery piece, in such a way that the submarine ammunition is driven by a translation speed v with a substantially vertical axis V and a rotation speed r with substantially the same axis.

On connaît un tel système d'arme d'après le brevet US-4 858 532. L'axe du dispositif de détection est incliné d'environ 30° par rapport à l'axe de rotation de la sous-munition, de sorte que, au cours du mouvement descendant d'une telle sous-munition, la fraction de surface couverte par le dispositif détecteur à un instant donné se déplace en spirale sur la zone, accroissant ainsi la probabilité de détection de la cible.Such a weapon system is known from US Pat. No. 4,858,532. The axis of the detection device is inclined about 30 ° relative to the axis of rotation of the submunition, so that , during the downward movement of such a submunition, the fraction of surface covered by the detector device at a given instant moves in a spiral over the area, thus increasing the probability of detection of the target.

Lorsque la cible est détectée, un signal produit le déclenchement de la charge formée, laquelle agit verticalement de haut en bas, alors que la sous-munition se trouve dans une partie sensiblement verticale descendante de sa trajectoire, mais on peut observer qu'une tête militaire de ce type pourrait fonctionner aussi bien en trajectoire ascendante, comme dans le cas de la première partie de la trajectoire d'une sous-munition lancée par une mine terrestre.When the target is detected, a signal produces the triggering of the charge formed, which acts vertically from top to bottom, while the submunition is in a substantially vertical part descending from its trajectory, but it can be observed that a head Military of this type could operate equally well in an upward trajectory, as in the case of the first part of the trajectory of a submunition launched by a landmine.

Un tel système présente l'intérêt de pouvoir engager des cibles à distance, sans nécessiter de guidage et grâce à des moyens de détection simples.Such a system has the advantage of being able to engage targets at a distance, without requiring guidance and thanks to simple detection means.

Mais il présente des inconvénients importants résultant, en premier lieu, de l'imprécision de la détection, car l'apparition d'un signal de détection signifie seulement qu'une partie au moins de la cible est à l'intérieur du cône de détection, et en second lieu, de causes d'erreurs bien connues liées aux composantes de la vitesse de la sous-munition v et r.But it has significant drawbacks resulting, first of all, from the imprecision of the detection, since the appearance of a detection signal only means that at least part of the target is inside the detection cone, and secondly, of well-known causes of errors related to the components of the speed of the submunition v and r.

Pour bien faire ressortir les inconvénients de la technique connue, on décrira plus loin les principes de mise en oeuvre d'une telle technique en se référant aux figures 1 à 5 des dessins annexés.To clearly highlight the drawbacks of the known technique, the principles of implementation of such a technique will be described below with reference to Figures 1 to 5 of the accompanying drawings.

La présente invention a pour but de remédier aux inconvénients des sous-munitions connues et de proposer une sous-munition permettant de réduire sensiblement l'imprécision de tir résultant des vitesses de translation et de rotation imprimées à la sous-munition, et cela par des moyens simples relativement peu coûteux et peu encombrants.The object of the present invention is to remedy the drawbacks of known submunitions and to propose a submunition making it possible to substantially reduce the inaccuracy of fire resulting from the translation and rotation speeds imparted to the submunition, and this by means of relatively inexpensive and space-saving simple means.

La présente invention a pour objet une sous-munition à effet dirigé destinée à se déplacer, avant d'être mise à feu, suivant une trajectoire sensiblement verticale d'axe V au-dessus d'une région contenant une cible, et à avoir en un point de la trajectoire une vitesse de translation selon l'axe V et une vitesse de rotation par rapport audit axe, cette sous-munition comportant une charge formée d'axe D formant un angle aigu t avec l'axe V, un dispositif de détection qui présente un axe de détection d formant avec l'axe D un angle u et qui comporte des moyens pour détecter une cible et des moyens pour déclencher la charge formée, caractérisée en ce qu'elle comporte en outre:

  • des moyens pour déterminer à tout instant la vitesse de translation v et/ou l'altitude H de la sous-munition par rapport à la région contenant la cible ;
  • des moyens de calcul pour calculer en fonction de v et/ou de H une valeur ui, choisie parmi un ensemble de valeurs possibles de l'angle u, permettant de minimiser un écart e existant entre la position d'une cible détectée à l'instant considéré et le point d'impact de la charge militaire si celle-ci était déclenchée audit instant ;
  • des moyens pour donner ladite valeur ui à l'angle u entre l'axe de détection d et l'axe D.
The present invention relates to a directed effect submunition intended to move, before being fired, along a substantially vertical trajectory of axis V above a region containing a target, and to have in a point on the trajectory a speed of translation along the axis V and a speed of rotation relative to said axis, this submunition comprising a charge formed by axis D forming an acute angle t with the axis V, a device for detection which has a detection axis d forming with the axis D an angle u and which comprises means for detecting a target and means for triggering the charge formed, characterized in that it further comprises:
  • means for determining at any time the translation speed v and / or the altitude H of the submunition with respect to the region containing the target;
  • calculation means for calculating as a function of v and / or H a value u i , chosen from a set of possible values of the angle u, making it possible to minimize a difference e existing between the position of a detected target at the instant considered and the point of impact of the military charge if it was triggered at that instant;
  • means for giving said value u i to the angle u between the detection axis d and the axis D.

