EP0468007B1 - System zur steuerung und/oder regelung einer brennkraftmaschine - Google Patents

System zur steuerung und/oder regelung einer brennkraftmaschine Download PDF

Info

Publication number
EP0468007B1
EP0468007B1 EP91902506A EP91902506A EP0468007B1 EP 0468007 B1 EP0468007 B1 EP 0468007B1 EP 91902506 A EP91902506 A EP 91902506A EP 91902506 A EP91902506 A EP 91902506A EP 0468007 B1 EP0468007 B1 EP 0468007B1
Authority
EP
European Patent Office
Prior art keywords
signal
signal values
range
sensors
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91902506A
Other languages
English (en)
French (fr)
Other versions
EP0468007A1 (de
Inventor
Frank Bederna
Alois Hils
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0468007A1 publication Critical patent/EP0468007A1/de
Application granted granted Critical
Publication of EP0468007B1 publication Critical patent/EP0468007B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/107Safety-related aspects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/08Redundant elements, e.g. two sensors for measuring the same parameter

Definitions

  • the invention relates to a system for controlling and / or regulating an internal combustion engine according to the preamble of independent patent claim 1.
  • the system for controlling and / or regulating an internal combustion engine described there has at least one measuring device for detecting an operating parameter of the internal combustion engine and / or the motor vehicle, the dependency of which controls and / or regulates the internal combustion engine.
  • This operating parameter relates in particular to the position of a power-determining element of an electronic accelerator pedal system, such as a power actuator and / or an operating element that can be actuated by the driver. Malfunction detection for the measuring device takes place on the basis of the signal values that it emits and represents the operating parameters by comparing these signal values with predetermined limit values as a signal range check.
  • the invention is therefore based on the object of specifying measures which ensure comprehensive operational reliability and availability of a control and / or regulating system of an internal combustion engine. This is achieved by the features according to claim 1.
  • a monitoring device for an electronically controlled throttle valve in a motor vehicle is known, in particular with the accelerator pedal of an electronic accelerator system a measuring device is connected, which in one of the exemplary embodiments consists of a position transmitter potentiometer and a monitoring potentiometer.
  • the position signal supplied by the position transmitter potentiometer is compared in a logic unit with threshold values determined from the signal of the monitoring potentiometer and the function of the measuring device is checked on the basis of the signal size of the position transmitter potentiometer in comparison with the threshold values.
  • One advantage of the procedure according to the invention can be seen in the fact that a checking method is used which is less sensitive in sub-areas which are characterized by impaired, incomplete signal transmission or generation, for example as a result of an increased contact resistance between the resistance track and wiper tap of a potentiometer is designed. On the one hand, this enables malfunctions of the sensor that actually occur to be recognized, but effectively prevents the entire system from being switched off due to the supposed malfunctions set out above.
  • the procedure according to the invention ensures extensive operational reliability and availability of a system for controlling and / or regulating an internal combustion engine, since in the case of a measuring device consisting of a plurality of sensors, the first malfunction check determines whether the signal values generated by the sensors correspond to one another in a predetermined manner the first value range, a detection of shunts with parasitic resistances both to the supply voltage poles and between the signal lines of the sensors as well as non-linearities of the sensor characteristics and interruptions of the signal lines with parasitic resistances to the supply voltage poles is possible.
  • a second, less sensitive malfunction check in the specified sub-areas also makes it possible for the abovementioned errors to be recognized in these sub-areas and for the system to be switched off the supposed malfunctions set out above can be dispensed with, thus improving the availability and operational safety of the system.
  • FIG. 1 shows a block diagram of a system equipped with a measuring device consisting of several sensors using the example of an electronic accelerator pedal.
  • FIG. 2 shows a preferred exemplary embodiment of the measuring device using the example of a double potentiometer, while the procedure according to the invention is illustrated in FIGS. 3 and 4 using the example of a characteristic diagram and a flow chart.
  • FIG. 1 shows a power actuator 10 of an internal combustion engine, not shown, for example a throttle valve for influencing the air supply to the internal combustion engine or a control rod for controlling the amount of fuel to be supplied to the internal combustion engine.
  • 11 denotes an operating element which can be actuated by the driver, for example an accelerator pedal of an electronic accelerator pedal system.
  • the power actuator 10 and / or the control element 11 are connected via connections 12 and 13 to measuring devices 14 and 15 comprising several sensors, which can be constructed identically.
  • the measuring devices 14 and 15 generate signal quantities corresponding to the number of sensors, which represent the position of the respectively assigned element 10 or 11.
  • the measuring device 14 comprises a plurality of sensors 16 to 18 for detecting the position of the assigned element.
  • sensors 16 to 18 are potentiometers.
  • the mechanical connection 12 acts on the sensors 16 to 18 in such a way that a change in position of the assigned element 10 leads to a corresponding change in the output signal quantities of the sensors, so that each sensor generates a signal quantity representing the position of the assigned element.
  • the mechanical connection 12 is connected to the movable wiper taps of the potentiometers.
  • the position signal size is taken from the grinder taps.
  • the measuring device 14 is linked to the computing unit 32 via signal lines 24 to 26, which connect the sensors to A / D converters 28 to 30, which are part of a computing unit 32.
  • the computing unit 32 comprises a further group of A / D converters 38 which are connected to the measuring device 15 via the signal lines 34. For reasons of clarity, these elements have not been shown in detail. Their structure and mode of operation result from the description in connection with the measuring device 14.
  • the A / D converters 28 to 30 are connected via a connecting line 40 to a computer 42, to which the line 44 is also routed, which connects the computer 42 to the A / D converters 38.
  • the output line 46 of the computer 42 leads via an output stage 48 to an output line 50 of the computing unit 32, which connects the computing unit 32 to the power actuator 10 of the internal combustion engine.
  • the measuring device 14 outputs via its signal lines 24 to 26 one of the positions of the element 10, which is transmitted to the sensors 16 to 18 via the connection 12, to the computing unit 32.
  • the computing unit 32 In the computer 42 of the computing unit 32, the signal quantities converted from analog to digital quantities by means of the A / D converters 28 to 30 and transmitted to the computer 42 via the line 40 are processed.
  • the signal size of the sensor 16 which represents the power actuator position and thus the actual value of a power control circuit consisting of the internal combustion engine and the computing unit 32, is compared in the computer 42 with the desired value of the control element position supplied to the computer via line 44 and as a function of the comparison result
  • the power actuator 10 is influenced via the output lines 46, the output stage 48 and the output line 50 in such a way that the difference between the setpoint and actual value is reduced.
  • the signal quantities of the further sensors serve only to monitor the function of the sensor 16.
  • an average or a minimum value from the signal quantities generated by the sensors 16 to 18 is used to regulate the position of the power actuator 10, at least one of the signal quantities of one of the sensors being used to monitor the function of the other.
  • the computing unit 32 performs further functions, such as determining the ignition timing, fuel metering and / or idling control.
  • FIG. 2 shows a preferred embodiment of the measuring devices 14 and / or 15 as a so-called double potentiometer.
  • FIG. 2 shows the measuring device 14 or 15 and the computing unit 32, the inputs and outputs of which are assigned as in FIG. 1.
  • the measuring device comprises two sensors 100 and 102 designed as potentiometers, the wiper taps 104 and 106 of which are connected to the mechanical connection 12 or 13.
  • the two grinder taps 104 and 106 change their position as a function of a change in position of the element acting on the grinder taps via the mechanical connection in parallel to one another in the same direction.
  • the resistance path 108 of the sensor 100 is connected via a connecting line 110 to the positive pole 112 of the supply voltage, while at the other end of the resistance path 108 of the sensor 100 a second line 114 leads to the negative pole 116 of the supply voltage.
  • the Sensor 100 the position of the wiper tap 104 in the vicinity of the positive connection of the supply voltage, as shown in Fig. 2, an idle position of the associated element.
  • the wiper tap 104 is connected via the signal line 118 and the resistor 120 to the signal line 24 or, in the case of the measuring device 15, to one of the lines 34 which connect the measuring devices to the computing unit 32.
  • the resistance path 122 of the sensor 102 is connected via a connecting line 124 to the positive pole 112 of the supply voltage, while at the other end of the resistance path 122 of the sensor 102 a second line 126 is led via the node 128 and the resistor 130 to the negative pole 116 of the supply voltage is.
  • the wiper tap 106 of the sensor 102 is connected to a signal line 132 which leads via the connection point 134 and the resistor 136 to the signal line 26 or, in the case of the measuring device 15, to one of the lines 34 which connect the measuring devices to the computing unit 32.
  • Another resistor 138 lies between the two connection points 134 and 128. In contrast to the sensor 100, the idle position of the sensor 102 is in the vicinity of the negative connection of the supply voltage.
  • the two potentiometers are electrically opposite, i.e. when the position changes, the signal sizes of the two sensors change in the opposite direction.
  • the procedure according to the invention is also used in the case of potentiometers running in the same direction.
