EP0505769B1 - Verfahren zur Ermittlung der Flächendeckung einer Vorlage, insbesondere einer Druckplatte, sowie Vorrichtung zur Durchführung des Verfahrens - Google Patents

Verfahren zur Ermittlung der Flächendeckung einer Vorlage, insbesondere einer Druckplatte, sowie Vorrichtung zur Durchführung des Verfahrens Download PDF

Info

Publication number
EP0505769B1
EP0505769B1 EP92103605A EP92103605A EP0505769B1 EP 0505769 B1 EP0505769 B1 EP 0505769B1 EP 92103605 A EP92103605 A EP 92103605A EP 92103605 A EP92103605 A EP 92103605A EP 0505769 B1 EP0505769 B1 EP 0505769B1
Authority
EP
European Patent Office
Prior art keywords
printing
reflectance
filter
measurement
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92103605A
Other languages
English (en)
French (fr)
Other versions
EP0505769A1 (de
Inventor
Werner Dr. Huber
Helmut Prof. Dr. Kipphan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heidelberger Druckmaschinen AG
Original Assignee
Heidelberger Druckmaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heidelberger Druckmaschinen AG filed Critical Heidelberger Druckmaschinen AG
Publication of EP0505769A1 publication Critical patent/EP0505769A1/de
Application granted granted Critical
Publication of EP0505769B1 publication Critical patent/EP0505769B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/0027Devices for scanning originals, printing formes or the like for determining or presetting the ink supply