Grâce au dispositif de l'invention, il devient possible, par des moyens simples d'accroître sensiblement la précision de la détection puisque, par une disposition appropriée des axes de détection correspondant aux divers angles ui, on peut corriger dans une large mesure les sources d'imprécision des sous-munitions connues.Thanks to the device of the invention, it becomes possible, by simple means to appreciably increase the accuracy of detection since, by an appropriate arrangement of the detection axes corresponding to the various angles u i , it is possible to largely correct the sources of imprecision of known submunitions.

Selon un mode de réalisation avantageux de l'invention, la sous-munition est caractérisée en ce que les moyens de calcul comportent des moyens pour comparer la valeur minimale dudit écart obtenue pour ledit angle à un seuil et pour interdire le déclenchement de la charge militaire en cas de détection d'une cible si l'écart minimal est supérieur audit seuil.According to an advantageous embodiment of the invention, the submunition is characterized in that the calculation means comprise means for comparing the minimum value of said deviation obtained for said angle with a threshold and for preventing the triggering of the military charge in the event of detection of a target if the minimum deviation is greater than said threshold.

Selon un mode de réalisation particulier de l'invention, le dispositif de détection comprend au moins deux unités de détection et peut comporter au moins deux capteurs, associés à une optique unique et disposés de manière à définir des axes de détection d'orientations différentes, ces capteurs étant susceptibles d'être activés individuellement.According to a particular embodiment of the invention, the detection device comprises at least two detection units and can comprise at least two sensors, associated with a single optic and arranged so as to define detection axes with different orientations, these sensors being capable of being activated individually.

Selon un autre aspect de l'invention, les différentes unités de détection sont constituées par un même capteur auquel peut être associée une optique d'un groupe de plusieurs optiques.According to another aspect of the invention, the different detection units consist of the same sensor with which an optic from a group of several optics can be associated.

Selon un autre aspect de l'invention, les détecteurs sont du type infrarouge ou à ondes millimétriques.According to another aspect of the invention, the detectors are of the infrared or millimeter wave type.

Selon encore un autre aspect de l'invention, appliquée à une sous-munition destinée à être lancée depuis le sol avec un mouvement sensiblement vertical vers le haut avant de redescendre sensiblement verticalement, la sous-munition comporte deux unités de détection ayant l'une une orientation moyenne pour la phase ascensionnelle et l'autre une orientation moyenne pour la phase de retombée, et des moyens pour reconnaître la transition entre la première et la seconde phase et pour activer dans chaque phase l'unité de détection appropriée.According to yet another aspect of the invention, applied to a submunition intended to be launched from the ground with a substantially vertical movement upwards before descending substantially vertically, the submunition comprises two detection units having one an average orientation for the ascending phase and the other an average orientation for the fallout phase, and means for recognizing the transition between the first and the second phase and for activating in each phase the appropriate detection unit.

D'autres particularités et avantages de l'invention apparaîtront dans la description que l'on va donner maintenant, à titre non limitatif, de modes de réalisation de cette invention, en se référant aux dessins annexés, dans lesquels:

  • la figure 1 est une vue d'ensemble schématique en perspective montrant une sous-munition à charge formée classique à proximité de la zone de tir;
  • la figure 2 est une vue schématique en coupe d'une sous-munition à charge formée classique munie d'un dispositif détecteur;
  • la figure 3 est un schéma représentant schématiquement l'écart d'impact, lié au délai détection-allumage, imputable à la seule vitesse de rotation de la charge formée;
  • les figures 4 et 5 représentent schématiquement l'écart d'impact lié au délai détection-allumage imputable à la vitesse de translation verticale de la charge formée, respectivement en trajectoire ascendante et en trajectoire descendante;
  • les figures 6 et 7 représentent schématiquement deux modes de réalisation de l'invention dans lesquels le dispositif de détection comprend respectivement une barrette de quatre capteurs et deux barrettes symétriques de deux capteurs chacune;
  • la figure 8 est une vue schématique analogue à la figure 1, mais dans le cas d'une sous-munition conforme à l'invention selon la variante de réalisation de la figure 6;
  • les figures 9 à 11 sont des schémas donnant des exemples d'organigrammes de calculs que l'on peut mettre en oeuvre, dans des dispositifs conformes à l'invention.
Other particularities and advantages of the invention will appear in the description which will now be given, without limitation, of embodiments of this invention, with reference to the appended drawings, in which:
  • Figure 1 is a schematic perspective overview showing a conventional shaped charge submunition near the firing zone;
  • Figure 2 is a schematic sectional view of a conventional shaped charge submunition provided with a detector device;
  • FIG. 3 is a diagram schematically representing the impact difference, linked to the detection-ignition delay, attributable to the only speed of rotation of the charge formed;
  • FIGS. 4 and 5 schematically represent the impact difference linked to the detection-ignition delay attributable to the vertical translation speed of the charge formed, respectively in ascending trajectory and in descending trajectory;
  • FIGS. 6 and 7 schematically represent two embodiments of the invention in which the detection device respectively comprises a strip of four sensors and two symmetrical strips of two sensors each;
  • Figure 8 is a schematic view similar to Figure 1, but in the case of a submunition according to the invention according to the alternative embodiment of Figure 6;
  • Figures 9 to 11 are diagrams giving examples of flowcharts of calculations that can be implement, in devices according to the invention.