  • the signal line 24 leads in the arithmetic unit 32 to a connection point 140, at which there is a resistor 142 against the negative pole 116 of the supply voltage. Furthermore, the signal line 24 is routed via this node 140 on the A / D converter 28 or one of the A / D converters 38. In an analogous manner, the signal line 26 leads via the connection point 144 to which a resistor is connected 146 is connected to the negative pole 116 of the supply voltage to the A / D converter 30. According to FIG. 1, the outputs of the two A / D converters 28 and 30 are connected to a connecting line 40 which connects them to the computer 42.
  • the voltage divider of the resistors 130 and 138 in conjunction with the resistor 146 representing the input circuitry of the computing unit 32 impresses a predetermined minimum signal value on the signal line 132 and 26, which in the case of an interrupted signal line 132 or 26 or an interrupted ground line 126 does not occur. As shown below, this enables a distinction to be made between an interrupted line and an increased contact resistance.
  • the input circuit (resistor 146) of the computing unit 32 belonging to the sensor 102 is designed such that, for example when the signal line is interrupted, a signal quantity is passed to the computing unit which corresponds to an idle position of the assigned element, in particular the value 0.
  • FIG. 3 shows the position-signal quantity characteristics of the two sensors 100 and 102 designed according to FIG. 2.
  • the essentially linear characteristic 200 falling from right to left, represents that of sensor 100, while the opposite one represents the characteristic curve 202 of the sensor 102.
  • These characteristic curves are a consequence of the different supply voltage connections of the two sensors.
  • upper (204) (U G2 ) or lower permissible limit values (206) (U G1 ) can be seen in FIG. 3, within which the signal quantities of the sensors must lie, and a further threshold line 208 (U th ), the lower or lower limit of which Indicates that the idle or near idle range has been reached.
  • the predetermined minimum limit value (210) (Umin) generated by the switching elements 130 and 138 is shown in the idle or near-idle region of the characteristic curve 202 of the sensor 102 used to monitor the sensor 100.
  • a first malfunction check results from a comparison of the signal values with the upper and lower permissible limit values (U G2 , U G1 ). This corresponds to a signal range check for each sensor individually. It can also be checked whether the signal values are in a predetermined permissible tolerance band with respect to one another.
  • This tolerance band can be formed in different ways.
  • electrically counter-rotating sensors it is possible to add the signal quantities. As a result of the electrical counter-rotation, if the sensors function correctly, this leads to the signal variable U G2 which forms the upper maximum limit value.
  • a tolerance band is formed around the latter by adding or subtracting a value that represents the still tolerable deviation between the sensor signal quantities and the sum of the signal quantities of the two sensors is checked for compliance with this tolerance band.
  • this tolerance band can be formed by adding and subtracting a predetermined tolerance value to the signal values of the sensor 100 that controls the control function.
  • the signal value of the monitoring sensor 102 must then lie in this first tolerance band when the measuring device is functioning correctly.
  • This measure can also be used with electrically synchronous sensors; if the behavior is opposite, the signal values must be converted to check for malfunction.
  • this first malfunction check whether the signal sizes of the sensors to one another lie outside a first value range, can cause the entire system to be switched off unnecessarily as a result of detected malfunction because of the high contact resistances that may occur. Therefore, a second type of monitoring is introduced in the idle or near idle area. This consists in that, in this partial area, monitoring is carried out which is less sensitive than the tolerance band monitoring described above. For this purpose, the check is limited to whether the signal values of the two sensors relative to one another are below the upper limit of the tolerance band.
  • a further gain in safety can be achieved in this sub-area by the circuit measures mentioned above.
  • Checking the signal value of the sensor 102 with the predetermined minimum limit value Umin enables a distinction to be made between an actual fault condition due to a line break, which must result in a corresponding reaction, or an increased contact resistance.
  • the second range of values is therefore limited by Umin.
  • An analogous procedure can also be carried out with regard to the sensor 100. In the exemplary embodiment, however, U G1 is retained as the lower limit.
  • This second type of monitoring or malfunction check is therefore less sensitive to the first.
  • the procedure described above is to be used with only one sensor, the function of which can be monitored by means of another, second operating parameter.
  • the program executed in the computing unit 32 for malfunction detection of the measuring device 14, which can also be applied in an analogous manner to the measuring device 15, is shown as a flow chart in FIG.
  • the two signal variables which are determined via lines 24 and 26 and represent the position of the respectively assigned element, are read in in step 300 and subjected to a query in step 302 as to whether one of the two signal variables has an upper permissible one Limit (U G2 ) exceeded. If this is the case, a malfunction of the measuring device is recognized in step 304, the cause of which can be, for example, a short circuit to plus and, if appropriate, an intended emergency operation function is initiated and the program part ends.
  • U G2 upper permissible one Limit
  • both signal quantities are below their maximum permissible limit value (U G2 )
  • U G2 maximum permissible limit value
  • U th a predetermined threshold
  • a first, and in the other case a second, monitoring function is initiated.
  • step 308 it is checked in query step 308 whether one of the two signal variables is below a lower, permissible limit value (U G1 ). If this is the case, a malfunction of the measuring device due to a possible interruption in the positive supply voltage line, a short circuit to ground or an interruption of the signal lines is recognized in step 310 and the program is ended. If both signal quantities are above their lower permissible limit value (U G1 ) in accordance with the query in step 308, a check is carried out in the further steps as to whether the two signal quantities lie in a predetermined signal range with respect to one another.
  • the signal value of the sensor 100 operating the control function can also be checked before the query 306, an error reaction occurring after step 304 in the event of an error that the minimum limit value U G1 is undershot.
  • the query 308 then only relates to the monitoring sensor 102.
  • step 312 the sum of the two signal values is examined to determine whether they are above a tolerance range formed around the upper maximum limit value (U G2 ). If this is the case, the method continues to step 310, a malfunction of the measuring device is recognized and, if necessary, an emergency operation function is initiated. This type of error can result from shunts or non-linearities. In the other case, this sum is checked in query step 314 to determine whether it lies below this tolerance band. If this is the case, the reaction described above takes place after step 310, while in the other case the functionality of the measuring device is determined and the system is operated in normal operation in accordance with step 316. The program section is then ended and restarted if necessary.
  • U G2 the upper maximum limit value
  • Steps 312 and 314 can also be carried out in such a way that one of the two signal values is checked to determine whether it is above or below a tolerance range formed by another signal value.
  • step 318 If it is recognized in query step 306 that the signal sizes of both sensors are below the idle threshold, it is checked in step 318 whether the signal value of the sensor 100 performing the control function is below the permissible minimum limit value (U G1 ).
  • step 304 the procedure is the same as in step 304, while in the opposite case in the query step 320 the signal value of the monitoring sensor 102 is checked to determine whether the one generated by it Signal size is below the minimum limit 210 Umin. In the event of such a result, an interruption in the signal line and / or an interruption in the positive supply voltage line of the sensor 102 is inferred and step 304 is followed.
  • An opposite result of the query step 320 leads to the query after step 322 whether the setpoint value generated by the control element is below an idle value increased by a tolerance value, ie whether the measuring device is still in the idle or near idle range. If this is not the case, a malfunction check of the measuring device must be carried out according to steps 312 and 314.
  • step 324 the query is made in step 324, with which it is checked whether the signal value of the sensor 102 is below the upper limit of the tolerance band formed around the signal value of the sensor 100.
  • step 304 if the limit value is exceeded by the signal value, an error reaction occurs, for example due to a possible short circuit of the sensor 102 to plus, with the opposite result, normal operation of the measuring device can be assumed, despite a possibly existing increased contact resistance between the grinder tap and the resistance track.
  • This second type of monitoring checks whether the signal values of the sensors individually and / or to one another lie outside a second value range. Since this range of values is larger in terms of amount, the second type of monitoring is less sensitive than the first.
  • the measure described above prevents an error reaction due to impaired, incomplete signal transmission or generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Es wird ein System zur Steuerung und/oder Regelung einer Brennkraftmaschine wenigstens abhängig von Signalwerten, die die Stellung wenigstens eines die Leistung der Brennkraftmaschine beeinflussenden Elements repräsentieren und von einer Meßeinrichtung zur Erfassung dieser Stellung ermittelt werden, vorgeschlagen, wobei diese Meßeinrichtung mehrere Sensoren umfasst, die jeweils die Stellung desselben Elements erfassen und wobei auf der Basis der von den Sensoren erzeugten Signalwerte eine erste Fehlfunktionserkennung, ob die Signalwerte zueinander in einen ersten vorgegebenen Wertebereich liegen, durchgeführt wird, in vorgegebenen Teilbereichen, insbesondere im Leerlauf- bzw. leerlaufnahen Bereich der Stellung des jeweiligen Elements, eine zweite Fehlfunktionsüberprüfung, ob die Signalwerte einzeln und/oder zueinander in einem vorgegebenen zweiten Wertebereich liegen, erfolgt. Dabei ist die zweite Fehlfunktionsüberprüfung weniger empfindlich als die erste.