Definitions

  • the invention relates to a method for determining the area coverage of a printing template, in particular a printing form of a printing press, preferably an offset printing machine, wherein the local reflectance of a detected measuring field is determined by optical scanning of the template, the printing surfaces differ from the non-printing surfaces of the template Have color (color difference) and the original has a location-dependent inhomogeneity which is independent of the area coverage and influences the measurement result of the scanning.
  • the method according to the invention is suitable for determining the area coverage, that is to say for determining the percentage of a printing area in relation to the total area under consideration. It can be used in different technical fields. It can be used, for example, to determine the area coverage of a print template. However, provision is preferably made to determine the area coverage on a printing form of a printing press, in particular on the printing plate of an offset printing press, before the printing process, in order to obtain ink presetting values for ink metering zones of the printing unit or the inking units. The more precisely the area coverage and thus the ink presetting values can be determined, the faster the production status can be achieved, which reduces waste and makeready times. Under these conditions, even small print runs can be printed economically.
  • each zone of the printing plate is suitably illuminated and the light scattered back from the printing plate surface is detected by a measuring head.
  • the measuring head preferably has a photodiode for detecting the remission.
  • the measured intensities are compared with previously measured reference intensities.
  • a reference intensity comes from a so-called full-tone area, that is, an area that has an area coverage of 100%.
  • a further reference intensity is formed by a so-called zero percent area that does not carry ink when printing; their area coverage is therefore 0%.
  • the full tone area and the zero percent area form two extreme values which serve to calibrate the measuring head.
  • Signals emitted by the measuring head which are based on an area coverage lying between the extreme values, can be classified as a percentage on the basis of the calibration, that is to say the percentage area coverage corresponding to these signals can thus be determined.
  • the area coverage can only be determined approximately, namely within a relatively wide tolerance band.
  • the zero percent area reference is particularly critical because it varies considerably more locally than a full tone reference and, with the same absolute size of the error, leads to larger relative errors.
  • a method for determining an average zonal area coverage is known, wherein a zonal scanning of the printing form of a printing press is carried out with a sensor and a zero percent reference from the plate edge or at a measuring point with maximum remission is determined. Then the zero percent reference is measured again with additional filtering. Then the subject of the printing plate is scanned zonally by the sensor and the measured values determined are normalized to the filter transmission curve. The degree of area coverage is then calculated by averaging all standardized measurement values for the respective ink zone and ink presetting values for the printing press are obtained therefrom. Errors that occur due to inhomogeneities in the printing plate surface have a falsifying effect on the measurement result.
  • the invention is therefore based on the object of providing a method and a device in which inhomogeneities in the original, in particular the printing form, are taken into account and the accuracy of the measurement result is thus improved.
  • these inhomogeneities are essentially Chen subject-free printing plate surface areas to be taken into account, so that the critical measurement of small surface areas is decisively improved.
  • This object is achieved according to the invention in that at least two reflectance values which differ spectrally from one another in accordance with the color difference are determined from each measurement field and in that the two reflectance values are evaluated for separating a portion of the measurement result which is influenced by the area coverage and a portion which is influenced by the inhomogeneity.
  • the printing form can be designed such that the printing and / or the non-printing areas are colored in such a way that the printing or the non-printing areas are given a different color.
  • the different colored areas and the spectral evaluation of the reflectance it can be distinguished at each measuring field under consideration whether the measurement result has been influenced by an inhomogeneity. If this is the case, then there is an inhomogeneity, this can be determined and the measurement result can be corrected accordingly, so that finally the actually existing area coverage of the present measurement field can be determined.
  • the measurement result is therefore much more precise, so that essentially error-free ink presetting values for the inking unit or units of an offset printing press can be determined. This means that the production status can be reached more quickly after setting up the printing press.
  • the printing form is now more or less colored as standard to make the subject visible, and is done, for example, by the coloring of the photoresist that forms the color-guiding surfaces of the printing form. This coloring is now used specifically according to the invention.
  • the coloring can be carried out using a diazo varnish already used today by the printing plate manufacturers.
  • This photoresist currently used, among other things, to make the subject visible, is thus also used according to the invention.
  • inhomogeneities for example a color-darker zero percent area lying opposite the plate edge in the area of the subject, were considered to be a measuring field with area coverage, that is to say the present inhomogeneity was misinterpreted, so that measurement errors were unavoidable.
  • the area coverage is determined zonally and if color presetting values for ink metering zones of an inking unit of the printing press are determined from the zonal area coverage values.
  • an additional, third, spectrally deviating reflectance value is determined from each measuring field, which takes into account a local change in the reflectance of a printing, that is to say a printing ink-carrying or printed surface, in particular a full-tone surface.
  • a printing that is to say a printing ink-carrying or printed surface, in particular a full-tone surface.
  • inhomogeneities within the full-tone areas can be determined and eliminated during the measurement.
  • these errors which are based on inhomogeneities of full-tone areas, are very much smaller than with zero percent areas, so that a further improvement in the accuracy of the measurement result is achieved, but this is not as serious as with zero percent areas or areas with low area coverage.
  • the inhomogeneities of adjacent measurement areas may be advantageous to use the inhomogeneities of adjacent measurement areas and primarily determined area coverage (according to the so-called two-filter method described above) for smoothing when determining the inhomogeneity of a measurement field.
  • This takes into account the fact that the inhomogeneities mostly do not change abruptly, but rather continuously, between adjacent measuring points, so that "outliers" have no serious effects due to measuring errors or the like.
  • a local inhomogeneity distribution is first determined by determining the inhomogeneities of the entire original (in particular printing plate). From this, a preliminary pseudo zero percent reference can be determined at each point.
  • the invention further relates to a device for determining the area coverage, in particular for carrying out the method described, with at least one measuring head optically scanning the template, which has a reflective light receiver with a filter arrangement, so that due to different filtering of each optically scanned measuring field, several spectrally different ones Measurement results can be achieved.
  • the filter arrangement can have a plurality of filters, so that a different filter can be used for each measurement. However, it can also be done in such a way that one of the measurements takes place without a filter and another or several others take place with a filter.
  • the remission light receiver can have a plurality of light-sensitive elements, to which the remission is fed via the corresponding filters. This has the advantage that several measurements can be carried out simultaneously.
  • the remission light receiver has only one light-sensitive element and that the filters can be pivoted into its beam path. In the latter case, however, the different measurements of each measuring field can only be carried out one after the other.
  • the measuring head has a beam splitter which feeds the remission of a first photodiode directly, that is to say without additional filtering, and to a second photodiode via a filter forming the filter arrangement.
  • the reflectance of a measuring field can be measured in a spectrally different way.
  • the measuring head has a further beam splitter which feeds the remission of a third photodiode via a further filter.
  • the first photodiode thus receives the remission unfiltered, the second photodiode via a filter and the third photodiode via the further filter, which differs from the first filter in its filter characteristic.
  • a plurality of measuring heads are preferably arranged next to one another, the measuring heads being movable relative to the original.
  • the measuring heads can also be arranged in a stationary manner and the template can be moved.
  • the row of measuring heads is preferably so long that the subject length or the subject width is completely recorded.
  • the measuring heads can be moved in the printing direction of the printing form or transversely to the printing direction.
  • the filter or filters can preferably be designed as an edge filter or as a tristimulus filter with special attention to their mutual course.
  • the invention it is also possible to recognize on the basis of the reference signals for the full-tone and zero percent areas which plate type (that is, from which manufacturer or from which material) is used.
  • a printing plate identification can also be carried out with the aid of the device according to the invention.
  • FIG. 1 shows a device with which the zonal area coverage of a template, in particular a printing plate of an offset printing machine, can be determined.
  • the device has a desk-shaped measuring table 1.
  • a pressure plate 2 to be measured is placed on the measuring table 1 and is preferably held pneumatically by negative pressure.
  • corresponding suction channels are provided in the measuring table 1.
  • a measuring bar 3 is movably mounted on the measuring table 1. If one looks at FIGS. 2 and 3, it can be seen that the measuring bar can be moved in the directions of the double arrow 4. Assuming that the arrow 5 indicates the printing direction of the printing plate 2 held on the measuring table 1, the measuring bar 3 can thus be displaced transversely to the printing direction.
  • the measuring bar 3 is arranged offset by 90 compared to the embodiment of Figures 1 to 3, so that it can be moved in or against the printing direction.
  • a calibration strip 7 (FIG. 2) or a calibration field 8 (FIG. 3) can be provided on the measuring table or the printing plate.
  • the full-tone reference surface required for the calibration can be on the edge of the plate, and it is possible to provide the full-tone reference surface, for example, by sliding on a calibration field mask; under certain circumstances this would simplify the manufacture of the printing plate.
  • Figure 4 shows an example of the measuring bar 3 in a schematic representation.
  • This has two light sources 9, which are preferably designed as fluorescent lamps.
  • a plurality of measuring heads 10 are arranged in rows, for example between the two fluorescent lamps. Only one measuring head is shown in detail in FIG. If only one measuring head is used, it is arranged to be displaceable in the longitudinal direction of the measuring bar, so that the pressure plate can be completely scanned, for example in a meandering shape.
  • a total of 32 measuring heads, for example, can also be arranged in rows next to one another, the optical field of view of which is reduced to 32.5 by means of a screen grille 11. 32.5 mm 2 is limited.
  • this field of view length corresponds to the width of a color zone of the (not shown) offset printing press
  • a position of the measuring bar 3 a zone of the pressure plate 2 can be detected. If the measuring bar is displaced by the dimension of a zone after this zone has been detected, the adjacent zone can then be optically scanned.
  • Each individual zone is divided into a corresponding number of measuring fields 12, which correspond to the openings of the screen grille 11. In the exemplary embodiment mentioned, 32 measuring heads and thus also 32 measuring fields 12 are provided for each measuring bar position.
  • FIG. 5 illustrates the reflectance measurement which can be carried out with the measuring table 1.
  • the light 13 incident from the light sources 9 shown in FIG. 4 reaches the surface of the printing plate 2, which — depending on the area coverage — is provided with a corresponding number of raster points or full-surface portions 14 of a certain size.
  • the incident light 13 is reflected from the surface of the printing plate 2 in a spectrally different manner.
  • This reflected light 15 optionally passes through a filter 16 (this will be discussed in more detail below) and then reaches a remission light receiver 17, which is located in the associated measuring head 10.
  • FIG. 6 illustrates the structural design of the measuring bar 3.
  • This has a housing 18 in which the measuring heads 10 are accommodated.
  • the two light sources 9 are also located in the housing 18 and are shielded from the measuring heads 10 with opaque walls 19.
  • light exit openings 20 are provided, which are provided, for example, with diffusing screens 21. A diffuse light is radiated onto the original to be scanned by the diffusing disks 21.
  • the two exemplary embodiments of the measuring bar 3 in FIGS. 6 and 7 differ in that the measuring heads 10 are designed differently.
  • the measuring head 10 of the exemplary embodiment in FIG. It has a housing 22 which is provided at its lower end with a light entry opening 23. If necessary, optics can also be provided there and / or in front of the photodiodes 24, 25, 26.
  • Each measuring head 10 has a remission light receiver 17, which in the exemplary embodiment in FIG. 7 consists of three photodiodes 24, 25 and 26.
  • Two beam splitters 27 and 28 are arranged within the housing 22.
  • the design is such that the reflected light incident into the light entry opening 23 first hits the beam splitter 27 and is divided there in such a way that a portion reaches the photodiode 24. The remaining part passes along the optical axis 29 through the beam splitter 27 and arrives at the beam splitter 28. Here, a division takes place in such a way that a portion reaches the photodiode 25 and a portion penetrating the beam splitter 28 reaches the photodiode 26.
  • the photodiode 25 is preceded by a filter 30 and the filter 31 is preceded by a filter 31.
  • the light supplied by the beam splitter 27 to the photodiode 24 does not pass a filter.
  • the measuring head 10 of FIG. 7 is by definition a three-filter measuring head (if no third filter is provided, the spectral sensitivity can be the photodiode 24 can be regarded as a filter).
  • the embodiment of FIG. 6 differs from the aforementioned embodiment with regard to the measuring head 10 in that only two photodiodes, namely the photodiode 24 and the photodiode 25, are provided.
  • the photodiode 25 is no longer on the side of the housing 22, but at the head end.
  • Only one beam splitter 27 is also provided.
  • the light incident through the light entry opening 23 passes unfiltered to the photodiode 24 and, due to the beam splitter 27, also to a portion of the photodiode 25, the filter 30 being passed through in the process.
  • a filter can also be connected upstream of the photodiode 24.
  • the exemplary embodiment in FIG. 6 is a two-filter measuring head (even if only one filter 30 is provided; according to the terminology used, the spectral sensitivity of the photodiode 24 can also be regarded as a filter).
  • FIGS. 8 and 9 again illustrate the structure of the three-filter measuring head 10.
  • the measuring head has only one photodiode with a filter wheel provided with several different filters.
  • ⁇ 0 is the spectrum of the incident light, ⁇ the reflectance of the measuring field 12, 7 the transmission of a filter, S E the spectral sensitivity of the photodiode and the wavelength.
  • the integration limits ⁇ 1 and X 2 are typically in the visible range or are adapted to the spectral profiles of the individual terms. Particularly in the case of low area coverage, the known method has the disadvantage that measurement errors occur. This is mainly due to the fact that the free printing plate surface is optically inhomogeneous: the reflectance measured on a zero percent surface can differ locally, that is to say that it may not match the zero percent reference remission measured at the plate edge.
  • the signal model of the known method which is also referred to as a one-filter method (with a single-filter measuring head) (even if there is no filter, the photodiode used for evaluation can be regarded as a filter due to spectral sensitivity): with S as the measured signal, H as the zero percent reference, V as the full tone reference and f o as the area coverage.
  • the measured remission is influenced only by the halftone dots or solid areas; the signal S is therefore only dependent on the area coverage f o .
  • the inhomogeneities already mentioned are therefore not taken into account and are incorrectly included as area coverage.
  • the area coverage f o is then:
  • inhomogeneity can be taken into account in the known method if S is measured to be greater than H, since this results in a negative area coverage, which is not physically possible.
  • a correction, if only imperfect, can be made here.
  • the zero percent reference assigned to the corresponding zone is measured at the edge of the printing plate and then used for the entire zone. So for all zones corresponding corresponding references measured at the plate edge; they can then only be used globally within the associated zone.
  • the local zero percent reference of the respectively associated measuring field 12 cannot be determined approximately using the known method.
  • the local references are determined, that is, one does not work with a plate edge reference and assigns them to different measurement fields of the associated zone.
  • the local zero percent reference is determined approximately within the measuring fields 12 of the subject of the printing plate 2. This is done based on a model.
  • the basic assumption is that the spectral change of the local zero percent reference relative to the zonal zero percent reference can be described by a scalar 1 - y. In relation to the actual conditions, this approach means that the local reference may be lighter or darker than the zonal reference, but must be of the same color.
  • the signal model is: where y denotes the inhomogeneity.
  • a so-called pseudo reference H * can also be defined. It results in:
  • the pseudo reference H * (s, z) can be calculated for each measuring point (for each measuring field 12). That makes it local.
  • the reference is called “pseudo” because it is not the actual reference, since the subject cannot be “removed” for measurement purposes, but is (only) spectrally similar to the zonal reference. The following therefore applies:
  • the method according to the invention is to be illustrated by means of FIG. 12 by means of a two-dimensional signal space.
  • a prerequisite for the practical measurement is that the printing surfaces of the printing plate 2 differ in color from the non-printing surfaces.
  • the non-printing surfaces anodized aluminum
  • a blue photoresist diazo lacquer
  • the measuring head 10 has two photodiodes 24 and 25, two signals are recorded per measuring field, which are shown on the ordinate or abscissa of the coordinate system of FIG.
  • V 1 and V 2 the signals of the photodiodes 24 and 25 are designated, which have been taken from a full tone area (full tone reference).
  • the zonal zero percent reference is identified by the signals H 1 and H 2 .
  • S 1 and S 2 denote the signal detected by the measuring head 10 at the currently locally measured measuring field 12.
  • the recorded signals lead to the vectors V, S and H in the two-dimensional signal space.
  • the vector H * that is to say that the vector taking into account the inhomogeneities, must have the same direction as the vector H. If the vector H is extended so far that it intersects the degrees of extension of the end points of the vectors V and S, the end point of the vector H * results . This can be broken down into H 1 and H 2 * . The distance between the end points of the vectors H and H * thus indicates the correction variable that takes into account the inhomogeneities.
  • the vectors H *, V and S lie on a straight line.
  • the exemplary embodiment in FIG. 12 can be regarded as a 2-dimensional color space, the angle of, for example, a vector S formed from the signals "filter 1 or” filter 2 "with respect to the axes being interpreted as color and the length of the vector S as intensity.
  • the signals "filter 1 and” filter 2 "arise from the spectrally different photodiodes 24 and 25. If filter 1 were to measure in the short-wave spectral range, for example, and if the measuring surface 12 had a higher short-wave blue component, the associated signal vector would be above that in FIG displayed vector S because the intensity behind the shorter-wave filter would be higher.
  • the zero percent reference is scalable. This means that the vector H must be lengthened for inhomogeneities ⁇ ⁇ 0 or shortened for inhomogeneities ⁇ > 0.
  • the k f criterion is all the more different from one, the more the color of the full tone reference differs from the zero percent reference (always based on the filters used).
  • the k f criterion is first calculated zonally and then the mean is used.
  • the signals V i and H i must be so different that a k f of (based on experience) at least 1.1 should be achieved for a tolerable error sensitivity of the two-filter method according to the invention. If this is not achieved, only the known one-filter method is used for evaluation.
  • This k f criterion is illustrated geometrically on the basis of FIG.
  • the products H i ⁇ Vj and H j ⁇ V i are shown as hatched areas in the signal space.
  • the value of the k f criterion corresponds to the maximum quotient of these area pairs.
  • the dynamic and spectral measurability (embodied by the difference vector H - V or the Angle between the two vectors).
  • the inhomogeneity can be distinguished from a change caused by the area coverage according to the spectral effect.
  • the measuring bar 3 is moved over a calibration surface, which is either separate from the pressure plate 2 also on the measuring table 1 (but then must be of exactly the same type of plate as the pressure plate 2 used), or is advantageously integrated into the pressure plate 2.
  • this calibration area consists, for example, half of a full tone area and the other half of a zero percent area, each of which is large enough to completely fill the optical field of view of the photodiodes 24 and 25.
  • the intensity of the remitted light is then measured on each of the two reference surfaces. This provides the data H (O, z) for the zero percent area and V (0, z) for the full tone area, which are stored for later evaluation.
  • the measuring run is then carried out, the local area coverage f o (s, z) and the local inhomogeneity y (s, z) being calculated on the basis of the signal model for each measuring field (measuring point).
  • the inhomogeneities ⁇ (s, z) define so-called pseudo zero percent references H * (s, z) on the spectral basis of the zonal zero percent references H (0, z) within the printing plate.
  • pseudo zero percent references H * indicate how the printing plate 2 would look without a subject if the remission of subject-free areas within the printing plate 2 would result from the zero percentage emission of the printing plate edge.
  • the inhomogeneities present can then be recognized locally from the determination of the zero-plate, so-called zero-subject.
  • the zero percent plate thus determined is subjected to smoothing, weighting or evaluation, i.e. the locally determined inhomogeneities are compared with neighboring inhomogeneities and abrupt changes are reduced. Different methods of mathematics known per se can be used for this smoothing.
  • the smoothing can be weighted in such a way that the signals of a measuring location (s, z) are given a high weighting if the area coverage initially determined at this point (s, z) is low, because precisely there the inhomogeneity of the subject-free area is easier to grasp.
  • a measuring head 10 according to FIG. 7 (three-filter measuring head) is used, it is possible to take into account not only the inhomogeneity of zero percent areas but also of full tone areas. However, the influence of the inhomogeneity of full-tone areas compared to the inhomogeneity of zero percent areas on the measurement result is significantly smaller.
  • FIG. 11 shows the spectral reflectance of a full tone area V and a zero percent area H. It can clearly be seen that there is a spectral course due to the colored (blue) full tone area.