Sur les figures 1 à 5, relatives à une sous-munition classique, on distingue une sous-munition 1 comportant une charge formée 2 qui se déplace avec une vitesse de translation v selon un axe sensiblement vertical V, et une vitesse de rotation r autour d'un axe sensiblement confondu avec V, au voisinage d'un plan 3 contenant une cible 5, telle qu'un véhicule terrestre.In FIGS. 1 to 5, relating to a conventional submunition, there is a submunition 1 comprising a shaped charge 2 which moves with a translation speed v along a substantially vertical axis V, and a rotation speed r around an axis substantially coincident with V, in the vicinity of a plane 3 containing a target 5, such as a land vehicle.

La charge formée 2 présente une symétrie de révolution autour d'un axe D faisant un angle t avec l'axe V. Un détecteur 7, d'axe de détection d sensiblement parallèle à l'axe D, peut agir sur un allumeur 8 placé à l'arrière de la charge formée 2. L'axe de détection d tourne autour de l'axe V en balayant une surface dont l'intersection avec la plan 3 contenant la cible 5 forme une spirale 9. La détection s'opère dans un angle solide d'axe d, s'appuyant dans le plan 3 sur une surface 4. On a représenté sur la figure 1 une spirale 10, englobant en quelque sorte la spirale 9, et correspondant à l'enveloppe dans le plan 3 du contour de la surface 4 de détection instantanée.The charge formed 2 has a symmetry of revolution about an axis D making an angle t with the axis V. A detector 7, of detection axis d substantially parallel to the axis D, can act on an igniter 8 placed at the rear of the formed charge 2. The detection axis d rotates around the axis V by scanning a surface whose intersection with the plane 3 containing the target 5 forms a spiral 9. The detection takes place in a solid angle of axis d, resting in plane 3 on a surface 4. FIG. 1 shows a spiral 10, somehow encompassing spiral 9, and corresponding to the envelope in plane 3 of contour of the instant detection surface 4.

La figure 3 schématise l'écart de point d'impact résultant de la seule rotation de la charge. Le plan de la figure 3 est parallèle au plan de la cible, supposé horizontal. Le cercle C de centre O est le lieu des points détectés (intersection entre l'axe de détection d et le sol), le cercle C' est le lieu des points d'impact avec le sol. La cible se trouvant au point M est détectée au temps t0 et le tir est déclenché au temps t1 (t1 - t0 = a, correspondant au temps de calcul).Figure 3 shows schematically the impact point deviation resulting from the single rotation of the load. The plane of Figure 3 is parallel to the plane of the target, assumed to be horizontal. The circle C with center O is the location of the points detected (intersection between the detection axis d and the ground), the circle C 'is the location of the points of impact with the ground. The target at point M is detected at time t 0 and the shot is triggered at time t 1 (t 1 - t 0 = a, corresponding to the calculation time).

Soit r la vitesse de rotation de la charge et n la distance entre le centre de gravité du revêtement de la charge génératrice de noyau et l'axe de rotation V.Let r be the speed of rotation of the load and n the distance between the center of gravity of the coating of the core-generating load and the axis of rotation V.

L'angle s1 est égal à r.a et il est induit par la rotation de la charge pendant le temps de calcul. Il fait correspondre au point M un point M" sur le cercle C.The angle s1 is equal to r.a and it is induced by the rotation of the load during the calculation time. It matches point M with point M "on circle C.

L'angle s2 est égal à arctg (n.r/Vnoy.sin t), Vnoy étant la vitesse supposée constante du noyau après le tir. Cet angle est induit par la vitesse d'entraînement n.r de la charge sur la vitesse du noyau. Il fait correspondre au point M" un point M' du cercle C'. L'erreur totale est égale à MM'.The angle s2 is equal to arctg (n.r / Vnoy.sin t), Vnoy being the supposed constant speed of the nucleus after firing. This angle is induced by the driving speed n.r of the load on the speed of the core. It corresponds to point M "a point M 'of circle C'. The total error is equal to MM '.

L'erreur angulaire due à s = s1+s2 est constante dans le temps et toujours dans le même sens. Ainsi le point d'impact est toujours en avant du point détecté dans le sens de rotation. On peut donc avec un décalage fixe de l'axe de détection par rapport à l'axe de la charge compenser cette erreur et ramener l'erreur totale au simple écart M1M' (M1 étant le point du cercle C décalé du point M d'un angle s).The angular error due to s = s1 + s2 is constant over time and always in the same direction. Thus the point of impact is always ahead of the point detected in the direction of rotation. We can therefore with a fixed offset of the detection axis relative to the axis of the load compensate for this error and reduce the total error to the simple difference M1M '(M1 being the point of the circle C offset from the point M d' an angle s).

Cependant il reste à corriger l'erreur M1M'.However it remains to correct the error M1M '.

L'angle s étant constant, la compensation de l'écart pourrait s'opérer en décalant vers l'avant l'axe de détection d d'une valeur égale, mais il resterait à compenser l'erreur M1M'.Since the angle s is constant, the offset may be compensated for by shifting the detection axis d forward by an equal value, but the error M 1 M 'would still have to be compensated.