Description

    Stand der Technik
  • Die Erfindung betrifft ein System zur Steuerung und/oder Regelung einer Brennkraftmaschine gemäß Oberbegriff des unabhängigen Patentanspruchs 1.
  • Aus der DE-A-38 12 760 ist die Überwachung ein derartigen Systems, und zwar eines Sollwertgebers einer elektronischen Gaspedalanlage bekannt, bei welchem der Stellbereich in drei Teilbereiche unterteilt ist und in jedem Teilbereich ein oberer Grenzwert für die Signalgröße der die Stellung des Gaspedals erfassenden Meßeinrichtung vorgesehen ist. Es wird ein Fehler erkannt wird, wenn die Signalgröße diesen Grenzwert überschreitet. Maßnahmen, welche das Überprüfungsverfahren innerhalb wenigstens eines vorgegebenen Teilbereichs bewußt weniger empfindlich ausgestalten, werden nicht gezeigt, sie ergeben sich jedoch de facto.
  • Ein weiteres System ist aus der DE-OS 36 21 937 bekannt. Das dort beschriebene System zur Steuerung und/oder Regelung einer Brennkraftmaschine verfügt über wenigstens eine Meßeinrichtung zur Erfassung eines Betriebsparameters der Brennkraftmaschine und/oder des Kraftfahrzeugs, in dessen Äbhängigkeit die Brennkraftmaschine gesteuert und/oder geregelt wird. Dieser Betriebsparameter betrifft insbesondere die Stellung eines leistungsbestimmenden Elements eines elektronischen Gaspedalsystems, wie eines Leistungsstellgliedes und/oder eines vom Fahrer betätigbaren Bedienelements. Eine Fehlfunktionserkennung für die Meßeinrichtung findet ausgehend von den von ihr abgegebenen, den Betriebsparameter repräsentierenden Signalwerten durch Vergleiche dieser Signalwerte mit vorgegebenen Grenzwerten als eine Signalsbereichsüberprüfung statt.
  • Schwierigkeiten treten dann auf, wenn der zu Erfassung eines Betriebsparameters der Brennkraftmaschine und/oder des Kraftfahrzeugs eingesetzte Sensor in seinem Signalbereich Teilbereiche aufweist, die durch eine beeinträchtigte, unvollständige Signalübertragung oder -erzeugung gekennzeichnet sind. Dies tritt beispielsweise durch Verunreinigungen oder bei der Verwendung von Potentiometern auf, da dort infolge des Abriebs in Teilbereichen ihres Bewegungsbereichs, insbesondere in den Wendepunkten, sich auf der Widerstandsbahn schwer leitende Bereiche ausbilden, die zu einem großen Übergangswiderstand zwischen Widerstandsbahn und Schleiferabgriff führen und so einerseits zu einem falschen Betriebsparameter-Signalwert führen, andererseits bei dem aus der Stand der Technik bekannten Überwachungssystem zu einer Fehlermeldung und somit zum Ausfall des mit der Meßeinrichtung ausgestatteten Systems führen können.
  • Der Erfindung liegt daher die Aufgabe zugrunde, Maßnahmen anzugeben, die eine umfassende Betriebssicherheit und Verfügbarkeit eines Steuer- und/oder Regelsystems einer Brennkraftmaschine gewährleisten. Dies wird durch die Merkmale gemäß Anspruch 1 erreicht.
  • Aus der DE-OS 35 10 173 ist eine Überwachungseinrichtung für eine elektronisch gesteuerte Drosselklappe in einem Kraftfahrzeug bekannt, wobei insbesondere mit dem Fahrpedal eines elektronischen Gaspedalsystems eine Meßeinrichtung verbunden ist, welche in einem der Ausführungsbeispiele aus einem Stellungsgeberpotentiometer und einem Überwachungspotentiometer besteht. Das vom Stellungsgeberpotentiometer gelieferte Stellungssignal wird in einer Logikeinheit mit aus dem Signal des Überwachungspotentiometers ermittelten Schwellwerten verglichen und anhand der Signalgröße des Stellungsgeberpotentiometers im Vergleich zu den Schwellwerten die Funktion der Meßeinrichtung überprüft. Diese Vorgehensweise zeigt ebenfalls die obengenannten Nachteile.
  • Vorteile der Erfindung
  • Ein Vorteil der erfindungsgemäßen Vorgehensweise ist darin zu sehen, daß ein Überprüfungsverfahren eingesetzt wird, das in Teilbereichen, die durch eine beeinträchtigte, unvollständige Signalübertragung oder -erzeugung, beispielsweise infolge eines von Abrieb erhöhten Übergangswiderstand zwischen Widerstandsbahn und Schleiferabgriff eines Potentiometers, gekennzeichnet sind, weniger empfindlich ausgestaltet ist. Dadurch wird einerseits ermöglicht, daß tatsächlich auftretende Fehlfunktionen des Sensors erkannt werden, ein Abschalten des gesamten System aufgrund der oben dargelegten vermeintlichen Fehlfunktionen jedoch wirksam vermieden wird. Die erfindungsgemäße Vorgehensweise gewährleistet eine weitgehende Betriebssicherheit und Verfügbarkeit eines Systems zur Steuerung und/oder Regelung einer Brennkraftmaschine, da bei einer aus mehreren Sensoren bestehenden Meßeinrichtung durch die erste Fehlfunktionsüberprüfung, ob die von den Sensoren erzeugten Signalwerte zueinander in einem vorgegebenen ersten Wertbereich liegen, eine Erkennung von Nebenschlüssen mit parasitären Widerständen sowohl zu den Versorgungsspannungspolen als auch zwischen den Signalleitungen der Sensoren sowie von Nichtlinearitäten der Sensorkennlinien und Unterbrechungen der Signalleitungen mit parasitären Widerständen zu den Versorgungsspannungspolen möglich ist. Eine zweite, weniger empfindliche Fehlfunktionsüberprüfung in den vorgegebenen Teilbereichen, ob die Signalwerte der Sensoren einzeln und/oder zueinander in einem vorgegebenen zweiten Wertbereich liegen, ermöglicht es darüberhinaus, daß die oben genannten Fehler auch in diesen Teilbereichen erkennbar sind und auf ein Abschalten des Systems aufgrund der oben dargelegten vermeintlichen Fehlfunktionen verzichtet werden kann und so Verfügbarkeit und Betriebssicherheit des Systems verbessert wird.
  • Weitere Vorteile der Erfindung ergeben sich in Verbindung mit den Unteransprüchen aus den im folgenden beschriebenen Ausführungsbeispielen.
  • Zeichnung
  • Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsbeispiele erläutert. Dabei zeigt Figur 1 ein Blockschaltbild eines mit einer aus mehreren Sensoren bestehenden Meßeinrichtung ausgestatteten Systems am Beispiel eines elektronischen Gaspedals. Figur 2 stellt ein bevorzugtes Ausführungsbeispiel der Meßeinrichtung am Beispiel eines Doppelpotentiometers dar, während in den Figuren 3 und 4 die erfindungsgemäße Vorgehensweise am Beispiel eines Kennliniendiagramms und eines Flußdiagramms verdeutlicht ist.
  • Beschreibung eines Ausführungsbeispiels