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Ermittlung der Flächendeckung einer druckenden Vorlage, insbesondere einer Druckform einer Druckmaschine, vorzugsweise einer Offset-Druckmaschine, wobei durch optische Abtastung der Vorlage die örtliche Remission eines erfaßten Meßfeldes ermittelt wird, die druckenden Flächen gegenüber den nichtdruckenden Flächen der Vorlage unterschiedliche Farbe (Farbunterschied) aufweisen und die Vorlage eine von der Flächendeckung unabhängige, ortsabhängige, das Meßergebnis der Abtastung beeinflussende Inhomogenität aufweist.
  • Das erfindungsgemäße Verfahren eignet sich für die Ermittlung der Flächendeckung, also zur Bestimmung des prozentualen Anteils einer druckenden Fläche zur betrachteten Gesamtfläche. Es kann auf unterschiedlichen technischen Gebieten zum Einsatz gelangen. Mit ihm ist es möglich, zum Beispiel die Flächendeckung einer Druckvorlage zu bestimmen. Vorzugsweise ist jedoch vorgesehen, die Flächendekkung an einer Druckform einer Druckmaschine, insbesondere an der Druckplatte einer Offset-Druckmaschine vor dem Druckprozeß zu bestimmen, um Farbvoreinstellwerte für Farbdosierzonen des beziehungsweise der Farbwerke der Druckmaschine zu erhalten. Je genauer die Flächendeckung und damit die Farbvoreinstellwerte bestimmt werden konnen, um so schneller ist der Fortdruckzustand zu erzielen, wodurch Makulatur und Rüstzeiten verringert werden. Unter diesen Voraussetzungen lassen sich auch kleine Auflagenhöhen wirtschaftlich drucken.
  • Es ist bekannt, Flächendeckungen auf Druckplatten mittels optischer Remission zu messen. Dies erfolgt vorzugsweise zonal entsprechend der am Farbwerk der Druckmaschine einzustellenden Farbdosierzonen. Hierzu wird jede Zone der Druckplatte geeignet beleuchtet und das von der Druckplattenoberfläche zurückgestreute Licht von einem Meßkopf erfaßt. Vorzugsweise weist der Meßkopf eine Fotodiode zum Detektieren der Remission auf. Die gemessenen Intensitäten werden mit zuvor gemessenen Referenzintensitäten verglichen. Eine Referenzintensität stammt von einer sogenannten Volltonfläche, das heißt, einer Fläche, die eine Flächendeckung von 100% aufweist. Eine weitere Referenzintensität wird von einer beim Drucken nicht farbführenden, sogenannten Nullprozentfläche gebildet; ihre Flächendeckung ist also 0%. Die Volltonfläche und die Nullprozentfläche bilden zwei Extremwerte, die der Kalibrierung des Meßkopfes dienen. Vom Meßkopf abgegebene Signale, die auf einer zwischen den Extremwerten liegenden Flächendeckung beruhen, können aufgrund der Kalibrierung prozentual eingestuft werden, das heißt, die diesen Signalen entsprechenden prozentuale Flächendeckung läßt sich damit ermitteln. Bei der bekannten Methode ist es daher notwendig, zum Beispiel am Plattenrand im sujetfreien Bereich, die lokale Remission für eine Volltonfläche und eine Nullprozentfläche zu messen. Wird dann im Sujet die Flächendeckung ermittelt, so wird auf die am Plattenrand liegenden Referenzflächen bei der Bestimmung der Flächendeckung zurückgegriffen. Nachteilig ist, daß insbesondere sujetfreie Druckplattenflächen (Nullprozentflächen) eine lokal unterschiedliche Intensitätscharakteristik -im folgenden Inhomogenität genannt- aufweisen, so daß nicht an jeder Stelle der Druckplatte von der gleichen Referenz ausgegangen werden kann. Ideal wäre es, wenn man die Referenz im gleichen Meßfeld ermitteln könnte, in dem auch die Flächendeckung festgestellt werden soll. Da in diesem Meßfeld jedoch das Sujet liegt, kann dort -von Ausnahmen abgesehen- keine Vollton- beziehungsweise Nullprozentfläche liegen. Würde man diese dort erzeugen, so wiese das Druckbild an der Stelle einen Farbfleck beziehungsweise einen farbfreien Bereich auf. Dies ist nicht nur deshalb unsinnig, weil dadurch das Druckbild beschädigt wird, sondern führt auch zu einer Verfälschung der zugehörigen zonalen Flächendeckung.
  • Aufgrund der lokal verschiedenen Referenzintensitäten ist die Flächendeckung nur annähernd, nämlich innerhalb eines relativ breiten Toleranzbandes bestimmbar. Besonders kritisch ist die Nullprozentflächenreferenz, da diese gegenüber einer Volltonreferenz lokal wesentlich stärker variiert und bei gleicher Absolutgröße des Fehlers zu größeren relativen Fehlern führt.
  • Aus der DE-OS 36 40 956 ist ein Verfahren zur Ermittlung einer mittleren zonalen Flächendeckung bekannt, wobei eine zonale Abtastung der Druckform einer Druckmaschine mit einem Sensor erfolgt und eine Nullprozentreferenz aus dem Plattenrand beziehungsweise an einer Meßstelle mit maximaler Remission ermittelt wird. Anschließend erfolgt eine weitere Messung der Nullprozentreferenz mit zusätzlicher Filterung. Dann wird das Sujet der Druckplatte zonal vom Sensor abgefahren und die ermittelten Meßwerte auf die Filtertransmissionskurve normiert. Durch Mittelwertbildung aller normierten Meßwerte für die jeweilige Farbzone wird dann der Flächendeckungsgrad errechnet und daraus Farbvoreinstellwerte für die Druckmaschine gewonnen. Fehler, die sich aufgrund von Inhomogenitäten der Druckplattenoberfläche einstellen, wirken sich verfälschend auf das Meßergebnis aus.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren sowie eine Vorrichtung zu schaffen, bei denen Inhomogenitäten der Vorlage, insbesondere der Druckform, berücksichtigt und damit die Genauigkeit des Meßergebnisses verbessert wird. Insbesondere ist vorgesehen, diese Inhomogenitäten von im wesentlichen sujetfreien Druckplattenoberflächenbereichen zu berücksichtigen, so daß die kritische Messung von kleinen Flächendeckungen entscheidend verbessert wird.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß von jedem Meßfeld mindestens zwei, entsprechend dem Farbunterschied spektral voneinander abweichende Remissionswerte ermittelt werden und daß die beiden Remissionswerte zur Separierung eines durch die Flächendeckung beeinflußten und eines durch die Inhomogenität beeinflußten Anteils des Meßergebnisses ausgewertet werden.
  • Die Druckform kann so gestaltet sein, daß die druckenden und/oder die nichtdruckenden Bereiche eingefärbt sind und zwar in der Weise, daß die druckenden beziehungsweise die nichtdruckenden Bereiche eine unterschiedliche Farbigkeit erhalten. Aufgrund der farblich unterschiedlichen Flächen und der spektralen Auswertung der Remission läßt sich an jedem betrachteten Meßfeld unterscheiden, ob eine Beeinflussung des Meßergebnisses durch eine Inhomogenität stattgefunden hat. Ist dies der Fall, liegt also eine Inhomogenität vor, so kann diese bestimmt und das Meßergebnis entsprechend korrigiert werden, so daß schließlich die tatsächlich vorliegende Flächendeckung des vorliegenden Meßfeldes ermittelbar ist. Das Meßergebnis ist damit sehr viel genauer, so daß sich im wesentlichen fehlerfreie Farbvoreinstellwerte für das beziehungsweise die Farbwerke einer Offset-Druckmaschine ermitteln lassen. Damit läßt sich der Fortdruckzustand nach einem Einrichten der Druckmaschine schneller erreichen.
  • Kurze Rüstzeiten und ein nur geringer Makulaturanfall sind die Folgen. Ein Einfärben der Druckform ist heute standardmäßig zur Sichtbarmachung des Sujets mehr oder weniger gegeben und erfolgt, zum Beispiel über die Farbgebung des Fotolacks, der die farbführenden Flächen der Druckform bildet. Dieses Einfärben wird nunmehr erfindungsgemäß speziell genutzt.
  • Insbesondere kann die Einfärbung -wie erwähnt- mit einem bereits auch schon heute von den Druckplattenherstellern verwendeten Diazolack erfolgen. Dieser derzeit unter anderem zur Sichtbarmachung des Sujet verwendete Fotolack wird somit auch erfindungsgemäß genutzt.
  • Erfindungswesentlich ist allerdings, daß durch das Einfärben ein Farbunterschied, also nicht nur eine Farbabstufung (zum Beispiel hellgrau-dunkelgrau) vorliegt.
  • Während es jedoch im Stand der Technik gleichgültig war, welche Farbe der Fotolack relativ zu einer nichtdruckenden Nullprozentfläche aufwies, muß erfindungsgemäß ein Farbunterschied zwischen den genannten Flächen bestehen. Im Stand der Technik reichte es aus, wenn zum Beispiel die Nullprozentflächen hellgrau und die druckenden, Fotolack aufweisenden Flächen dunkelgrau waren, da aufgrund dieses Farbtonunterschieds das Sujet erkennbar und auch die vorstehend erwähnte Intensitätsmessung zur Ermittlung der Flächendeckung möglich war. Eine kolorimetrische Messung kann dann jedoch nicht erfolgen. Dies ist jedoch ein wesentliches Element der vorliegenden Erfindung, damit Inhomogenitäten erkannt werden können. Bei dem bekannten Verfahren wurden Inhomogenitäten, zum Beispiel eine gegenüber dem Plattenrand im Bereich des Sujets liegende farblich dunklere Nullprozentfläche als mit einer Flächendeckung behaftetes Meßfeld angesehen, das heißt, die vorliegende Inhomogenität wurde falsch interpretiert, so daß Meßfehler unvermeidbar waren.
  • Erfindungsgemäß ist vorgesehen, daß zur Auswertung die Remission jedes Meßfelds aus folgenden Anteilen zusammengesetzt wird:
    • - der Remission der Volltonfläche gewichtet mit der zugehörigen Flächendeckung und
    • - der Remission der freien, also nicht druckenden beziehungsweise druckfreien so genannten Nullprozentfläche gewichtet mit dem restlichen Flächenanteil des Meßfelds und gewichtet mit einem Faktor, der die Inhomogenität beschreibt.
  • Vorzugsweise setzt sich das bei der optischen Abtastung ermittelte Meßergebnis aus
    Figure imgb0001
    zusammen, wobei
    • - S ein dem Meßergebnis entsprechendes Signal,
    • - V ein der Volltondichte entsprechendes Signal,
    • - fα die Flächendeckung,
    • - die Inhomogenität und
    • - H ein der Nullprozentfläche entsprechendes Signal ist.
  • Wie bereits erwähnt, ist es vorteilhaft, wenn die Flächendeckung zonal bestimmt wird und wenn aus den zonalen Flächendeckungswerten Farbvoreinstellwerte für Farbdosierzonen eines Farbwerks der Druckmaschine ermittelt werden.
  • Nach einer Weiterbildung der Erfindung wird ein zusätzlicher, dritter, spektral abweichender Remissionswert von jedem Meßfeld ermittelt, der eine örtliche Änderung der Remission einer druckenden, also Druckfarbe führenden beziehungsweise bedruckten Fläche, insbesondere Volltonfläche, berücksichtigt. Hierdurch lassen sich Inhomogenitäten innerhalb der Volltonflächen ermitteln und bei der Messung eliminieren. Allerdings sind diese auf Inhomogenitäten von Volltonflächen beruhenden Fehler sehr viel kleiner als bei Nullprozentflächen, so daß zwar eine weitere Verbesserung der Genauigkeit des Meßergebnisses erzielt wird, die jedoch nicht so gravierend wie bei den Nullprozentflächen beziehungsweise Flächen mit geringer Flächendeckung ist.