Pour ce qui concerne l'écart d'impact dû à la vitesse de translation sensiblement verticale v de la charge, on va d'abord donner ci-après un ordre de grandeur des valeurs numériques que l'on rencontre habituellement avec ce genre de sous-munition:

  • v = 50 m/s
  • vitesse du noyau généré par la charge, Vcgn = 2000 m/s
    Figure imgb0001
  • t = 30°.
  • distance de la cible = 100 m
  • durée séparant l'instant de détection de l'instant de déclenchement de la charge : a = 0,5 ms
    Figure imgb0002
  • écart de point d'impact: 1,4 m.
Regarding the impact difference due to the substantially vertical translation speed v of the load, we will first give below an order of magnitude of the numerical values that are usually encountered with this kind of sub -ammunition:
  • v = 50 m / s
  • speed of the nucleus generated by the charge, Vcgn = 2000 m / s
    Figure imgb0001
  • t = 30 °.
  • distance from target = 100 m
  • duration separating the instant of detection from the instant of triggering of the charge: a = 0.5 ms
    Figure imgb0002
  • impact point deviation: 1.4 m.

De plus cette erreur dépend du sens du mouvement de la sous-munition. En montée, l'impact se trouve déporté vers l'extérieur de la spirale, et en descente, l'impact se trouve déporté vers l'intérieur de la spirale.In addition, this error depends on the direction of movement of the submunition. When climbing, the impact is offset towards the outside of the spiral, and when descending, the impact is offset towards the inside of the spiral.

On a schématisé l'écart d'impact sur la figure 4 dans le cas d'une trajectoire ascendante, de la charge, l'axe Z représentant l'axe vertical et l'axe R représentant l'axe des distances radiales du point d'impact désigné ici par P.The impact difference is shown diagrammatically in FIG. 4 in the case of an ascending trajectory, of the load, the Z axis representing the vertical axis and the R axis representing the axis of the radial distances from the point d impact designated here by P.

Pour une durée a, le point Q symbolisant la position de la charge se déplace de a x v et passe en Q1. En décalant systématiquement la position du détecteur on pourrait apporter de manière simple une première correction en passant de P en P1, la droite Q1P1 étant parallèle à QP, mais il subsisterait une erreur P1P'.For a duration a, the point Q symbolizing the position of the charge moves from axv and passes to Q 1 . By systematically shifting the position of the detector, a first correction could be made simply by going from P to P 1 , the line Q 1 P 1 being parallel to QP, but an error P 1 P 'would remain.

Toutefois, une telle correction serait néfaste pour la phase descendante, comme le montre la figure 5, car elle accroitrait d'autant l'écart PP".However, such a correction would be harmful for the downward phase, as shown in FIG. 5, because it would increase the difference PP "all the more.

Les figures 6 à 11 sont relatives à un mode de réalisation de l'invention s'appliquant à une charge formée analogue à celle de la figure 2, mais permettant de s'affranchir dans une large mesure des inconvénients explicités ci-dessus.Figures 6 to 11 relate to an embodiment of the invention applying to a shaped load similar to that of Figure 2, but allowing to overcome to a large extent the drawbacks explained above.

Le dispositif de détection comprend une barrette de quatre capteurs ou détecteurs 21 à 24 disposés radialement par rapport à l'axe D de la charge formée. A ces détecteurs est associée une optique unique 26 définissant avec chacun d'eux des axes de détection respectifs d1 à d4, auxquels correspondent des angles respectifs u1 à u4 avec l'axe d, parallèle à l'axe D de la charge formée 2. En d'autres termes, l'angle ui peut prendre ici quatre valeurs ui = u1 , u2 , u3, u4 correspondant respectivement aux axes de détection di = d1, d2, d3, d4. Aux axes de détection d1 à d4 correspondent des pinceaux de détection de traces respectives 11 à 14 sur le plan de la cible (voir figure 8).The detection device comprises a strip of four sensors or detectors 21 to 24 arranged radially with respect to the axis D of the charge formed. To these detectors is associated a single optic 26 defining with each of them respective detection axes d 1 to d 4 , to which correspond respective angles u 1 to u 4 with the axis d, parallel to the axis D of the formed charge 2. In other words, the angle u i can here take four values u i = u 1 , u 2 , u 3 , u 4 corresponding respectively to the detection axes d i = d 1 , d 2 , d 3 , d 4 . The detection axes d 1 to d 4 correspond to trace detection brushes 11 to 14 respectively on the target plane (see Figure 8).

On a schématisé en 28 un moyen d'obtention de la vitesse de translation V, connu en soi et constitué dans le cas présent par un accéléromètre, un convertisseur analogique/numérique et des intégrateurs en série. On pourrait utiliser un télémètre pour fournir la donnée de base constituée par la distance verticale au sol, à partir de laquelle il est aisé de remonter à la valeur de la vitesse v dès que l'on connaît approximativement la cinématique de la trajectoire de la sous-munition.We have schematized at 28 a means of obtaining the translation speed V, known per se and constituted in the present case by an accelerometer, an analog / digital converter and integrators in series. We could use a rangefinder to provide the basic data constituted by the vertical distance to the ground, from which it is easy to go back to the value of the speed v as soon as we know approximately the kinematics of the trajectory of the sub -ammunition.