  • In Figur 1 ist ein Leistungsstellglied 10 einer nicht dargestellten Brennkraftmaschine, beispielsweise eine Drosselklappe zur Beeinflussung der Luftzufuhr zur Brennkraftmaschine oder eine Regelstange zur Steuerung der Brennkraftmaschine zuzuführenden Kraftstoffmenge gezeigt. Ferner wird mit 11 ein vom Fahrer betätigbares Bedienelement, beispielsweise ein Fahrpedal eines elektronischen Gaspedalsystems, bezeichnet. Das Leistungsstellglied 10 und/oder das Bedienelement 11 sind über Verbindungen 12 bzw. 13 mit mehrere Sensoren umfassenden Meßeinrichtungen 14 bzw. 15 verbunden, die identisch aufgebaut sein können. Der Übersichtlichkeit halber ist in Fig. 1 lediglich die dem Leistungsstellglied 10 zugeordnete Meßeinrichtung 14 näher ausgeführt, so daß die folgenden, auf die Meßeinrichtung 14 bezogenen Aussagen in analoger Weise auf die Meßeinrichtung 15 angewendet werden können. Die Meßeinrichtungen 14 bzw. 15 erzeugen entsprechend der Anzahl der Sensoren Signalgrößen, die die Stellung des jeweils zugeordneten Elements 10 bzw. 11 repräsentieren.
  • Die Meßeinrichtung 14 umfaßt mehrere Sensoren 16 bis 18 zur Erfassung der Stellung des zugeordneten Elements. Bei den Sensoren 16 bis 18 handelt es sich in einem bevorzugten Ausführungsbeispiel um Potentiometer. Die mechanische Verbindung 12 wirkt auf die Sensoren 16 bis 18 derart ein, daß eine Stellungsänderung des zugeordneten Elements 10 zu einer entsprechenden Änderung der Ausgangssignalgrößen der Sensoren führt, so daß jeder Sensor für sich eine die Stellung des zugeordneten Elements repräsentierende Signalgröße erzeugt.
  • Sind die Sensoren beispielweise als Potentiometer ausgeführt, so ist die mechanische Verbindung 12 mit den beweglichen Schleiferabgriffen der Potentiometer verbunden. Die Stellungssignalgröße wird in diesem Fall an den Schleiferabgriffen abgenommen.
  • Über Signalleitungen 24 bis 26, die die Sensoren mit A/D-Wandlern 28 bis 30 verbinden, die Bestandteil einer Recheneinheit 32 sind, wird die Meßeinrichtung 14 mit der Recheneinheit 32 verknüpft.
  • Die Recheneinheit 32 umfaßt neben den A/D-Wandlern 28 bis 30 eine weitere Gruppe A/D-Wandler 38, die über die Signalleitungen 34 mit der Meßeinrichtung 15 verbunden ist. Aus übersichtlichkeitsgründen wurde auf eine detaillierte Darstellung dieser Elemente verzichtet. Ihr Aufbau und Funktionsweise ergibt sich aus der Beschreibung in Verbindung mit der Meßeinrichtung 14.
  • Die A/D-Wandler 28 bis 30 sind über eine Verbindungsleitung 40 mit einem Rechner 42 verbunden, auf den ebenfalls die Leitung 44 geleitet ist, die den Rechner 42 mit den A/D-Wandlern 38 verbindet. Die Ausgangsleitung 46 des Rechners 42 führt über eine Endstufe 48 auf eine Ausgangsleitung 50 der Recheneinheit 32, welche die Recheneinheit 32 mit dem Leistungsstellglied 10 der Brennkraftmaschine verbindet.
  • Die Funktion der Anordnung nach Figur 1 wird im folgenden erläutert. Die Meßeinrichtung 14 gibt über ihre Signalleitungen 24 bis 26 eine der Stellung des Elements 10, die über die Verbindung 12 auf die Sensoren 16 bis 18 übertragen wird, an die Recheneinheit 32 ab. Im Rechner 42 der Recheneinheit 32 werden die mittels der A/D-Wandler 28 bis 30 aus analogen in digitale Größen gewandelte und über die Leitung 40 an den Rechner 42 abgegeben Signalgrößen verarbeitet.
  • In einer Ausführungsart wird die Signalgröße des Sensors 16, die die Leistungsstellgliedstellung und damit den Istwert eines aus Brennkraftmaschine und Recheneinheit 32 bestehenden Leistungsregelkreises repräsentiert, im Rechner 42 mit dem über die Leitung 44 dem Rechner zugeführten Soll-Wert der Bedienelementstellung verglichen und in Abhängigkeit des Vergleichsergebnisses über die Ausgangsleitungen 46, die Endstufe 48 und die Ausgangsleitung 50 das Leistungsstellglied 10 derart beeinflußt, daß die Differenz zwischen Soll- und Ist-Wert verkleinert wird. In dieser Ausführungsart dienen die Signalgrößen der weiteren Sensoren lediglich zur Überwachung der Funktion des Sensors 16.
  • Darüber hinaus ist möglich, daß ein Mittelwert oder ein Minimalwert aus den von den Sensoren 16 bis 18 erzeugten Signalgrößen zur Regelung der Stellung des Leistungsstellgliedes 10 verwendet wird, wobei wenigstens eine der Signalgrößen eines der Sensoren zur Überwachung der Funktion des oder der anderen dient.
  • In der Recheneinheit 32 wird darüberhinaus die erfindungsgemäße Vorgehensweise zur Fehlfunktionsüberprüfung auf der Basis der Signalgrößen der Sensoren 16 bis 18 durchgeführt.
  • Neben der in der Figur 1 dargestellten Funktion führt die Recheneinheit 32 weitere Funktionen aus, wie beispielsweise Zündzeitpunktsbestimmung, Kraftstoffzumessung und/oder Leerlaufregelung.
  • In Figur 2 ist ein bevorzugtes Ausführungsbeispiel der Meßeinrichtungen 14 und/oder 15 als sogenannte Doppelpotentiometer abgebildet. Figur 2 zeigt die Meßeinrichtung 14 oder 15 sowie die Recheneinheit 32, deren Ein- bzw. Ausgänge entsprechend Figur 1 belegt sind. Die Meßeinrichtung umfaßt zwei als Potentiometer ausgebildeten Sensoren 100 und 102, deren Schleiferabgriffe 104 bzw. 106 mit der mechanischen Verbindung 12 oder 13 verbunden sind. Die beiden Schleiferabgriffe 104 bzw. 106 verändern ihre Stellung in Abhängigkeit einer Stellungsänderung des über die mechanische Verbindung auf die Schleiferabgriffe einwirkenden Elementes parallel zueinander in gleicher Richtung.
  • Die Widerstandsbahn 108 des Sensors 100 ist über eine Verbindungsleitung 110 an den positiven Pol 112 der Versorgungsspannung angeschlossen, während am anderen Ende der Widerstandsbahn 108 des Sensors 100 eine zweite Leitung 114 zum negativen Pol 116 der Versorgungsspannung führt. Dabei entspricht in dieser Ausführungsart des Sensors 100 die Stellung des Schleiferabgriffes 104 in der Nähe des positiven Anschlusses der Versorgungspannung, wie in Fig. 2 dargestellt, einer Leerlaufstellung des zugeordneten Elements. Der Schleiferabgriff 104 ist über die Signalleitung 118 und den Widerstand 120 an die Signalleitung 24 bzw. im Falle der Meßeinrichtung 15 an eine der Leitungen 34 angeschlossen, die die Meßeinrichtungen mit der Recheneinheit 32 verbinden.