  • Besonders gute Ergebnisse lassen sich erzielen, wenn das Sujet eine relativ geringe globale Flächendeckung aufweist, da dann die Eliminierung der Inhomogenitätsfehler entsprechend deutlich wird. Bei Vorlagen mit global hoher Flächendeckung kann es daher vorteilhaft sein, daß das Meßergebnis einer spektral unabhängigen optischen Erfassung der Flächendeckung mit berücksichtigt wird. Dies bedeutet also, daß sowohl nach dem erfindungsgemäßen Verfahren als auch nach dem bekannten Verfahren des Standes der Technik die Flächendeckungen ermittelt und die Ergebnisses beider Verfahren bei der endgültigen Bestimmung der Flächendeckung verwendet werden. Weist die Druckform keinen Farbunterschied, sondern nur Farbstufungen (zum Beispiel grau in grau) auf, so kann mit der erfindungsgemäßen Vorrichtung jedoch stets noch nach dem bekannten, erwähnten, sogenannten Ein-Filter-Verfahren gearbeitet werden.
  • Zur Verbesserung der Bestimmung der Flächendeckung kann es vorteilhaft sein, bei der Ermittlung der Inhomogenität eines Meßfeldes die Inhomogenitäten benachbarter Meßfelder und primär ermittelter Flächendeckung (nach dem oben beschriebenen sogenannten Zwei-Filter-Verfahren) zur Glättung heranzuziehen. Hierdurch wird der Umstand berücksichtigt, daß sich die Inhomogenitäten zumeist zwischen benachbarten Meßpunkten nicht sprunghaft, sondern stetig ändern, so daß "Ausreißer" aufgrund von Meßfehlern oder dergleichen keine gravierenden Auswirkungen haben. Insofern ist es vorteilhaft, wenn zunächst durch Bestimmung der Inhomogenitäten der gesamten Vorlage (insbesondere Druckplatte) eine örtliche Inhomogenitätsverteilung bestimmt wird. Hieraus läßt sich dann eine vorläufige Pseudonullprozentreferenz an jedem Punkt ermitteln. "Pseudo" deshalb, weil diese Nullprozentreferenz nur indirekt ermittelt wurde, da ja das Sujet nicht "entfernt" werden kann und "vorläufig" deshalb, weil die so gewonnenen Pseudonullprozentreferenzen anschließend durch Glättung, Gewichtung oder Bewertung mittels jedem betrachteten Punkt benachbarter Inhomogenitäten korrigiert werden, so daß schließlich eine endgültige Pseudonullprozentreferenz für jedes Meßfeld vorliegt. Damit kann dann die endgültige Bestimmung der jeweiligen lokalen Flächendeckung erfolgen.
  • Die Erfindung betrifft ferner eine Vorrichtung zur Ermittlung der Flächendeckung, insbesondere zur Durchführung des beschriebenen Verfahrens, mit mindestens einem, die Vorlage optisch abtastenden Meßkopf, der einen Remissions-Lichtempfänger mit Filteranordnung aufweist, so daß aufgrund unterschiedlicher Filterung von jedem optisch abgetasteten Meßfeld mehrere spektral verschiedene Meßergebnisse erzielt werden können. Die Filteranordnung kann mehrere Filter aufweisen, so daß bei jeder Messung ein anderes Filter verwendbar ist. Es kann jedoch auch derart vorgegangen werden, daß eine der Messungen ohne Filter und eine andere oder mehrere andere mit Filter erfolgen. Ferner ist es möglich, daß der Remissions-Lichtempfänger mehrere lichtempfindliche Elemente aufweist, denen die Remission über die entsprechenden Filter zugeleitet wird. Dies hat den Vorteil, daß gleichzeitig mehrere Messungen durchgeführt werden können. Alternativ ist es auch denkbar, daß der Remissions-Lichtempfänger nur ein lichtempfindliches Element aufweist und daß in dessen Strahlengang die Filter einschwenkbar sind. Im letzten Fall können die verschiedenen Messungen jedes Meßfeldes jedoch dann nur nacheinander durchgeführt werden.
  • Vorzugsweise ist vorgesehen, daß der Meßkopf einen Strahlteiler aufweist, der die Remission einer ersten Fotodiode direkt, also ohne zusätzliche Filterung, und einer zweiten Fotodiode über ein die Filteranordnung bildendes Filter zuleitet. Gleichzeitig kann somit die Remission eines Meßfeldes auf spektral unterschiedliche Weise gemessen werden.
  • Nach einer Weiterbildung der Erfindung ist vorgesehen, daß der Meßkopf einen weiteren Strahlteiler aufweist, der die Remission einer dritten Fotodiode über ein weiteres Filter zuleitet. Damit erhält die erste Fotodiode die Remission ungefiltert, die zweite Fotodiode über ein Filter und die dritte Fotodiode über das weitere Filter, das sich vom ersten Filter in seiner Filtercharakteristik unterscheidet.
  • Um die gesamte Vorlage, insbesondere das Sujet der Druckform in kurzer Zeit flächendeckend erfassen zu können, sind vorzugsweise mehrere Meßköpfe nebeneinander angeordnet, wobei die Meßköpfe relativ zur Vorlage verfahrbar sind. Alternativ können die Meßköpfe auch ortsfest angeordnet sein und die Vorlage bewegt werden. Vorzugsweise ist die Reihe der Meßköpfe derart lang, daß die Sujet-Länge beziehungsweise die Sujet-Breite vollständig erfaßt wird. Entweder sind die Meßköpfe in Druckrichtung der Druckform verfahrbar oder aber quer zur Druckrichtung. Alternativ ist es jedoch auch möglich, daß zum Beispiel ein oder mehrere Meßköpfe zur optischen Abtastung auf mäanderförmiger Bahn über die Druckform oder bei Hin- und Rücklauf durch Verschieben der Sensoranordnung unterschiedliche Teilflächen der Druckform erfassen.
  • Das beziehungsweise die Filter können vorzugsweise als Kantenfilter oder als Tristimulusfilter ausgebildet sein bei besonderer Beachtung ihres gegenseitigen Verlaufes.
  • Alternativ ist es jedoch auch möglich, die Filterfunktion durch eine spektroskopische Erfassung der Remission mittels zum Beispiel eines Spektralfotometers vorzunehmen und eine nachgeschaltete rechnergestützte Zusammenfassung benachbarter Wellenlängenintervalle zu bilden.
  • Nach einer Weiterbildung der Erfindung ist es auch möglich, anhand der Referenzsignale für die Vollton- und die Nullprozentflächen zu erkennen, welcher Plattentyp (das heißt, von welchem Hersteller beziehungsweise aus welchem Material) eingesetzt wird. Insofern läßt sich mit Hilfe der erfindungsgemäßen Vorrichtung auch eine Druckplattenkennung durchführen. Dabei ist es auch möglich, nach Erkennung einer Platte die zu erwartenden Inhomogenitäten von vornherein näherungsweise zu berücksichtigen, das heißt, die charakteristischen Daten über diese Inhomogenitäten werden gespeichert und bei einem neuen Einsatz dieser Plattentypen benutzt. Dies ermöglicht beispielsweise eine plattenspezifische Auswertung des Meßergebnisses mit einem einfacheren Algorithmus.
  • Die Figuren veranschaulichen die Erfindung anhand von Ausführungsbeispielen und zwar zeigt:
    • Figur 1 eine Vorrichtung zur Ermittlung der Flächendeckung einer Druckplatte für eine Offset-Druckmaschine,
    • Figur 2 eine Draufsicht auf die Vorrichtung gemäß Figur 1,
    • Figur 3 eine Draufsicht auf eine Variante entsprechend der Darstellung in Figur 2,
    • Figur 4 ein mit Remissions-Lichtempfänger versehener Meßbalken der Vorrichtung gemäß Figur 1,
    • Figur 5 eine Prinzipzeichnung zur Verdeutlichung der Remission,
    • Figur 6 einen Querschnitt durch den Meßbalken der Figur 4 mit zwei Remissionslichtempfängern,
    • Figur 7 ebenfalls einen Querschnitt durch den Meßbalken nach einem anderen Ausführungsbeispiel,
    • Figur 8 den Remissions-Lichtempfänger in perspektivischer, geöffneter Darstellung,
    • Figur 9 einen Längsschnitt durch den Remissions-Lichtempfänger,
    • Figur 10 ein Beispiel der spektralen Transmission der beiden in dem Meßkopf der Figur 9 verwendeten Filter,
    • Figur 11 ein Diagramm der Remissionen verschiedener Flächendeckungen einer Druckplatte einer Offset-Druckmaschine in Abhängigkeit der Flächendeckung,
    • Figur 12 ein Diagramm der Signale eines Zwei-Filter-Meßkopfes, wobei das Diagramm den mathematischen Hintergrund des erfindungsgemäßen Verfahrens verdeutlicht und
    • Figur 13 mehrere Diagramme zur Verdeutlichung des kf-Kriteriums.
  • Die Figur 1 zeigt eine Vorrichtung, mit der die zonale Flächendeckung einer Vorlage, insbesondere einer Druckplatte einer Offset-Druckmaschine ermittelt werden kann.
  • Die Vorrichtung weist einen pultförmigen Meßtisch 1 auf. Auf den Meßtisch 1 wird eine zu messende Druckplatte 2 aufgelegt und vorzugsweise durch Unterdruck pneumatisch gehalten. Hierzu sind entsprechende Saugkanäle in dem Meßtisch 1 vorgesehen. Am Meßtisch 1 ist ein Meßbalken 3 verfahrbar gelagert. Betrachtet man die Figuren 2 und 3, so ist ersichtlich, daß der Meßbalken in den Richtungen des Doppelpfeils 4 verfahrbar ist. Unter der Annahme, daß der Pfeil 5 die Druckrichtung der auf dem Meßtisch 1 gehaltenen Druckplatte 2 angibt, ist der Meßbalken 3 somit quer zur Druckrichtung verschiebbar.
  • Nach einem anderen, nicht dargestellten Ausführungsbeispiel ist es jedoch auch möglich, daß der Meßbalken 3 gegenüber dem Ausführungsbeispiel der Figuren 1 bis 3 um 90 versetzt angeordnet ist, so daß er in beziehungsweise entgegen der Druckrichtung verschoben werden kann.
  • Auf dem Meßtisch sind ferner nicht näher dargestellte Bedien- und Anzeigefelder 6 vorgesehen. Ferner kann auf dem Meßtisch oder der Druckplatte ein Eichstreifen 7 (Figur 2) beziehungsweise ein Eichfeld 8 (Figur 3) vorgesehen sein.
  • Die für die Eichung notwendige Vollton-Referenzfläche kann -wie erwähnt- am Plattenrand liegen, und es ist möglich, die Vollton-Referenzfläche zum Beispiel durch Aufschieben einer Eichfeldmaske zur Verfügung zu stellen; dies würde unter Umständen die Herstellung der Druckplatte vereinfachen.
  • Die Figur 4 zeigt beispielhaft den Meßbalken 3 in schematischer Darstellung. Dieser weist zwei Lichtquellen 9 auf, die vorzugsweise als Leuchtstofflampen ausgebildet sind. In Längsrichtung des Meßbalkens 3 sind reihenförmig eine Vielzahl von Meßköpfen 10 etwa zwischen den beiden Leuchtstofflampen angeordnet. In der Figur 4 ist lediglich ein Meßkopf detailliert dargestellt. Bei Verwendung nur eines Meßkopfes ist dieser in Längsrichtung des Meßbalkens verschiebbar angeordnet, so daß die Druckplatte zum Beispiel mäanderförmig vollständig abgetastet werden kann. Insgesamt können auch zum Beispiel 32 Meßköpfe reihenförmig nebeneinanderliegend angeordnet sein, deren optisches Gesichtsfeld durch ein Blendenrost 11 zum Beispiel auf 32,5 . 32,5 mm2 begrenzt ist. Unter der Annahme, daß diese Gesichtsfeldlänge der Breite einer Farbzone der (nicht dargestellten) Offset-Druckmaschine entspricht, kann somit in einer Stellung des Meßbalkens 3 eine Zone der Druckplatte 2 erfaßt werden. Wird der Meßbalken nach dem Erfassen dieser Zone um das Maß einer Zone verlagert, so kann anschließend die angrenzende Zone optisch abgetastet werden. Jede einzelne Zone ist in eine entsprechende Anzahl von Meßfeldern 12 unterteilt, die den Öffnungen des Blendenrosts 11 entsprechen. Im genannten Ausführungsbeispiel sind zum Beispiel 32 Meßköpfe und somit auch 32 Meßfelder 12 je Meßbalkenstellung vorgesehen.