On a également représenté schématiquement en 29 les moyens de calculs de la sous-munition. Ces moyens opèrent dans des conditions qui seront précisées plus loin, lors de la description du fonctionnement de la sous-munition en référence aux figures 9 à 11.The means for calculating the submunition have also been shown diagrammatically at 29. These means operate under conditions which will be specified below, during the description of the operation of the submunition with reference to FIGS. 9 to 11.

La figure 7 représente une variante du dispositif de la figure 6 dans laquelle les détecteurs 21 à 24 sont répartis de manière sensiblement symétrique par rapport à l'axe D de la charge formée. Une optique 26 est ici nécessaire pour chaque couple de détecteurs 21, 22 et 23, 24. Bien entendu, les distances des deux optiques 26 à l'axe D doivent être adaptées afin que les zones élémentaires de détection 11 à 14 soient correctement disposées (figure 8).FIG. 7 represents a variant of the device of FIG. 6 in which the detectors 21 to 24 are distributed in a substantially symmetrical manner with respect to the axis D of the charge formed. An optic 26 is required here for each pair of detectors 21, 22 and 23, 24. Of course, the distances of the two optics 26 to the axis D must be adapted so that the elementary detection zones 11 to 14 are correctly arranged ( figure 8).

Le fonctionnement des moyens de calcul de la sous-munition est le suivant (voir figures 9 à 11).The operation of the means of calculating the submunition is as follows (see FIGS. 9 to 11).

A chaque instant on connaît la vitesse v, soit indirectement à partir de la mesure de l'altitude au-dessus du sol, symbolisée en 31, soit directement par le moyen 28 (voir figure 9). Pour chaque valeur de v on détermine la valeur de ui la mieux adaptée pour déclencher le tir, par le circuit 30. Si aucune valeur de ui ne convient on interdit le tir, sinon on sélectionne l'axe correspondant di par le circuit 32. Si une cible est détectée par cet axe, le circuit 35 transmet le signal de déclenchement de tir au circuit 38. Sinon, on remonte à un nouveau calcul de la vitesse v.At each instant, the speed v is known, either indirectly from the measurement of the altitude above the ground, symbolized at 31, or directly by the means 28 (see FIG. 9). For each value of v we determine the value of u i best suited to trigger firing, by circuit 30. If no value of u i is suitable, firing is prohibited, otherwise the corresponding axis d i is selected by the circuit 32. If a target is detected by this axis, circuit 35 transmits the signal triggering of firing on circuit 38. Otherwise, we go back to a new calculation of speed v.

Le choix de la valeur de ui la mieux adaptée pour déclencher le tir peut consister à calculer l'écart de point d'impact pour chaque ui et à retenir la valeur qui minimise cet écart et qui soit inférieure à un seuil us. Ce mode de fonctionnement correspondant au diagramme de la figure 10.The choice of the value of u i best suited to trigger the firing may consist in calculating the point of impact deviation for each u i and in retaining the value which minimizes this deviation and which is less than a threshold u s . This operating mode corresponds to the diagram in FIG. 10.

A partir de v, on calcule en 33 l'écart de point d'impact MM', soit l'erreur totale imputable à la fois à la rotation et à la vitesse verticale (voir figures 3 et 8), pour chaque valeur de l'angle ui; et on recense en 34 les valeurs ui donnant un écart inférieur au seuil prédéterminé. Si aucune valeur ne convient, on interdit le tir, sinon on sélectionne en 36 la valeur ui qui donne l'écart minimal, puis on active en 37 la direction de détection di correspondante, et si une cible est détectée le tir est déclenché en 38. Sinon on revient au point de départ en 28 avec la détermination d'une nouvelle valeur de la vitesse v.From v, we calculate at 33 the impact point difference MM ', that is the total error attributable to both the rotation and the vertical speed (see Figures 3 and 8), for each value of l 'angle u i ; and there are listed at 34 the values u i giving a deviation below the predetermined threshold. If no value is suitable, fire is prohibited, otherwise we select in 36 the value u i which gives the minimum deviation, then we activate in 37 the corresponding detection direction d i , and if a target is detected the fire is triggered in 38. Otherwise we return to the starting point at 28 with the determination of a new value for speed v.