  • Die Widerstandsbahn 122 des Sensors 102 ist über eine Verbindungsleitung 124 an den positiven Pol 112 der Versorgungsspannung angeschlossen, während am anderen Ende der Widerstandsbahn 122 des Sensors 102 eine zweite Leitung 126 über den Verknüpfungspunkt 128 und den Widerstand 130 an den negativen Pol 116 der Versorgungsspannung geführt ist. Der Schleiferabgriff 106 des Sensors 102 ist an eine Signalleitung 132 angeschlossen, die über den Verbindungspunkt 134 und den Widerstand 136 zur Signalleitung 26 bzw. im Fall der Meßeinrichtung 15 zu einer der Leitungen 34 führt, die die Meßeinrichtungen mit der Recheneinheit 32 verbinden. Zwischen den beiden Verknüpfungspunkten 134 und 128 liegt ein weiterer Widerstand 138. Im Gegensatz zum Sensor 100 befindet sich die Leerlaufstellung des Sensors 102 in der Nähe des negativen Anschlusses der Versorgungsspannung. In dieser Ausführungsart sind die beiden Potentiometer elektrisch gegenläufig, d.h. bei einer Stellungsänderung verändern sich die Signalgrößen der beiden Sensoren in entgegengesetzter Richtung. Die erfindungsgemäße Vorgehensweise findet jedoch auch bei elektrisch gleichläufigen Potentiometern Anwendung.
  • Die Signalleitung 24 führt in der Recheneinheit 32 auf einen Verknüpfungspunkt 140, an dem ein Widerstand 142 gegen den negativen Pol 116 der Versorgungsspannung liegt. Ferner ist die Signalleitung 24 über diesen Verknüpfungspunkt 140 auf dem A/D-Wandler 28 oder einer der A/D-Wandler 38 geführt. In analoger Weise führt die Signalleitung 26 über den Verbindungspunkt 144, an den ein Widerstand 146 an den negativen Pol 116 der Versorgungsspannung angeschlossen ist zum A/D-Wandler 30. Entsprechend Figur 1 sind die Ausgänge der beiden A/D-Wandler 28 und 30 an eine Verbindungsleitung 40 angeschlossen, die sie mit dem Rechner 42 verbindet.
  • Die Funktionsweise der Anordnung nach Figur 2 ergibt sich entsprechend der nach Figur 1.
  • Im Falle eines erhöhten Widerstandes zwischen Widerstandsbahn und Schleiferabgriff werden durch den Spannungsteiler der Widerstände 130 und 138 in Verbindung mit dem die Eingangsbeschaltung der Recheneinheit 32 repräsentierenden Widerstand 146 auf die Signalleitung 132 bzw. 26 ein vorgegebener minimaler Signalwert aufgeprägt, der im Falle einer unterbrochenen Signalleitung 132 bwz. 26 oder einer unterbrochenen Masseleitung 126 nicht auftritt. Dadurch wird, wie weiter unten dargestellt ist, eine Unterscheidung zwischen unterbrochener Leitung und erhöhtem Übergangswiderstand ermöglicht.
  • Die zum Sensor 102 gehörige Eingangsbeschaltung (Widerstand 146) der Recheneinheit 32 ist dabei derart ausgelegt, daß beispielsweise bei unterbrochener Signalleitung eine Signalgröße an die Recheneinheit geleitet wird, die einer Leerlaufstellung des zugeordneten Elements, insbesondere dem Wert 0, entspricht.
  • Der oben dargelegte Sachverhalt wird am Beispiel des Kennliniendiagramms nach Figur 3 verdeutlicht. Dort ist auf der vertikalen Achse die Signalgrößen U der Sensoren aufgezeichnet, während auf der horizontalen Achse der Stellungswinkel in Grad des mit der Meßeinrichtung verbundenen Elements aufgetragen ist.
  • Figur 3 zeigt die Stellungs-Signalgrößen-Kennlinien der beiden nach Figur 2 ausgeführten Sensoren 100 und 102. Dabei repräsentiert die im wesentlichen lineare, von rechts nach links fallende Kennlinie 200 diejenige des Sensors 100, während die entgegengesetzt verlaufende die Kennlinie 202 des Sensors 102 darstellt. Diese Kennlinienverläufe sind eine Folge der unterschiedlichen Versorgungsspannungsbeschaltung der beiden Sensoren. Ferner sind in Fig. 3 obere (204) (UG2) bzw untere zulässige Grenzwerte (206) (UG1) erkennbar, innerhalb derer die Signalgrößen der Sensoren liegen müssen, und eine weitere Schwellwertlinie 208 (Uth), deren Unter- bzw. Überschreiten das Erreichen des Leerlauf- bzw. leerlaufnahen Bereichs anzeigt.
  • Darüber hinaus ist im Leerlauf- bzw. leerlaufnahen Bereich der Kennlinie 202 des zur Überwachung des Sensors 100 dienende Sensor 102 der vorgegebene, von den Schaltelementen 130 und 138 erzeugte, minimale Grenzwert (210) (Umin) dargestellt.
  • Zur Fehlfunktionsüberprüfung kann der oben dargestellte Sachverhalt wie folgt angewendet werden. Eine erste Fehlfunktionsüberprüfung ergibt sich aus einem Vergleich der Signalwerte mit den oberen und unterer zulässigen Grenzwerten (UG2, UG1). Dies entspricht für jeden Sensor einzeln einer Signalbereichsüberprüfung. Ferner kann überprüft werden, ob die Signalwerte zueinander in einem vorgegebenen zulässigen Toleranzband liegen. Dieses Toleranzband kann auf verschiedene Arten gebildet werden. Zum einen ist es bei elektrisch gegenläufigen Sensoren möglich, eine Addition der Signalgrößen durchzuführen. Infolge der elektrischen Gegenläufigkeit führt dies bei korrekter Funktion der Sensoren zu der den oberen maximalen Grenzwert bildenden Signalgröße UG2. Um letztere wird ein Toleranzband durch Addition bzw. Subtraktion eines die noch tolerierbare Abweichung zwischen den Sensorsignalgrößen repräsentierenden Wertes gebildet und die Summe der Signalgrößen der beiden Sensoren auf Einhaltung dieses Toleranzbandes geprüft.
  • Zum anderen kann dieses Toleranzband durch Addition und Subtraktion eines vorgegebenen Toleranzwertes zu den Signalwerten des die Regelfunktion bedienenden Sensors 100 gebildet werden. Der Signalwert des Überwachungssensors 102 muß dann bei fehlerfreier Funktion der Meßeinrichtung in diesem ersten Toleranzband liegen.
  • Diese Maßnahme ist auch bei elektrisch gleichläufigen Sensoren einsetzbar, bei gegenläufigem Verhalten müssen die Signalwerte zur Fehlfunktionsüberprüfung umgerechnet werden müssen.
  • Im Leerlauf- bzw. leerlaufnahen Bereich kann diese erste Fehlfunktionüberprüfung, ob die Signalgrößen der Sensoren zueinander außerhalb eines ersten Wertebereichs liegen, wegen der möglicherweise auftretenden hohen Übergangswiderstände ein unnötiges Abschalten des gesamten Systems infolge erkannter Fehlfunktion hervorrufen. Daher wird im Leerlauf- bzw. leerlaufnahen Bereich eine zweite Überwachungsart eingeführt. Diese besteht darin, daß in diesem Teilbereich eine gegenüber der oben beschriebenen Toleranzbandüberwachung weniger empfindliche Überwachung vorgenommen wird. Dazu wird die Überprüfung darauf beschränkt, ob die Signalwerte der beiden Sensoren zueinander unterhalb der oberen Grenze des Toleranzbandes liegen.