  • Bevor auf den genaueren konstruktiven Aufbau des Meßbalkens 3 eingegangen werden soll, wird anhand der Figur 5 die mit dem Meßtisch 1 durchführbare Remissionsmessung verdeutlicht. Das von den in Figur 4 dargestellten Lichtquellen 9 einfallende Licht 13 gelangt auf die Oberfläche der Druckplatte 2, die -je nach Flächendeckung- mit einer entsprechenden Vielzahl von Rasterpunkten oder Vollflächenanteilen 14 bestimmter Größe versehen ist. Entsprechend der vorhandenen Flächendeckung wird das einfallende Licht 13 von der Oberfläche der Druckplatte 2 in spektral unterschiedlicher Weise reflektiert. Dieses reflektierte Licht 15 passiert gegebenenfalls ein Filter 16 (hierauf wird noch näher eingegangen) und gelangt dann zu einem Remissions-Lichtempfänger 17, der sich im jeweils zugehörigen Meßkopf 10 befindet.
  • Die Figur 6 verdeutlicht den konstruktiven Aufbau des Meßbalkens 3. Dieser weist ein Gehäuse 18 auf, in dem die Meßköpfe 10 untergebracht sind. Die beiden Lichtquellen 9 befinden sich ebenfalls in dem Gehäuse 18 und sind gegenüber den Meßköpfen 10 mit lichtundurchlässigen Wandungen 19 abgeschirmt. In Richtung auf die Meßfelder 12 sind als Blenden ausgebildete Lichtaustrittsöffnungen 20 vorgesehen, die zum Beispiel mit Streuscheiben 21 versehen sind. Durch die Streuscheiben 21 wird ein diffuses Licht auf die abzutastende Vorlage gestrahlt.
  • Die beiden Ausführungsbeispiele der Meßbalken 3 in den Figuren 6 und 7 unterscheiden sich durch eine abweichende Ausbildung der Meßköpfe 10. Zunächst sei auf den Meßkopf 10 des Ausführungsbeispiels der Figur 7 eingegangen. Er weist ein Gehäuse 22 auf, das an seinem unteren Ende mit einer Lichteintrittsöffnung 23 versehen ist. Gegebenenfalls kann dort und/oder vor den Fotodioden 24, 25, 26 noch eine Optik vorgesehen sein. Jeder Meßkopf 10 weist einen Remissions-Lichtempfänger 17 auf, der im Ausführungsbeispiel der Figur 7 aus drei Fotodioden 24, 25 und 26 besteht. Innerhalb des Gehäuses 22 sind zwei Strahlteiler 27 und 28 angeordnet. Die Ausbildung ist so getroffen, daß das in die Lichteintrittsöffnung 23 einfallende remittierte Licht zunächst auf den Strahlteiler 27 trifft und dort derart geteilt wird, daß ein Anteil auf die Fotodiode 24 gelangt. Der übrige Teil tritt entlang der optischen Achse 29 durch den Strahlteiler 27 hindurch und gelangt zum Strahlteiler 28. Hier erfolgt eine Aufteilung derart, daß ein Anteil zur Fotodiode 25 und ein den Strahlteiler 28 durchdringender Anteil zur Fotodiode 26 gelangt. Der Fotodiode 25 ist ein Filter 30 und der Fotodiode 26 ein Filter 31 vorgeschaltet. Das vom Strahlteiler 27 der Fotodiode 24 zugeleitete Licht passiert kein Filter. Allerdings ist auch ein Ausführungsbeispiel möglich, bei dem auch dort ein Filter vorgesehen ist, dies insbesondere auch dann, wenn eine Anpassung des Signalpegels vorgenommen werden soll. Unabhängig davon, ob zwei Filter 30, 31 und kein weiteres oder noch ein drittes Filter vorgesehen sind, handelt es sich definitionsgemäß bei dem Meßkopf 10 der Figur 7 um einen Drei-Filter-Meßkopf (sofern kein drittes Filter vorgesehen ist, kann die spektrale Empfindlichkeit der Fotodiode 24 als Filter angesehen werden).
  • Das Ausführungsbeispiel der Figur 6 unterscheidet sich im Hinblick auf den Meßkopf 10 dadurch vom vorgenannten Ausführungsbeispiel, daß nur zwei Fotodioden, nämlich die Fotodiode 24 und die Fotodiode 25 vorgesehen sind. Die Fotodiode 25 liegt nicht mehr an der Seite des Gehäuses 22, sondern am Kopfende. Es ist auch nur ein Strahlteiler 27 vorgesehen. Das durch die Lichteintrittsöffnung 23 einfallende Licht gelangt ungefiltert zur Fotodiode 24 und -aufgrund des Strahlteilers 27- anteilmäßig auch zur Fotodiode 25, wobei dabei das Filter 30 passiert wird. Entsprechend dem zuvor erwähnten Ausführungsbeispiel kann auch der Fotodiode 24 ein Filter vorgeschaltet sein. Beim Ausführungsbeispiel der Figur 6 handelt es sich um einen Zwei-Filter-Meßkopf (auch wenn nur ein Filter 30 vorgesehen ist; entsprechend der verwendeten Terminologie kann die spektrale Empfindlichkeit der Fotodiode 24 auch als Filter angesehen werden).
  • Wesentlich ist, daß die spektrale Transmission der einzelnen Filter 30,31 (beziehungsweise des dritten, der Fotodiode 24 zugeordneten Filters) unterschiedlich ist. Dies kann insbesondere der Figur 10 entnommen werden, die die Filtercharakteristik des Filters 30 beziehungsweise 31 zeigt (die entsprechenden Bezugszeichen sind den zugehörigen Kennlinien zugeordnet).
  • Die Figuren 8 und 9 verdeutlichen nochmal den Aufbau des Drei-Filter-Meßkopfes 10.
  • Eine weitere nicht dargestellte Ausführungsform besteht darin, daß der Meßkopf nur eine Fotodiode mit einem mit mehreren verschiedenen Filtern versehenes Filterrad aufweist.
  • Bevor nunmehr näher auf die Erfindung eingegangen werden soll, wird zunächst die bekannte Methode zur Ermittlung der Flächendeckung einer Druckplatte erläutert, da dann die gegenüber der Erfindung bestehenden Unterschiede deutlicher werden.
  • Wie bereits erläutert, werden die Flächendeckungen beziehungsweise die zonalen Flächendeckungen auf Druckplatten über die optische Remission gemessen. Dabei macht man sich zunutze, daß zur Sichtbarmachung des Sujets die im Druck farbführenden Stellen vom Druckplattenhersteller mittels eines Fotolacks eingefärbt sind beziehungsweise sich farblich von den farbführenden Flächen unterscheiden. Die Remission einer Meßstelle (Meßfeld 12) mit einer bestimmten Flächendeckung setzt sich aus zwei Komponenten zusammen:
    • - der Remission des lokalen Volltonflächenanteils gewichtet mit der Flächendeckung und
    • - der Remission des lokalen nichtdruckenden sogenannten Nullprozentflächenanteils gewichtet mit dem Komplement der Flächendeckung.
  • Das am Remissions-Lichtempfänger 17 der Figur 5 empfangene Signal ist dann
    Figure imgb0002
  • Dabei ist Φ0 das Spektrum des einfallenden Lichtes, β die Remission des Meßfelds 12, 7 die Transmission eines Filters, SE die spektrale Empfindlichkeit der Fotodiode und die Wellenlänge. Die Integrationsgrenzen λ1 und X2 liegen typischerweise im sichtbaren Bereich beziehungsweise sind den spektralen Verläufen der einzelnen Terme angepaßt. Insbesondere bei niedrigen Flächendeckungen tritt bei den bekannten Verfahren jedoch der Nachteil auf, daß sich Meßfehler einstellen. Dies ist hauptsächlich darauf zurückzuführen, daß die freie Druckplattenoberfläche optisch inhomogen ist: Die auf einer Nullprozentfläche gemessene Remission kann sich lokal unterscheiden, das heißt, sie stimmt möglicherweise nicht mit der am Plattenrand gemessenen Nullprozentreferenzremission überein.
  • Die obengenannte Gleichung zeigt, daß das empfangene Signal S von mehreren Parametern abhängig ist. Daraus wird deutlich, daß die spektrale Empfindlichkeit durch Verwendung unterschiedlicher Filter, das heißt, 7 variabel, Φ und SE konstant oder aber auch durch unterschiedlich einfallendes Licht, das heißt, Φ variabel τ und SE konstant oder schließlich durch eine unterschiedliche spektrale Empfindlichkeit der verwendeten Fotodioden des Remission-Lichtempfängers, das heißt, SE variabel, τ und Φ konstant erzielt werden kann.
  • Im folgenden wird auf das Verfahren mit unterschiedlichen Filtern τ eingegangen.
  • Das Signalmodell der bekannten Methode, die auch als Ein-Filter-Methode (mit einem Ein-Filter-Meßkopf) bezeichnet wird (auch wenn kein Filter vorhanden ist, kann die zur Auswertung verwendete Fotodiode aufgrund spektraler Empfindlichkeit als Filter angesehen werden) lautet:
    Figure imgb0003
    mit S als gemessenem Signal, H als Nullprozentreferenz, V als Volltonreferenz sowie fo als Flächendekkung.
  • Bei dem bekannten Verfahren geht man davon aus, daß die gemessene Remission nur von den Rasterpunkten beziehungsweise von Volltonflächen beeinflußt wird; das Signal S ist also nur von der Flächendeckung fo abhängig. Die bereits erwähnten Inhomogenitäten werden also nicht berücksichtigt und gehen fehlerhaft als Flächendeckung ein.
  • Als Flächendeckung fo ergibt sich dann der Wert:
    Figure imgb0004
    Eine Berücksichtigung einer Inhomogenität kann bei dem bekannten Verfahren jedoch dann erfolgen, falls S größer als H gemessen wird, da daraus eine negative Flächendeckung resultiert, was physikalisch nicht möglich ist. Insofern kann hier eine, wenn auch nur unvollkommene Korrektur angebracht werden. Es gibt jedoch keine Möglichkeit, zuverlässig die lokale Nullprozentreferenz im Meßfeld 12 des Sujets selbst zu bestimmen. Vielmehr wird die der entsprechenden Zone zugeordnete Nullprozentreferenz am Rande der Druckplatte gemessen und dann für die gesamte Zone verwendet. Für sämtliche Zonen werden also die entsprechenden zugehörigen Referenzen am Plattenrand gemessen; sie können dann nur global innerhalb der zugehörigen Zone benutzt werden. Die lokale Nullprozentreferenz des jeweils zugehörigen Meßfeldes 12 läßt sich nach der bekannten Methode nicht näherungsweise ermitteln.
  • Im vorstehenden wird der Hauptmangel der bekannten Ein-Filter-Methode deutlich; die korrekte Formel für die lokale Flächendeckung lautet nämlich:
    Figure imgb0005
    dabei ist s die Sensornummer (Nummer des entsprechendes Meßkopfes 10) und z die Zonennummer. Tatsächlich benutzt man im Stand der Technik in Ermangelung einer lokalen Referenz jedoch:
    Figure imgb0006
    • s = 0 bedeutet die zonale Referenz.
    • V(0,0) bedeutet eine für alle Zonen global gültige einzige Meßstelle.
  • Während die fehlenden lokalen Referenzen für die Volltonreferenz noch akzeptiert werden kann, da bei Volltonflächen nur geringe Inhomogenitäten auftreten, trifft dies für die Nullprozentreferenz nicht zu. Es gilt:
    Figure imgb0007
  • Dies bedeutet, daß die lokale Referenz H(s,z) i.a. nicht mit der zonalen Referenz H(0,z) übereinstimmt.
  • Erfindungsgemäß ist für eine verbesserte Messung vorgesehen, daß die lokalen Referenzen ermittelt werden, man also nicht mit einer Plattenrandreferenz arbeitet und diese jeweils unterschiedlichen Meßfeldern der zugehörigen Zone zuordnet.
  • Bei der erfindungsgemäßen Zwei-Filter-Methode (die mit einem Zwei-Filter-Meßkopf 10 durchgeführt wird), wird die lokale Nullprozentreferenz näherungsweise innerhalb der Meßfelder 12 des Sujets der Druckplatte 2 bestimmt. Dies erfolgt aufgrund eines Modells. Grundannahme ist dabei, daß die spektrale Veränderung der lokalen Nullprozentreferenz relativ zur zonalen Nullprozentreferenz durch einen Skalar 1 - y beschrieben werden kann. Dieser Ansatz bedeutet in bezug auf die tatsächlichen Verhältnisse, daß die lokale Referenz heller oder dunkler sein kann als die zonale Referenz, farblich aber gleich sein muß. Das Signalmodell lautet erfindungsgemäß:
    Figure imgb0008
    wobei mit y die Inhomogenität bezeichnet wird. Ferner kann eine sogenannte Pseudoreferenz H* definiert werden. Sie ergibt sich zu:
    Figure imgb0009
  • Die Pseudoreferenz H* (s,z) läßt sich für jede Meßstelle (für jedes Meßfeld 12) berechnen. Damit ist sie lokal. "Pseudo" heißt die Referenz deshalb, weil es nicht die tatsächliche Referenz ist, da sich das Sujet nicht zu Meßzwecken "entfernen" läßt, sondern sie ist (lediglich) eine zur zonalen Referenz spektral ähnliche. Es gilt daher:
    Figure imgb0010
  • Für die beiden Unbekannten fo und γ müssen pro Meßfeld 12 zwei Signale gemessen werden. Dies ist mit den beiden Fotodioden 24 und 25 und aufgrund der spektralen Unterscheidung durch das Filter 30 möglich. Für die Berechnung der Flächendeckung ergibt sich dann analog zu der aus dem Stand der Technik bekannten Formel:
    Figure imgb0011
  • Anhand der Figur 12 soll das erfindungsgemäße Verfahren durch einen zweidimensionalen Signalraum verdeutlicht werden. Voraussetzung für die praktische Messung ist, daß sich die druckenden Flächen der Druckplatte 2 farblich gegenüber den nichtdruckenden Flächen unterscheiden. Es sei zum Beispiel davon ausgegangen, daß es sich um eine Aluminium-Druckplatte handelt, deren nichtdruckende Flächen (anodisch oxidiertes Aluminium) grau sind und daß ein blauer Fotolack (Diazolack) verwendet wird, der sich auf den druckenden Flächen befindet. Da der Meßkopf 10 zwei Fotodioden 24 und 25 aufweist, werden pro Meßfeld zwei Signale aufgenommen, die auf der Ordinate beziehungsweise Abszisse des Koordinatensystems der Figur 12 dargestellt sind. Es handelt sich dabei einmal um das Signal eines Filters 1 -zum Beispiel für kurzwelligen Bereich durchlässig- (dies sei das Signal der Fotodiode 24, die -wie bereits erläutert- entweder ein Filter haben kann oder auch keins) sowie um das Signal des Filters 2, welches zum Beispiel in vorteilhafter Weise zu Filter 1 komplementäres Licht durchläßt, das von der Fotodiode 25 aufgenommen wird. Mit V1 und V2 sind die Signale der Fotodioden 24 und 25 bezeichnet, die von einer Volltonfläche (Volltonreferenz) abgenommen worden sind. Mit den Signalen H1 und H2 ist die zonale Nullprozentreferenz gekennzeichnet. Auf die Kalibrierung des Fotodiodenpaars wird nachfolgend noch näher eingegangen. Mit S1 und S2 wird das von dem Meßkopf 10 erfaßte Signal an dem momentan lokal erfaßten Meßfeld 12 bezeichnet. Die aufgenommenen Signale führen im zweidimensionalen Signalraum zu den Vektoren V,S und H. Erfindungsgemäß muß der Vektor H*, das heißt also, der die Inhomogenitäten berücksichtigende Vektor die gleiche Richtung wie der Vektor H haben. Wird der Vektor H soweit verlängert, daß er die Verlängerungsgrade der Endpunkte der Vektoren V und S schneidet, so ergibt sich der Endpunkt des Vektors H*. Dieser läßt sich wiederum in H1 und H2 * zerlegen. Der Abstand der Endpunkte der Vektoren H und H* gibt also die Korrekturgröße an, die die Inhomogenitäten berücksichtigt. Entsprechend dem Signalmodell der Figur 12 liegen also die Vektoren H*,V und S auf einer Geraden.
  • Das Ausführungsbeispiel der Figur 12 kann als 2-dimensionaler Farbraum angesehen werden, wobei der Winkel beispielsweise eines aus den Signalen "Filter 1 beziehungsweise "Filter 2" gebildeten Vektors S bezüglich der Achsen als Farbigkeit und die Länge des Vektors S als Intensität interpretiert werden kann. Die Signale "Filter 1 und "Filter 2" entstehen durch die spektral unterschiedlichen Fotodioden 24 und 25. Würde beispielsweise Filter 1 im kurzwelligen Spektralbereich messen und hätte die Meßfläche 12 beispielsweise einen höheren kurzwelligen Blauanteil, so würde der zugehörige Signalvektor oberhalb des in der Figur 12 angezeigten Vektors S liegen, da die Intensität hinter dem kurzwelligeren Filter höher wäre.
  • Deutlich wird aus der Figur 12 erkennbar, daß die Nullprozentreferenz skalierbar ist. Dies bedeutet, daß der Vektor H für Inhomogenitäten γ < 0 zu verlängern oder für Inhomogenitäten γ > 0 zu verkürzen ist.
  • Mit dem sogenannten kf-Kriteriums kann geprüft werden, ob die vorliegende Druckplatte "spektral" nach Art des erfindungsgemäßen Verfahrens überhaupt meßbar ist. Das kf-Kriterium ist definiert als:
    Figure imgb0012
    Dabei gibt z die Zonennummer und i = j einen Signalindex an. Das kf-Kriterium ist umso mehr von Eins verschieden, je mehr sich die Volltonreferenz farblich von der Nullprozentreferenz unterscheidet (immer bezogen auf die benutzten Filter). Das kf-Kriterium wird zunächst zonal berechnet und dann der Mittelwert benutzt. Die Signale Vi und Hi müssen so unterschiedlich sein, daß für eine tolerierbare Fehlerempfindlichkeit der erfindungsgemäßen Zwei-Filter-Methode ein kf von (erfahrungsgemäß) mindestens 1,1 erreicht werden sollte. Wird dies nicht erreicht, so wird ausschließlich nach der bekannten Ein-Filter-Methode ausgewertet.
  • Anhand der Figur 13 ist dieses kf-Kriterium geometrisch verdeutlicht. Für die drei möglichen Kombinationen sind im Signalraum die Produkte Hi · Vj beziehungsweise Hj · Vi als schraffierte Flächen dargestellt. Der Wert des kf-Kriteriums entspricht dem maximalen Quotienten dieser Flächenpaare. Damit wird die dynamische und spektrale Meßbarkeit (verkörpert durch den Differenzvektor H - V beziehungsweise den Winkel zwischen beiden Vektoren) berücksichtigt. Bei der Verwendung von drei Dioden und zwei Filtern wird die Kombination des Paares der Filter mit dem größten kf-Wert ausgewählt.
  • Erfindungsgemäß ist also vorgesehen, daß gemäß der spektralen Auswirkung die Inhomogenität von einer durch die Flächendeckung bewirkten Änderung unterschieden werden kann.
  • Zur Kalibrierung (Eichung) der Anordnung wird wie folgt vorgegangen:
  • Der Meßbalken 3 wird über eine Eichfläche gefahren, welche entweder getrennt von der Druckplatte 2 ebenfalls auf dem Meßtisch 1 liegt (dann aber genau von demselben Plattentyp sein muß wie die verwendete Druckplatte 2), oder aber vorteilhaft in die Druckplatte 2 integriert ist. Diese Eichfläche besteht zum Beispiel für jede Zone zur Hälfte aus einer Volltonfläche und zur anderen Hälfte aus einer Nullprozentfläche, die jeweils groß genug sind, um das optische Gesichtsfeld der Fotodioden 24 und 25 vollständig auszufüllen. Es wird dann die Intensität des remittierten Lichtes auf jeder der beiden Referenzflächen gemessen. Dies liefert die Daten H(O,z) für die Nullprozentfläche und V (0,z) für die Volltonfläche, welche für die spätere Auswertung gespeichert werden.
  • Anschließend wird dann der Meßlauf vorgenommen, wobei aufgrund des Signalmodells für jedes Meßfeld (Meßstelle) die lokale Flächendeckung fo (s,z) und die lokale Inhomogenität y (s,z) berechnet wird.
  • Bei der Endauswertung wird erfindungsgemäß berücksichtigt, daß die Inhomogenitäten γ (s,z) auf der erfindungsgemäßen spektralen Basis der zonalen Nullprozentreferenzen H (0,z) innerhalb der Druckplatte sogenannte Pseudonullprozentreferenzen H* (s,z) definiert. Diese Pseudonullprozentreferenzen H* geben an, wie die Druckplatte 2 ohne Sujet aussehen würde, wenn die Remission sujetfreier Flächen innerhalb der Druckplatte 2 skaliert aus der Nullprozentremission des Druckplattenrandes hervorgehen würde. Aus der Bestimmung der sujetfreien sogenannten Nullprozentplatte können dann die vorliegenden Inhomogenitäten lokal erkannt werden.
  • Um ein besonders gesichertes Meßergebnis zu erhalten, kann nach einer Weiterbildung vorgesehen sein, daß die so ermittelte Nullprozentplatte noch einer Glättung, oder Gewichtung oder Bewertung unterzogen wird, das heißt, die lokal ermittelten Inhomogenitäten werden mit benachbarten Inhomogenitäten verglichen und sprunghafte Änderungen werden verringert. Zu dieser Glättung können unterschiedliche, an sich bekannte Verfahren der Mathematik eingesetzt werden.
  • Die Glättung kann gewichtet in der Weise durchgeführt werden, daß die Signale eines Meßortes (s,z) dann eine hohe Gewichtung erfahren, wenn die an dieser Stelle (s,z) zunächst ermittelte Flächendeckung niedrig ist, da gerade dort die Inhomogenität der sujetfreien Fläche besser erfaßbar ist.
  • Kommt -gemäß einem anderen Ausführungsbeispiel- ein Meßkopf 10 gemäß Figur 7 (Drei-Filter-Meßkopf) zum Einsatz, so ist es möglich, nicht nur die Inhomogenität von Nullprozentflächen, sondern auch von Volltonflächen zu berücksichtigen. Allerdings ist insbesondere der Einfluß der Inhomogenität von Volltonflächen gegenüber der Inhomogenität von Nullprozentflächen auf das Meßergebnis wesentlich kleiner.
  • Erweitert man das Zweifiltermodell um ein weiteres Filter, so hat man für das Signalmodell eine Freiheit mehr (neben der Flächendeckung fo und der Inhomogenität y) mit der man das tatsächlich vorhandene Remissions-Spektrum eines Meßfeldes durch bekannte Referenz-Remissionen nachbilden kann. Das Signalmodell sieht dann wie folgt aus:
    Figure imgb0013
    Damit ist eine Skalierung in der Art von Inhomogenitäten nicht nur bei einer Nullprozentfläche (mit γ bezeichnet), sondern auch bei Volltonflächen (mit S bezeichnet) einführbar.
  • Es ergibt sich dann:
    Figure imgb0014
    oder als dreidimensionaler Vektor geschrieben:
    Figure imgb0015
    Hierbei gilt:
    Figure imgb0016
    Figure imgb0017
  • Damit werden also spektrale Veränderungen in allen signalbestimmenden Größen in erster Näherung erfaßt und nicht nur wie in dem ausführlicher beschriebenen Signalmodell bei der Nullprozentremission.
  • Die Figur 11 zeigt die spektrale Remission einer Volltonfläche V sowie einer Nullprozentfläche H. Deutlich ist erkennbar, daß aufgrund der farbigen (blauen) Volltonfläche ein spektraler Verlauf besteht. Die nichtdruckende Nullprozentfläche H (0%) hingegen (dunkelgrau) hat ein nahezu gleichmäßiges Spektrum. Ferner sind Remissionen von Flächendeckungen von 4,10 und 20% eingetragen. Je größer die Flächendekkung wird, um so stärker wird der kurvenförmige Verlauf der Volltonfläche V (100%) angenommen.
  • Nach einer anderen Weiterbildung der Erfindung besteht auch die Möglichkeit anstelle von Filtern die Messung der Remission spektroskopisch vorzunehmen, zum Beispiel mit einem Spektralfotometer, das den sichtbaren Bereich des Lichts zum Beispiel in 32 Intervalle a 10nm zerlegt. Mit einem nachgeschalteten Rechner können dann benachbarte Wellenlängenintervalle zu einer optimalen Zwei-Filter-Kombination oder aber auch zu einer Drei-Filter-Kombination zusammengefaßt werden.