Un autre mode de réalisation peut consister (voir figure 11) à définir a priori plusieurs gammes de vitesses, par exemple quatre gammes limitées par v1, v2, v3, v4, v5, auxquelles on associe respectivement des axes de détection particuliers d1, d2, d3, d4. Le moyen 28 fournit à chaque instant une valeur estimée de la vitesse v. Ainsi, lorsque v est comprise entre v1 et v2 (1ère gamme de vitesses), le circuit 41 sélectionne le détecteur de direction d1. Si v n'est pas comprise dans la première gamme de vitesses, on passe au circuit 42 et éventuellement aux circuits 43 puis 44, ce dernier correspondant à la quatrième gamme de vitesses (v4<v<v5). Lorsqu'une des gammes de vitesses convient, l'axe de détection correspondant est sélectionné. Dans ces conditions, si le circuit 37 détecte la cible, il y a déclenchement du tir par le circuit 38, sinon on revient à une nouvelle détermination de la vitesse.Another embodiment may consist (see FIG. 11) of defining a priori several speed ranges, for example four ranges limited by v 1 , v 2 , v 3 , v 4 , v 5 , to which detection axes are associated respectively. individuals d 1 , d 2 , d 3 , d 4 . The means 28 provides at each instant an estimated value of the speed v. Thus, when v is between v 1 and v 2 (1st range of speeds), the circuit 41 selects the direction detector d 1 . If v is not included in the first range of speeds, one passes to circuit 42 and possibly to circuits 43 then 44, the latter corresponding to the fourth range of speeds (v 4 <v <v 5 ). When one of the speed ranges is suitable, the corresponding detection axis is selected. Under these conditions, if circuit 37 detects the target, there is triggering of the shot by the circuit 38, otherwise we come back to a new determination of the speed.

Bien entendu, l'invention n'est pas limitée aux exemples de réalisation que l'on vient de décrire, et on peut leur apporter de nombreuses modifications sans sortir du cadre de cette invention.Of course, the invention is not limited to the exemplary embodiments which have just been described, and many modifications can be made to them without departing from the scope of this invention.

Ainsi, le nombre de moyens de détection, ou d'axes de détection n'est pas limitatif; plus ce nombre est élevé et meilleure sera la correction.Thus, the number of detection means, or of detection axes is not limiting; the higher the number, the better the correction.

Les moyens de détection n'étant pas utilisés simultanément, on peut envisager un seul capteur mais avec plusieurs optiques associées permettant d'obtenir différents axes de détection. Dans ce cas, le moyen de mesure de la vitesse, par exemple un accéléromètre, peut commander le déplacement pas à pas d'un obturateur qui laisse passer seulement le faisceau en provenance d'une optique déterminée. Cette solution présente l'avantage de ne comporter qu'un seul capteur, d'où gain de place et réduction des coûts.Since the detection means are not used simultaneously, it is possible to envisage a single sensor but with several associated optics making it possible to obtain different detection axes. In this case, the speed measuring means, for example an accelerometer, can control the step-by-step movement of a shutter which allows only the beam coming from a specific optic to pass. This solution has the advantage of having only one sensor, thereby saving space and reducing costs.

Il est possible également de définir une sous-munition éjectée verticalement par une plate-forme posée au sol et dans laquelle les moyens de détection sont susceptibles d'être orientés suivant deux directions.It is also possible to define a submunition ejected vertically by a platform placed on the ground and in which the detection means are capable of being oriented in two directions.

Une direction correspondra à une minimisation particulière de l'erreur de visée pour la phase montante de la sous-munition et l'autre direction correspondra à une minimisation pour la phase descendante.One direction will correspond to a particular minimization of the aiming error for the rising phase of the submunition and the other direction will correspond to a minimization for the falling phase.

Il suffira d'utiliser deux détecteurs présentant les orientations appropriées, le choix d'un ou de l'autre détecteur sera effectué par les moyens de calcul 28 à partir de l'information "altitude maximale" (donc correspondant au passage de la phase montante à la phase descendante). Cette information pourra être fournie par un accéléromètre (couplé ou non à un intégrateur). Elle pourra être également donnée par un altimètre suivi d'un dérivateur.It will suffice to use two detectors having the appropriate orientations, the choice of one or the other detector will be made by the calculation means 28 on the basis of the “maximum altitude” information (therefore corresponding to the passage of the rising phase in the downward phase). This information can be provided by an accelerometer (whether or not coupled to an integrator). It can also be given by an altimeter followed by a diverter.

Il est possible enfin de définir une sous-munition éjectée verticalement d'une plate-forme ou bien dispersée au-dessus du terrain et dans laquelle le choix d'un axe de détection particulier est effectué par les moyens de calcul 28 à partir de la seule information "altitude".It is finally possible to define a submunition ejected vertically from a platform or else dispersed over the ground and in which the choice of a particular detection axis is made by the calculation means 28 from the only "altitude" information.

On associera alors par exemple 4 altitudes particulières H1, H2, H3, H4 aux axes de détection d1, d2, d3, d4 respectivement.We will then associate for example 4 particular altitudes H1, H2, H3, H4 with the detection axes d1, d2, d3, d4 respectively.

Claims (10)