  • Einen weiteren Sicherheitsgewinn ist in diesem Teilbereich durch die oben erwähnten Schaltungsmaßnahmen zu erzielen. Eine Überprüfung des Signalwertes des Sensors 102 mit dem vorgegebenen minimalen Grenzwert Umin ermöglicht eine Unterscheidung zwischen einem tatsächlichen Fehlerzustand infolge einer Leitungsunterbrechung, der eine entsprechende Reaktion zur Folge haben muß, oder einem erhöhten Übergangswiderstand. Der zweite Wertebereich ist demnach durch Umin nach unten begrenzt. Eine analoge Vorgehensweise kann bezüglich des Sensors 100 ebenfalls vorgenommen werden. Im Ausführungsbeispiel belibt jedoch als untere Grenze UG1 erhalten.
  • Diese zweite Überwachungsart oder Fehlfunktionsüberprüfung ist demnach gegenüber der ersten weniger empfindlich.
  • Die oben beschriebene Vorgehensweise ist dabei in einer anderen Ausführungsform mit lediglich einem Sensor, dessen Funktion mittels eines anderen, zweiten Betriebsparameter überwachbar ist, anzuwenden.
  • Das in der Recheneinheit 32 ausgeführte Programm zur Fehlfunktionserkennung der Meßeinrichtung 14, das auch auf die Meßeinrichtung 15 in analoger Weise angewendet werden kann, ist als Flußdiagramm in Figur 4 dargestellt.
  • Nach dem Start des in Figur 4 dargestellten Programmteils wird in Schritt 300 die beiden über die Leitungen 24 und 26 ermittelten Signalgrößen, die die Stellung des jeweils zugeordneten Elements repräsentieren, eingelesen und in Schritt 302 der Abfrage unterworfen, ob einer der beiden Signalgrößen einen oberen zulässigen Grenzwert (UG2) überschreitet. Ist dies der Fall, wird in Schritt 304 eine Fehlfunktion der Meßeinrichtung erkannt, deren Ursache z.B. in einem Kurzschluß nach plus liegen kann und ggf. eine vorgesehene Notlauffunktion eingeleitet und der Programmteil beendet.
  • Sind beide Signalgrößen unterhalb ihres maximal zulässigen Grenzwertes (UG2), wird im Abfrageschritt 306 überprüft, ob beide Signalwerte unterhalb einer vorgegebenen Schwelle (Uth), die einer erhöhten Leerlaufstellung entspricht, sich befinden. Abhängig vom Ergebnis des Abfrageschritts 306 werden, im Falle daß beide Signalwerte nicht unterhalb dieses Schwellwertes liegen, eine erste, im anderen Fall eine zweite Überwachungsfunktion eingeleitet.
  • Tritt der erstgenannte Fall ein, so wird im Abfrageschritt 308 überprüft, ob einer der beiden Signalgrößen unterhalb eines unteren, zulässigen Grenzwertes (UG1) liegt. Ist dies der Fall, wird in Schritt 310 eine Fehlfunktion der Meßeinrichtung aufgrund einer möglichen Unterbrechung in der positiven Versorgungsspannungsleitung, eines Kurzschlusses nach Masse oder einer Unterbrechung der Signalleitungen erkannt und das Programm beendet. Liegen beide Signalgrößen entsprechend der Abfrage in Schritt 308 oberhalb ihres unteren zulässigen Grenzwertes (UG1), so wird in den weiteren Schritten überprüft, ob die beiden Signalgrößen zueinander in einem vorgegebenen Signalbereich liegen.
  • Die Überprüfung des Signalwertes des die Regelfunktion bedienenden Sensors 100 kann auch vor der Abfrage 306 erfolgen, wobei im Fehlerfall einer Unterschreitung des minimalen Grenzwertes UG1 eine Fehlerreaktion nach Schritt 304 eintritt. Die Abfrage 308 bezieht sich dann nur noch auf den überwachenden Sensor 102.
  • Im Abfrageschritt 312 wird die Summe der beiden Signalwerte dahingehend untersucht, ob sie oberhalb eines um den oberen maximalen Grenzwert (UG2) gebildeten Toleranzbereiches liegen. Ist dies der Fall, wird zu Schritt 310 weitergegangen, eine Fehlfunktion der Meßeinrichtung erkannt und ggf. eine Notlauffunktion eingeleitet. Diese Fehlerart kann infolge von Nebenschlüssen oder Nichtlinearitäten entstehen. Im anderen Fall wird im Abfrageschritt 314 diese Summe dahingehend überprüft, ob sie unterhalb dieses Toleranzbandes liegt. Ist dies der Fall, erfolgt nach Schritt 310 die oben beschriebene Reaktion, während im anderen Fall die Funktionsfähigkeit der Meßeinrichtung festgestellt wird und entsprechend Schritt 316 das System im Normalbetrieb betrieben wird. Danach wird der Programmteil beendet und ggf. neu gestartet.
  • Die Schritte 312 und 314 können auch derart ausgeführt sein, daß einer der beiden Signalwerte dahingehend überprüft wird, ob er ober- bzw. unterhalb eines um einen anderen Signalwert gebildeten Toleranzbereiches liegt.
  • Wird im Abfrageschritt 306 erkannt, daß die Signalgrößen beider Sensoren unterhalb der Leerlaufschwelle liegen, wird in Schritt 318 überprüft, ob der Signalwert des die Regelfunktion ausführenden Sensors 100 unterhalb des zulässigen minimalen Grenzwertes (UG1) liegt.
  • Ist dies der Fall, wird entsprechend Schritt 304 verfahren, während im gegenteiligen Fall im Abfrageschritt 320 der Signalwert des Überwachungsensors 102 dahingehend überprüft wird, ob die von ihm erzeugte Signalgröße unterhalb des minimalen Grenzwertes 210 Umin liegt. Bei einem derartigen Ergebnis wird auf eine Unterbrechung der Signalleitung und/oder eine Unterbrechung der positiven Versorgungsspannungsleitung des Sensors 102 geschlossen und entsprechend Schritt 304 verfahren. Ein entgegengesetztes Ergebnis des Abfrageschritts 320 führt zur Abfrage nach Schritt 322, ob der vom Bedienelement erzeugte Sollwert unterhalb eines um einen Toleranzwert erhöhten Leerlaufwertes liegt, d.h. ob die Meßeinrichtung sich noch im Leerlauf- bzw. leerlaufnahen Bereich befindet. Ist dies nicht der Fall, muß eine Fehlfunktionüberprüfung der Meßeinrichtung nach den den Schritten 312 und 314 durchgeführt werden. Ist der Sollwert jedoch im Leerlaufbereich, so wird die Abfrage in Schritt 324 vorgenommen, mit der überprüft wird, ob der Signalwert des Sensors 102 unterhalb der oberen Grenze des um den Signalwerts des Sensors 100 gebildeten Toleranzbandes liegt. Ein Überschreiten des Grenzwertes durch den Signalwert führt entsprechend Schritt 304 zur einer Fehlerreaktion z.B. aufgrund eines möglichen Kurzschlusses des Sensors 102 nach Plus, beim gegenteiligen Ergebnis kann dagegen von einem Normalbetrieb der Meßeinrichtung ausgegangen werden trotz eines möglicherweise vorhandenen erhöhten Übergangswiderstandes zwischen Schleiferabgriff und Widerstandsbahn.
  • Durch diese zweite Überwachungsart wird überprüft, ob die Signalwerte der Sensoren einzeln und/oder zueinander außerhalb eines zweiten Wertebereichs liegen. Da dieser Wertebereich betragsmäßig größer ist, ist die zweite Überwachungsart weniger empfindlich als die erste.
  • Durch die oben beschriebene Maßnahme wird eine Fehlerreaktion infolge einer beeinträchtigter, unvollständiger Signalübertragung oder -erzeugung vermieden.