Claims (21)

1. Verfahren zur Ermittlung der Flächendeckung einer druckenden Vorlage, insbesondere einer Druckform einer Druckmaschine, vorzugsweise einer Offset-Druckmaschine, wobei durch optische Abtastung der Vorlage die örtliche Remission eines erfaßten Meßfeldes ermittelt wird, die druckenden Flächen gegenüber den nichtdruckenden Flächen der Vorlage unterschiedliche Farbe (Farbunterschied) aufweisen und die Vorlage eine von der Flächendeckung unabhängige, ortsabhängige, das Meßergebnis der Abtastung beeinflussende Inhomogenität aufweist, dadurch gekennzeichnet, daß von jedem Meßfeld (12) mindestens zwei entsprechend dem Farbunterschied spektral voneinander abweichende Remissionswerte ermittelt werden und daß die beiden Remissionswerte zur Separierung eines durch die Flächendeckung (fD) beeinflußten und eines durch die Inhomogenität (y) beeinflußten Anteils des Meßergebnisses ausgewertet werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Auswertung die Remission jedes Meßfelds (12) aus folgenden Anteilen zusammengesetzt wird:
- der Remission der Volltonfläche (V) gewichtet mit der zugehörigen Flächendeckung (fD) und
- der Remission der freien, also nichtdruckenden beziehungsweise druckfreien sogenannten Nullprozentfläche (H) gewichtet mit dem restlichen Flächenanteil (1 - fD) und gewichtet mit einem Faktor, der die Inhomogenität (y) beschreibt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sich das bei der optischen Abtastung ermittelte Meßergebnis zusammensetzt aus:
Figure imgb0018
- wobei S ein dem Meßergebnis entsprechendes Signal,
- V ein der Volltonfläche entsprechendes Signal
- fo die Flächendeckung
- y die Inhomogenität und
- H ein der Nullprozentfläche entsprechendes Signal ist.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein zusätzlicher, dritter, spektral abweichender Remissionswert von jedem Meßfeld (12) ermittelt wird, der eine örtliche Änderung der Remission einer druckenden, also Druckfarbe führenden beziehungsweise bedruckten Fläche, insbesondere Volltonfläche, berücksichtigt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß sich das bei der optischen Abtastung ermittelte Meßergebnis zusammensetzt aus:
Figure imgb0019
- wobei S ein dem Meßergebnis entsprechendes Signal,
- V ein der Volltonfläche entsprechendes Signal
- fo die Flächendeckung
- y die Inhomogenität der Nullprozentfläche
- S die Inhomogenität der Volltonfläche
- H ein der Nullprozentfläche entsprechendes Signal ist.
6. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Flächendeckung (fD) zonal bestimmt wird und daß aus den zonalen Flächendeckungswerten Farbvoreinstellwerte für Farbdosierzonen eines Farbwerks der Druckmaschine ermittelt werden.
7. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei Vorlagen mit global hoher Flächendeckung (fD) das Meßergebnis einer spektral unabhängigen optischen Erfassung der Flächendeckung, das heißt, die Messung mittels der an sich bekannten Ein-Filter Methode mit berücksichtigt wird.
8. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zur Bestimmung der Inhomogenität (y) eines Meßfelds (12) die Inhomogenitäten benachbarter Meßfelder (12) zur Glättung herangezogen werden.
9. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß für eine Bestimmung der lokalen Flächendeckung (fD) Pseudonullprozentreferenzen gebildet und durch Glättung, Gewichtung, oder Bewertung den ermittelten Inhomogenitäten benachbarter Meßfelder angeglichen werden.
10. Vorrichtung zur Ermittlung der Flächendeckung von Vorlagen, insbesondere von Druckformen einer Druckmaschine, vorzugsweise zur Durchführung des Verfahrens nach einem oder mehreren der vorhergehenden Ansprüche, gekennzeichnet durch mindestens einen, die Vorlage optisch abtastenden Meßkopf (10), der einen spektral arbeitenden Remissions-Lichtempfänger (17) aufweist, so daß aufgrund unterschiedlicher spektraler Auswertung von jedem optisch abgetasteten Meßfeld (12) mehrere, spektral unterschiedliche Meßergebnisse ermittelbar sind.
11. Vorrichtung nach Anspruch 10, gekennzeichnet durch eine Filteranordnung (Filter 30,31) zur Durchführung der unterschiedlichen spektralen Auswertung.
12. Vorrichtung nach Anspruch 10 oder 11, gekennzeichnet durch eine spektral unterschiedliches Licht aussendende Beleuchtungseinrichtung zur Durchführung der spektralen Auswertung.
13. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche 10 bis 12, dadurch gekennzeichnet, daß der Remissions-Lichtempfänger spektral unterschiedlich empfindliche Empfangselemente, insbesondere Fotodioden, zur Durchführung der spektralen Auswertung aufweist.
14. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche 10 bis 13, dadurch gekennzeichnet, daß der Remissions-Lichtempfänger (17) mindestens eine Fotodiode (24,25,26) aufweist.
15. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche 10 bis 14, dadurch gekennzeichnet, daß der Meßkopf (10) einen Strahlteiler (27) aufweist, der die Remission einer ersten Fotodiode (24) direkt und einer zweiten Fotodiode (25) über ein die Filteranordnung bildendes Filter (30) zuleitet, oder die Remission einer ersten Fotodiode (24) über ein Filter und einer zweiten Fotodiode (25) über ein weiteres Filter (30) zuleitet, wobei die beiden Filter eine spektral unterschiedliche Charakteristik aufweisen und die Filteranordnung bilden.
16. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche 10 bis 15, dadurch gekennzeichnet, daß der Meßkopf (10) einen weiteren Strahlteiler (28) aufweist, der die Remission einer dritten Fotodiode (26) über ein weiteres spektral unterschiedliches Filter (31) zuleitet.
17. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche 10 bis 16, dadurch gekennzeichnet, daß mehrere Meßköpfe (10) nebeneinander angeordnet sind und daß die Meßköpfe (10) relativ zur Vorlage verfahrbar sind.
18. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche 10 bis 17, dadurch gekennzeichnet, daß die Meßköpfe (10) in Druckrichtung der Druckform verfahrbar sind.
19. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche 10 bis 18, dadurch gekennzeichnet, daß die Meßköpfe (10) quer zur Druckrichtung der Druckform verfahrbar sind.
20. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche 10 bis 19, dadurch gekennzeichnet, daß das beziehungsweise die Filter (30,31) als Kantenfilter oder Tristimulus-Filter ausgebildet ist beziehungsweise sind.
21. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche 10 bis 20, dadurch gekennzeichnet, daß eine Filterung durch eine spektroskopische Erfassung der Remission, vorzugsweise mittels eines Spektralfotometers und mit einem nachgeschalteten Rechner durch Zusammenfassung und Gewichtung benachbarter Wellenlängenintervalle vorgenommen wird.
EP92103605A 1991-03-25 1992-03-03 Verfahren zur Ermittlung der Flächendeckung einer Vorlage, insbesondere einer Druckplatte, sowie Vorrichtung zur Durchführung des Verfahrens Expired - Lifetime EP0505769B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4109744 1991-03-25
DE4109744A DE4109744C2 (de) 1991-03-25 1991-03-25 Verfahren zur Ermittlung der Flächendeckung einer druckenden Vorlage, insbes. einer Druckplatte, sowie Vorrichtung zur Durchführung des Verfahrens