  1. A directed-effect submunition designed to move, before being ignited, along a roughly vertical trajectory having an axis (V) over an area containing a target (5), and to have a displacement velocity (v) at one point along the trajectory according to the axis (V) and a rotational velocity (r) with respect to said axis (V), this submunition having a shaped charge (2) with axis (D) forming an acute angle (t) with axis (V), a detection device (7) with a detection axis (d) forming an angle (u) with axis (D) and which incorporates means to detect a target (5) and means to trigger the shaped charge (2) when a target (5) is detected, characterised in that it comprises in addition :
    - means to determine at any time the displacement velocity (v) and / or the altitude (H) of the submunition with respect to the area containing the target (5);
    - computation means to compute according to (v) and / or (H) the value (ui), selected from a set of possible values for angle (u), enabling the deviation (e) between the position (M) of a detected target at the moment in question and the warhead point of impact (M'), should the latter be triggered at this precise moment, to be reduced;
    - means to give said value (ui) to angle (u) between the detection axis (d) and the axis (D).
  2. A submunition according to Claim 1, characterised in that the computation means comprise means to compare the minimal value of said deviation (ei) obtained for said angle (ui) to a threshold (es) and to prevent the warhead (2) from being triggered after detecting a target (5) if the minimum deviation (ei) is greater than said threshold (es).
  3. A submunition according to Claim 1 or 2, characterised in that submunition incorporates at least two detection units oriented along different respective angles (u) with respect to axis (D), and means for individually activating the detection unit forming with axis (D), at any one time, the angle (ui) which minimizes said deviation (e).
  4. A submunition according to Claim 3, characterised in that the different detection units each incorporate a sensor, the different sensors being associated with a single optical system and arranged such as to define detection axes in different directions, these sensors being able to be activated individually.
  5. A submunition according to Claim 3, characterised in that the various detection units are composed of a single sensor to which a single optical system or a set of optical systems can be associated in order to define detection axes with different orientations, the optical systems being implemented individually.
  6. A submunition according to any on of Claims 1 to 5, the submunition being intended to be launched from the ground along a roughly vertical upward axis before descending also roughly vertically, characterised in that the submunition comprises two detection units one of which has an average direction for the upward phase and the other an average direction for the downward phase, as well as means to recognise the transition for the first to the second phase and to activate the appropriate detection unit for each phase.
  7. A submunition according to Claim 6, characterised in that the means to recognise said transition are formed of an accelerometer.
  8. A submunition according to Claim 6, characterised in that the means to recognise said transition are formed of an altimeter.
  9. A submunition according to any one of Claims 1 to 8, characterised in that the detector device is of an infrared type.
  10. A submunition according to any one of Claims 1 to 8, characterised in that the detection device is of a millimetre-wave type.
EP93402200A 1992-09-21 1993-09-09 Submunition with controlled activation Expired - Lifetime EP0589746B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9211220A FR2695992B1 (en) 1992-09-21 1992-09-21 Under directed effect ammunition.
FR9211220 1992-09-21

Publications (2)

Publication Number Publication Date
EP0589746A1 EP0589746A1 (en) 1994-03-30
EP0589746B1 true EP0589746B1 (en) 1996-09-25

Family

ID=9433708

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93402200A Expired - Lifetime EP0589746B1 (en) 1992-09-21 1993-09-09 Submunition with controlled activation

Country Status (5)

Country Link
US (1) US5341743A (en)
EP (1) EP0589746B1 (en)
CA (1) CA2106499C (en)
DE (1) DE69305041T2 (en)
FR (1) FR2695992B1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2693265B1 (en) * 1992-07-02 1994-09-16 Giat Ind Sa Ammunition comprising means for detecting targets.
SE501082C2 (en) * 1993-03-30 1994-11-07 Bofors Ab Method and apparatus for giving an airborne combat section a desired pattern of movement
DE4410326C2 (en) * 1994-03-25 1998-07-02 Rheinmetall Ind Ag Projectile with a device for trajectory correction
GB2624358A (en) 1995-06-28 2024-05-15 Giat Ind Sa Munition ejected from a ground platform in a substantially vertical direction
SE508651C2 (en) * 1995-10-05 1998-10-26 Bofors Ab Firearm gun intended for grenades
DE69706738T2 (en) * 1996-04-05 2002-07-04 Luchaire Defense S.A., Versailles Projectile whose explosive charge is triggered by a target indicator
FR2810856B1 (en) 2000-06-29 2002-09-27 Laetitia Lagardere LUMINOUS AND ODORIFYING JEWEL
USH2236H1 (en) 2006-09-29 2010-04-06 The United States Of America As Represented By The Secretary Of The Navy Method for defeating a warhead that carries submunitions
DE102007025258A1 (en) * 2007-05-30 2008-12-04 Rheinmetall Waffe Munition Gmbh warhead
US8979031B2 (en) * 2008-06-10 2015-03-17 Roy L. Fox, Jr. Aerial delivery system with munition adapter and latching release
US20110059421A1 (en) * 2008-06-25 2011-03-10 Honeywell International, Inc. Apparatus and method for automated feedback and dynamic correction of a weapon system
US8046203B2 (en) 2008-07-11 2011-10-25 Honeywell International Inc. Method and apparatus for analysis of errors, accuracy, and precision of guns and direct and indirect fire control mechanisms
US8434411B2 (en) 2011-01-19 2013-05-07 Raytheon Company Cluster explosively-formed penetrator warheads