Claims (10)

  1. System zur Steuerung und/oder Regelung einer Brennkraftmaschine wenigstens abhängig von Signalwerten, die einen Betriebsparameter der Brennkraftmaschine und/oder des Kraftfahrzeugs repräsentieren,
    - wobei wenigstens ein erster und ein zweiter Sensor (16, 18, 100, 102) vorgesehen ist, die jeweils den Betriebsparameter repräsentierende Signalwerte ermitteln,
    - wobei Fehlfunktionen ausgehend von den Signalwerten abgeleitet werden und diese Fehlfunktionsüberprüfung innerhalb wenigstens eines vorgegebenen Teilbereichs des Signalbereichs des Betriebsparameters mit geringerer Empfindlichkeit erfolgt als außerhalb, dadurch gekennzeichnet, daß
    - ein Fehler erkannt wird, wenn die Signalwerte des ersten Sensors eine aus den Signalwerten des zweiten Sensors abgeleitete erste oder zweite Grenzwertelinie überschreiten,
    - in dem wenigstens einen vorgegebenen Teilbereich eine Fehlfunktion erkannt wird, wenn die Signalwerte des ersten Sensors die erste Grenzwertelinie überschreiten, während kein Fehler erkannt wird, wenn dessen Signalwerte die zweite Grenzwertelinie überschreiten.
  2. System nach Anspruch 1, dadurch gekennzeichnet, daß der Betriebsparameter die Stellung wenigstens eines die Leistung der Brennkraftmaschine beeinflussenden Elements, insbesondere eines Leistungsstellgliedes und/oder eines vom Fahrer betätigbaren Bedienelements, darstellt.
  3. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
    - auf der Basis der von den Sensoren erzeugten Signalwerte eine erste Fehlfunktionsüberprüfung, ob die Signalwerte zueinander außerhalb eines ersten vorgegebenen Wertebereichs liegen, durchgeführt wird,
    - in vorgegebenen Teilbereichen, insbesondere im Leerlauf- bzw. leerlaufnahen Bereich der Stellung des jeweiligen Elements, eine zweite Fehlfunktionsüberprüfung, ob die Signalwerte einzeln und/oder zueinander außerhalb eines vorgegebenen zweiten Wertebereichs liegen, erfolgt.
  4. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es sich bei den Sensoren um Potentiometer handelt.
  5. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die vorgegebenen Teilbereiche durch eine beeinträchtigte und/oder unvollständige Signalübertragung oder -erfassung bestimmt sind.
  6. System nach Anspruch 2, dadurch gekennzeichnet, daß diese Teilbereiche durch vorgegebene Schwellwerte für die Stellung des und/oder der leistungsbestimmenden Elemente begrenzt sind.
  7. System nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß der zweite Wertebereich durch eine erste obere, aus den Signalwerten wenigstens eines der Sensoren abgeleiteten Grenzlinie und durch eine zweite untere, vorbestimmte Grenzlinie, die betragsmäßig kleiner als eine zweite untere Grenzlinie des ersten Wertebereichs ist, begrenzt wird.
  8. System nach Anspruch 7, dadurch gekennzeichnet, daß die zweite, untere Grenzlinie des zweiten Wertebereichs durch dem jeweiligen Sensor zugeordnete Schaltungsmittel festgelegt ist.
  9. System nach Anspruch 8, dadurch gekennzeichnet, daß die Schaltungsmittel Widerstände darstellen, die einen Spannungsteiler bilden, mit dessen Hilfe den Signalwerten des jeweiligen Sensors ein vorbestimmter Signalwert aufprägbar ist.
  10. System nach Anspruch 2, dadurch gekennzeichnet, daß die folgenden Schritte durchgeführt werden:
    - Einleitung einer Fehlerreaktion, wenn einer der Signalwerte oberhalb einer oberen Signalbereichsgrenze liegt,
    - Überprüfen, ob sich die Signalwerte aller Sensoren in einem vorgegebenen Teilbereich befinden,
    - Einleitung einer Fehlerreaktion, wenn die Signalwerte der Sensoren außerhalb dieser Teilbereich sich befinden und wenigstens eine der Signalwerte unterhalb einer unteren Signalbereichsgrenze liegt, oder sich wenigstens eine der Signalwerte außerhalb eines um einen Signalwert gebildeten Toleranzbandes liegt,
    - Einleitung einer Fehlerreaktion, wenn die Signalwerte der Sensoren innerhalb dieser Teilbereiche sich befinden und zusätzlich der zur Überwachung der anderen Sensoren dienende, wenigstens eine Signalwert unterhalb einer vorbestimmten unteren Grenzlinie, die unterhalb der unteren Signalbereichsbegrenzung liegt, sich befindet oder dieser Signalwert oberhalb der oberen Grenzwerte des Toleranzbandes liegt.
EP91902506A 1990-02-10 1991-01-19 System zur steuerung und/oder regelung einer brennkraftmaschine Expired - Lifetime EP0468007B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4004083 1990-02-10
DE4004083A DE4004083A1 (de) 1990-02-10 1990-02-10 System zur steuerung und/oder regelung einer brennkraftmaschine
PCT/DE1991/000042 WO1991012423A1 (de) 1990-02-10 1991-01-19 System zur steuerung und/oder regelung einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP0468007A1 EP0468007A1 (de) 1992-01-29
EP0468007B1 true EP0468007B1 (de) 1995-10-11

Family

ID=6399859

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91902506A Expired - Lifetime EP0468007B1 (de) 1990-02-10 1991-01-19 System zur steuerung und/oder regelung einer brennkraftmaschine

Country Status (6)