Publications (2)

Publication Number Publication Date
EP0505769A1 EP0505769A1 (de) 1992-09-30
EP0505769B1 true EP0505769B1 (de) 1994-12-07

Family

ID=6428148

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92103605A Expired - Lifetime EP0505769B1 (de) 1991-03-25 1992-03-03 Verfahren zur Ermittlung der Flächendeckung einer Vorlage, insbesondere einer Druckplatte, sowie Vorrichtung zur Durchführung des Verfahrens

Country Status (7)

Country Link
US (1) US5724143A (de)
EP (1) EP0505769B1 (de)
JP (1) JP2918386B2 (de)
CN (1) CN1057252C (de)
AT (1) ATE115048T1 (de)
CA (1) CA2062457C (de)
DE (2) DE4109744C2 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH686357A5 (fr) * 1991-05-06 1996-03-15 Bobst Sa Dispositif de lecture d'une marque imprimée sur un élément en plaque ou en bande.
US5224421A (en) * 1992-04-28 1993-07-06 Heidelberg Harris, Inc. Method for color adjustment and control in a printing press
IT1278304B1 (it) * 1994-03-08 1997-11-17 Viptronic Srl Sistema di rilevamento su lastre flessografiche.
ES2119529T3 (es) * 1996-04-19 1998-10-01 Schablonentechnik Kufstein Ag Plantilla de medio tono, asi como procedimiento y dispositivo para su fabricacion.
US6024020A (en) * 1996-08-21 2000-02-15 Agfa Corporation Fluorescence dot area meter for measuring the halftone dot area on a printing plate
DE102005019777B4 (de) * 2005-04-28 2020-08-06 Manroland Goss Web Systems Gmbh Verfahren und Vorrichtung zur automatischen Ermittlung von Voreinstellwerten für Farbzonenstellelemente eines Farbwerks einer Druckmaschine
US7757159B1 (en) * 2007-01-31 2010-07-13 Yazaki North America, Inc. Method of determining the projected area of a 2-D view of a component
DE102017200870B4 (de) 2017-01-19 2021-10-28 Koenig & Bauer Ag Bogenverarbeitende Maschine mit einem Lüftersystem und Verfahren zum Betreiben eines Lüftersystems einer bogenverarbeitenden Maschine
CN111918004B (zh) * 2020-09-16 2023-07-04 Oppo广东移动通信有限公司 图像传感器、终端、数据处理方法、装置及存储介质
CN112477410B (zh) * 2020-11-30 2024-01-12 浙江星淦科技有限公司 一种烫金版样纸定位装置
CN112571315B (zh) * 2020-11-30 2024-01-30 浙江星淦科技有限公司 一种便于夹紧的烫金版样纸定位装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3029273A1 (de) * 1979-08-03 1981-02-19 Dainippon Printing Co Ltd Vorrichtung zum messen des druckbildbereiches einer offset-druckplatte
US4512662A (en) * 1981-07-06 1985-04-23 Tobias Philip E Plate scanner for printing plates
DE3309443A1 (de) * 1982-05-29 1983-12-08 Heidelberger Druckmaschinen Ag, 6900 Heidelberg Verfahren zur ermittlung der flaechendeckung einer druckvorlage oder druckplatte fuer druckmaschinen
US4564290A (en) * 1982-09-30 1986-01-14 Harris Graphics Corporation Apparatus for determining image areas from films and plates
DK552983A (da) * 1983-12-01 1985-06-02 Eskofot As Fremgangsmaade til ved reflektion at maale forholdet mellem svaertet areal og usvaertet areal
GB8429211D0 (en) * 1984-11-19 1984-12-27 Mit Peritronic Ltd Reflectometer
DD301438A7 (de) * 1985-12-19 1993-01-28 Polygraph Contacta Gmbh Leipzi Verfahren zur ermittlung des druckenden flaechenanteiles fuer druckmaschinen
DE3830731A1 (de) * 1988-09-09 1990-03-22 Heidelberger Druckmasch Ag Vorrichtung zur farbmessung
JP2786216B2 (ja) * 1988-12-20 1998-08-13 東芝メカトロニクス株式会社 絵柄面積率測定装置

Also Published As

Publication number Publication date
DE4109744C2 (de) 1994-01-20
CN1065241A (zh) 1992-10-14
ATE115048T1 (de) 1994-12-15
CN1057252C (zh) 2000-10-11
JP2918386B2 (ja) 1999-07-12
JPH05177821A (ja) 1993-07-20
DE59200881D1 (de) 1995-01-19
CA2062457C (en) 1996-08-27
EP0505769A1 (de) 1992-09-30
DE4109744A1 (de) 1992-10-01
CA2062457A1 (en) 1992-09-26
US5724143A (en) 1998-03-03

Similar Documents

Publication Publication Date Title
EP1744884B1 (de) Verfahren zur ermittlung von farb- und/oder dichtewerten und für das verfahren ausgebildete druckeinrichtung
EP0884180B1 (de) Verfahren zur Steuerung oder Regung von Betriebsvorgängen einer drucktechnischen Maschine
DE3719766C2 (de)
DE3853307T2 (de) Farbdichtemessverfahren bzw. System zur Identifizierung und Analyse gedruckter Vorlagen.
EP0196431A2 (de) Verfahren, Regelvorrichtung und Hilfsmittel zur Erzielung eines gleichförmigen Druckresultats an einer autotypisch arbeitenden Mehrfarbenoffsetdruckmaschine
EP0914945B1 (de) Verfahren zur Regelung des Farbauftrages bei einer Druckmaschine
DE102015205275B3 (de) Verfahren zur Korrektur von Abweichungen gemessener Bilddaten
EP0505769B1 (de) Verfahren zur Ermittlung der Flächendeckung einer Vorlage, insbesondere einer Druckplatte, sowie Vorrichtung zur Durchführung des Verfahrens
CH697367B1 (de) Vorrichtung und Verfahren zur Erfassung und Auswertung eines Bildes von einem vorbestimmten Auschnitt eines Druckerzeugnisses.
EP0836942B1 (de) Messfeldblock und Verfahren zur Erfassung von Qualitätsdaten im Mehrfarben-Auflagendruck
EP1273445A2 (de) Messung und Regelung der Farbgebung im Rollendruck
EP0659559A2 (de) Verfahren zur Steuerung der Farbführung bei einer Druckmaschine
EP0676285A1 (de) Color-Management im Rollenoffset-Auflagendruck
DE3311477C2 (de) Vorrichtung zum Messen von Druckflächen
DE4237004A1 (de) Verfahren zur Online-Farbregelung von Druckmaschinen
DE3314333A1 (de) Verfahren und vorrichtung zur regelung der farbzufuhr zu den farbwerken einer mehrfarbendruckmaschine
DE3113674A1 (de) Vorrichtung zum messen der feuchtmittelmenge auf der druckplatte einer offset-druckmaschine
DE102006022529A1 (de) Rollenrotationsdruckmaschine mit mindestens einem Farbwerk und mit einem Inline-Inspektionssystem
EP0668164B1 (de) Qualitätsdatenerfassung im Rollenoffset-Auflagendruck
EP0916491A1 (de) Verfahren zur Ermittlung von Farbwertgradienten
CH693533A5 (de) Messfeldblock und Verfahren zur Erfassung von Qualitotsdaten im Mehrfarben-Auflagendruck.
DE19738923A1 (de) Messfeldblock und Verfahren zur Erfassung von Qualitätsdaten im Mehrfarben-Auflagendruck
EP1033247B1 (de) Verfahren zur Steuerung der Farbgebung einer Druckmaschine
DE102009000344B4 (de) Verfahren zum Betrieb einer Anordnung mit mehreren Pixeln und Gerät, aufweisend einen Bildsensor
WO2005013206A1 (de) Verfahren für die spezifikation des drucks und die kontrolle der druckqualität von wertpapieren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920303

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI SE

GBC Gb: translation of claims filed (gb section 78(7)/1977)
17Q First examination report despatched

Effective date: 19940503

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 115048

Country of ref document: AT

Date of ref document: 19941215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59200881

Country of ref document: DE

Date of ref document: 19950119

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010323

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010326

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020304

EUG Se: european patent has lapsed

Ref document number: 92103605.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030224

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030320

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030403

Year of fee payment: 12

Ref country code: CH

Payment date: 20030403

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050303