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2474686B1 (en) * 1980-01-29 1986-04-04 Europ Propulsion SIMPLIFIED SELF-GUIDING SYSTEM FOR A SHELL OR ROCKET TYPE VEHICLE
FR2517818A1 (en) * 1981-12-09 1983-06-10 Thomson Brandt GUIDING METHOD TERMINAL AND MISSILE GUIDE OPERATING ACCORDING TO THIS METHOD
FR2623897B1 (en) * 1982-05-12 1990-09-28 Trt Telecom Radio Electr IMPROVEMENT TO A DEVICE FOR NEUTRALIZING MILITARY OBJECTIVES
DE3427227A1 (en) * 1984-07-24 1986-01-30 Diehl GmbH & Co, 8500 Nürnberg END-PHASE-CONTROLLABLE AMMUNITION ITEM AND METHOD FOR ITS TARGET NAVIGATION
DE3516673A1 (en) * 1985-05-09 1986-11-13 Diehl GmbH & Co, 8500 Nürnberg END-PHASE CORRECTABLE SEARCHED AMMUNITION AND METHOD FOR FIGHTING ARMORED TARGETS
SE452505B (en) * 1986-03-27 1987-11-30 Bofors Ab SUBSCRIPTION PART WITH SWINGABLE MOLD DETECTOR
FR2619634B1 (en) * 1987-08-21 1990-04-06 Intertechnique Sa METHOD AND DEVICE FOR TRACKING TARGET WITH INFRARED EMISSION AND AMMUNITION COMPRISING APPLICATION
DE3835883C2 (en) * 1988-10-21 1996-07-18 Tzn Forschung & Entwicklung Procedure for target detection for missiles with a seeker head
FR2646232B1 (en) * 1989-04-25 1994-03-11 Thomson Brandt Armements AUTOMATED WEAPON SYSTEM FOR ZONE DEFENSE
DE3936064A1 (en) * 1989-10-28 1991-05-02 Dynamit Nobel Ag METHOD AND DEVICE FOR FASTER AUTOMATIC OPENING OF A PARACHUTE
DE4017353A1 (en) * 1990-05-30 1991-12-05 Rheinmetall Gmbh Missile with target detector
DE4023069A1 (en) * 1990-07-20 1992-01-23 Diehl Gmbh & Co MINE, INSBES. ARMOR DEFENSE MINE
US5076511A (en) * 1990-12-19 1991-12-31 Honeywell Inc. Discrete impulse spinning-body hard-kill (disk)

Also Published As

Publication number Publication date
CA2106499C (en) 1996-01-16
CA2106499A1 (en) 1994-03-22
DE69305041D1 (en) 1996-10-31
DE69305041T2 (en) 1997-02-06
FR2695992A1 (en) 1994-03-25
FR2695992B1 (en) 1994-12-30
US5341743A (en) 1994-08-30
EP0589746A1 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
EP0589746B1 (en) Submunition with controlled activation
EP0028966B1 (en) Method of piloting and guiding missiles in terminal flight
EP0273787B1 (en) Projectile for the indirect attack of armoured vehicles
EP0887613A2 (en) In-flight programming method of the triggering moment of a projectile element, firing control and fuse for carrying out this method
FR2719659A1 (en) Method and device for correcting the trajectory of projectiles.
EP0161962B1 (en) Weapon system and missile for destroying the structure of an aeral target using a focussed charge
FR2568365A1 (en) AMMUNITION ARTICLE WITH A CONTROLLED TERMINAL FLIGHT PHASE, AND METHOD FOR ITS NAVIGATION TARGET
FR2742540A1 (en) PROJECTILE WITH TRAJECTORY CORRECTION DEVICE
EP0033283B1 (en) Simplified self-steering system for a missile such as a shell or rocket
FR2657687A1 (en) ANTI-CHAR MUNITION AND METHOD OF USE
FR2514486A1 (en) DEVICE FOR COMBATING GOALS, SUCH AS ARMORED OR SIMILAR, USING POINTABLE MUNITION ON THE GOAL
EP0422194B1 (en) Automatic weapons system for defending a zone
EP0329523B1 (en) Carrier guided by a laser beam and pyrotechnical thrusters
EP0918205B1 (en) Projectile having radial direction of action
FR2583868A1 (en) SUBMUNITION WITH SEARCHING IGNITION HEAD.
FR2633383A1 (en) FLYING ENGINE FOR COMBAT AGAINST SHIELDS
EP0577450B1 (en) Ammunition with target detection means
EP1293751B1 (en) Method for adjusting the ignition time of a projectile, programming device and time fuse used in such a method
FR2633382A1 (en) METHOD FOR ATTACKING A TARGET USING A SURFACE PROJECTILE, AND SURFACE PROJECTILE FOR IMPLEMENTING THE METHOD
EP0283386B1 (en) Remotely controlled apparatus to fire a projectile
FR2518737A1 (en) Projectile for area defence system against land assault - has auto-gyro rotor set at angle controlled by calculator of target course using infrared sensor data
FR2504703A1 (en) Guidance system for missile eliminating wind effects - uses array of impulse jets operating in brief regular bursts to correct wind forces on missile
FR3005359A1 (en) METHOD AND DEVICE FOR PROTECTING LOW-ALTITUDE AIRCRAFT AGAINST SOLID AIR MISSILE
FR2674952A1 (en) Guidance for a shell stabilised by rotation, neither finned nor winged with stabilisation of the trajectory by tractive nozzle with differential effect
FR2657690A1 (en) Device for measuring the roll and/or pitch attitude of a projectile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT SE

17P Request for examination filed

Effective date: 19940526

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960220

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19960925

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960925

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961001

REF Corresponds to:

Ref document number: 69305041

Country of ref document: DE

Date of ref document: 19961031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050824

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050825

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050926

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070403

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060909