Country Link
US (1) US5224453A (de)
EP (1) EP0468007B1 (de)
JP (1) JP2854709B2 (de)
DE (2) DE4004083A1 (de)
ES (1) ES2079640T3 (de)
WO (1) WO1991012423A1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4015415B4 (de) * 1990-05-14 2004-04-29 Robert Bosch Gmbh Vorrichtung zur Erfassung eines veränderlichen Betriebsparameters
DE4038337C2 (de) * 1990-12-01 1999-12-02 Bosch Gmbh Robert Verfahren zur Steuerung und/oder Regelung einer Brennkraftmaschine
DE4235880C2 (de) * 1992-10-23 2003-07-17 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erfassung einer veränderlichen Größe bei Fahrzeugen
JP2855393B2 (ja) * 1993-02-05 1999-02-10 本田技研工業株式会社 内燃機関の制御装置
WO1994019592A1 (de) * 1993-02-26 1994-09-01 Siemens Aktiengesellschaft Anordnung zur anschaltung von positionssensoren an prozessoren
DE4313746C2 (de) * 1993-04-27 2002-11-07 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung der Leistung einer Antriebseinheit eines Fahrzeugs
DE4322472B4 (de) * 1993-07-06 2006-03-09 Siemens Ag Schaltungsanordnung zur Überwachung eines Stellungsgebers
US5695444A (en) * 1995-07-20 1997-12-09 Chaney; John L. Male organ constrictor device and method of using the device
JP3000675B2 (ja) * 1996-02-29 2000-01-17 三菱自動車工業株式会社 内燃機関用燃料供給装置
JP3770675B2 (ja) * 1996-12-19 2006-04-26 トヨタ自動車株式会社 スロットル制御装置
DE19719518B4 (de) * 1997-05-09 2008-04-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Kraftfahrzeugs
DE19826589A1 (de) * 1998-06-15 1999-12-23 Siemens Ag Verfahren zum Unterscheiden einer Leitungsunterbrechung und einer Leitungsbeeinträchtigung bei der Ermittlung einer Pedalstellung in einem Kraftfahrzeug
JP3694406B2 (ja) * 1998-08-28 2005-09-14 株式会社日立製作所 電制スロットル式内燃機関のフェイルセーフ制御装置
EP1136681A3 (de) * 2000-03-24 2003-08-06 Ford Global Technologies, Inc. Elektronisches Drosselklappensteuerungssystem
DE10018859A1 (de) 2000-04-14 2001-10-18 Bosch Gmbh Robert System und Verfahren zur Überwachung einer Einrichtung zum Messen, Steuern und Regeln
US6434476B1 (en) * 2000-10-04 2002-08-13 Detroit Diesel Corporation High voltage fault discrimination for EGR temperature sensor
DE10064673B4 (de) * 2000-12-22 2005-02-24 Renk Ag Fehlertolerante elektromechanische Stelleinrichtung
DE10130704A1 (de) * 2001-06-26 2003-01-02 Bosch Gmbh Robert Stellungsgeber und Verfahren sowie Vorrichtung zur Überwachung eines Stellungsgebers
DE10226062A1 (de) 2002-06-12 2004-01-08 Ab Elektronik Gmbh Weitwinkel-Drehwinkelsensor
US6899080B2 (en) * 2002-07-13 2005-05-31 Visteon Global Technologies, Inc. Method and system for selecting between two sensor output signals in an electronic throttle system
DE102005021890A1 (de) * 2005-05-04 2006-11-09 E.G.O. Elektro-Gerätebau GmbH Bedienvorrichtung und Verfahren zur Auswertung einer Bedienvorrichtung
DE102005039151A1 (de) * 2005-08-17 2007-02-22 Robert Bosch Gmbh Steuergerät für eine Brennkraftmaschine
DE102009035126B4 (de) * 2009-07-29 2016-06-02 Abb Technology Ag Verfahren zur Erhöhung der Verfügbarkeit von Weg-/ Positionsmesssytemen auf Basis von Potentiometern mit Schleiferabgriff
DE102009036875B4 (de) * 2009-08-10 2016-06-23 Abb Technology Ag Verfahren zur Erhöhung der Verfügbarkeit von Weg-/ Positionsmesssystemen auf Basis von Potentiometern mit Schleiferabgriff (II)
DE102013207750A1 (de) * 2013-04-29 2014-10-30 Robert Bosch Gmbh Sensoreinrichtung mit disjunkten Wertebereichen

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3614047A1 (de) * 1986-04-25 1987-11-05 Bosch Gmbh Robert Positionserfassungsorgan fuer ein bewegbares teil in einem kraftfahrzeug
DE3621937A1 (de) * 1986-06-30 1988-01-07 Bosch Gmbh Robert Ueberwachungseinrichtung fuer eine elektronische steuereinrichtung in einem kraftfahrzeug
JPH0689698B2 (ja) * 1987-01-23 1994-11-09 株式会社日立製作所 内燃機関制御装置
JPH0717007Y2 (ja) * 1987-05-28 1995-04-19 日産自動車株式会社 車速センサ−異常検出装置
JPH0730728B2 (ja) * 1987-05-30 1995-04-10 マツダ株式会社 エンジンのアイドル回転数制御装置
IT1218996B (it) * 1988-02-05 1990-04-24 Weber Srl Sistema di conversione di un segnale proveniente da un trasduttore a caratteristica lineare per ottenere risoluzioni di acquisizione modificate
DE3812760C2 (de) * 1988-04-16 1996-10-24 Vdo Schindling Verfahren und Anordnung zur Überwachung eines Sollwertgebers
DE3840148A1 (de) * 1988-11-29 1990-05-31 Bosch Gmbh Robert Verfahren und vorrichtung zum erkennen eines fehlerzustandes einer lambdasonde
DE3928709A1 (de) * 1989-08-30 1991-03-07 Bosch Gmbh Robert Verfahren und vorrichtung zur ueberpruefung der funktionsfaehigkeit einer abgassondenheizung und deren zuleitungssystem
JPH06100132B2 (ja) * 1989-08-30 1994-12-12 マツダ株式会社 エンジンの制御装置
JP2832049B2 (ja) * 1989-12-08 1998-12-02 マツダ株式会社 エンジンの空燃比制御装置

Also Published As

Publication number Publication date
US5224453A (en) 1993-07-06
ES2079640T3 (es) 1996-01-16
JP2854709B2 (ja) 1999-02-03
EP0468007A1 (de) 1992-01-29
DE59106651D1 (de) 1995-11-16
DE4004083A1 (de) 1991-08-14
JPH04505495A (ja) 1992-09-24
WO1991012423A1 (de) 1991-08-22

Similar Documents

Publication Publication Date Title
EP0468007B1 (de) System zur steuerung und/oder regelung einer brennkraftmaschine
DE4004086C2 (de)
EP0446453B1 (de) Verfahren und Einrichtung zur elektrischen Steuerung und/oder Regelung einer Brennkraftmaschine eines Kraftfahrzeugs
EP0536557B1 (de) Vorrichtung zur Steuerung der Antriebsleistung eines Fahrzeugs
DE69017738T2 (de) Steuerungssystem des Drosselventils einer Brennkraftmaschine.
DE10210684A1 (de) Verfahren und Vorrichtung zur Überwachung eines Moments einer Antriebseinheit eines Fahrzeugs
DE4235880C2 (de) Verfahren und Vorrichtung zur Erfassung einer veränderlichen Größe bei Fahrzeugen
EP0457033A2 (de) Vorrichtung zur Erfassung eines veränderlichen Betriebsparameters
DE102006010542B3 (de) Verfahren zum Erkennen einer fehlerhaften Stelleinrichtung
DE19513370B4 (de) Verfahren und Vorrichtung zur Steuerung der Leistung einer Brennkraftmaschine
WO1991002147A1 (de) Verfahren und vorrichtung zur steuerung und/oder regelung der motorleistung einer brennkraftmaschine eines kraftfahrzeugs
DE19719518B4 (de) Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Kraftfahrzeugs
DE4204623C2 (de) Einrichtung zur Erfassung einer veränderlichen Größe in Fahrzeugen
DE19516583A1 (de) Verfahren und Vorrichtung zur Funktionsüberprüfung der Meßwerterfassung bei einer elektronischen Leistungssteuerung eines Fahrzeugs
WO2000063546A1 (de) Verfahren und vorrichtung zur überwachung eines rechenelements in einem kraftfahrzeug
DE3905479A1 (de) Stoersicherheitsschaltung fuer einen konstantgeschwindigkeitssteuerapparat
DE4312336A1 (de) Steuereinrichtung für die Ansaugluftmenge eines Verbrennungsmotors
DE4314118B4 (de) Verfahren und Vorrichtung zur Steuerung der Antriebsleistung eines Fahrzeugs
DE10350263A1 (de) Verfahren und Vorrichtung zum Bestimmen des Zustands eines Sensors und Identifizieren seiner Störung
EP0548533B1 (de) Einrichtung zur Erfassung einer veränderlichen Grösse bei einem Fahrzeug
DE4322472B4 (de) Schaltungsanordnung zur Überwachung eines Stellungsgebers
DE19923688A1 (de) Verfahren und Vorrichtung zur Fehlererkennung bei Meßgrößen in einem Fahrzeug
EP0708233B1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE4220246A1 (de) Einrichtung zur Steuerung einer Verstelleinrichtung in einem Flugzeug
DE10006958C2 (de) Verfahren zur Diagnose eines doppelpotentiometrischen Gebers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910829

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

17Q First examination report despatched

Effective date: 19940505

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59106651

Country of ref document: DE

Date of ref document: 19951116

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2079640

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951216

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031231

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040127

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040129

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050120

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050120

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050119

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070504

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100209

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100324

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110119