EP0460144B1 - Procede pour l'utilisation d'une propulsion par jet d'eau pour engins aquatiques et agencement pour la realisation du procede - Google Patents

Procede pour l'utilisation d'une propulsion par jet d'eau pour engins aquatiques et agencement pour la realisation du procede Download PDF

Info

Publication number
EP0460144B1
EP0460144B1 EP91900165A EP91900165A EP0460144B1 EP 0460144 B1 EP0460144 B1 EP 0460144B1 EP 91900165 A EP91900165 A EP 91900165A EP 91900165 A EP91900165 A EP 91900165A EP 0460144 B1 EP0460144 B1 EP 0460144B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
speed
pump
water
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91900165A
Other languages
German (de)
English (en)
Other versions
EP0460144A1 (fr
Inventor
Josef Merz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0460144A1 publication Critical patent/EP0460144A1/fr
Application granted granted Critical
Publication of EP0460144B1 publication Critical patent/EP0460144B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/10Marine propulsion by water jets the propulsive medium being ambient water having means for deflecting jet or influencing cross-section thereof
    • B63H11/107Direction control of propulsive fluid
    • B63H11/11Direction control of propulsive fluid with bucket or clamshell-type reversing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/10Marine propulsion by water jets the propulsive medium being ambient water having means for deflecting jet or influencing cross-section thereof
    • B63H11/107Direction control of propulsive fluid
    • B63H11/117Pivoted vane

Definitions

  • the invention relates to a method for operating a water jet drive for watercraft according to the preamble of patent claim 1 and an arrangement for carrying out the method according to the preamble of patent claim 9.
  • propulsion devices for water vehicles using propulsion means that is to say both ship propellers of different geometries and so-called water jet drives cannot be adapted to larger speed ranges without adversely affecting the efficiency.
  • Variable pitch propellers also have only a limited working range, whereby the best efficiency over the entire propeller blade extension can only be achieved with one propeller blade position and a propeller speed / degree of progress ratio.
  • a water jet drive Compared to a ship's propeller, which has to process an inflow speed that changes with the speed of the watercraft, but cannot otherwise be influenced, a water jet drive has the advantage that for the pump accelerating the water, an optimal inflow of the pump blade profiles in all driving ranges and all pump speeds and thus Operating points of the best efficiency can be achieved if the throughput-determining nozzle of the water jet drive is designed so that its effective exit cross-section can be changed during operation.
  • nozzle outlet speed of the water jet is optimal with regard to the nozzle efficiency, a flow velocity of the pump that changes with the speed of the watercraft, and a throughput that changes as a function of the speed of the water; see. GB-PS 1 063 945.
  • a second requirement in water-jet-operated watercraft relates to the possibility of trimming, which can basically be achieved by vertically deflecting the propulsion jet.
  • trimming the change in the vertical component of the thrust produced, which is known as trimming, is more advantageous than trimming by means of trim tabs which generate additional resistance, for the optimal mode of operation of a watercraft at different speeds and thus different centers of lift of the watercraft in the longitudinal direction.
  • All of these controls have the characteristic that either beam deflection is only possible in a vertical direction with a simultaneous reduction of the nozzle exit area that cannot be influenced separately or a vertical jet deflection upwards and downwards is possible without changing the nozzle cross-section.
  • the invention has for its object to provide a method and an arrangement for performing the method for a manual or automatic control of the nozzle outlet cross-section regardless of the driving speed and as a result of the different pressures present at the nozzle outlet cross-section, the operation of the water accelerating pump in the area guarantees the optimum efficiency in the entire operating range and also allows the watercraft to be trimmed by means of a controlled vertical deflection of the propulsion jet, which also enables extensive thrust reversal for the reverse travel and for the braking process, and that the arrangement can also be used in towing mode, i.e. when the drive device fails - Drive motor and / or pump - should still generate a usable control pressure.
  • the method according to the invention achieves optimal operation in terms of thrust and efficiency of the water jet drive in all operating areas with regard to speeds and driving speeds, since the variable effective nozzle cross section "Fw”, regardless of the driving speed "w”, depending on the pump speed "n”, the associated water throughput " Q "is adjusted.
  • a speed "vx" proportional to the throughput "Q” or the associated dynamic pressure “pdynx” at a suitable location "x" within the flow channel are advantageously used, and used as a control criterion for the nozzle outlet cross section "F” to be regulated
  • the values "pdynx" and "n” or vx can either be supplied as a control signal to a computer and associated automatic control device or can be displayed in a suitable form for manual adjustment of the optimum.
  • the invention also allows the vertical component of the effective water jet and thus the trimming to be carried out automatically, the deviation from the desired value of the inclination of the watercraft about the transverse axis in the case of a water jet drive and / or also about the longitudinal axis when using two or more for the actuation of the flaps required for this purpose
  • Several water jet drives on the watercraft are detected by suitable sensors and fed to the control in a suitable signal form.
  • the nozzle according to the invention has an at least partially rectangular cross-section that is easy to control in terms of production technology and, in addition to an effective change in the nozzle cross-section by changing the position of the two control flaps relative to one another, also permits a change in the vertical component of the effective one that is possible through the simultaneous adjustment of the two flaps Thrust. Furthermore, an almost complete reversal of thrust is possible by the possible lowering of the front mounting of the lower flap.
  • a bypass opening is created within the nozzle, so that due to the resulting injector effect, the accelerated water mass increases with a lower exit speed from the nozzle, which occurs particularly at low water depths in ports or on rivers the agitation of the bottom is reduced and is advantageously used in the area of low speeds to improve the jet efficiency and the thrust.
  • the water-bearing bypass generated in this way can also be used as a passive rudder in towing and can generate useful control forces.
  • the component carrying the nozzle is designed as a housing and is mounted so as to be pivotable about a vertical axis, which axis can be inclined relative to the vertical, cornering can be carried out easily and safely. All parts of the control, which generate the change in cross-section of the nozzle, the vertical thrust deflection and the thrust reverser for reversing, are directly or indirectly connected to the housing, which leads to a simple and reliable and powerful design of the water jet drive.
  • the upper flap has an oppositely curved surface at the lower end, which serves as the upper limit of the nozzle cross section.
  • pdynx * means the dynamic pressure in the measuring cross section "Fx" at the operating point (10) optimum efficiency at the design speed "n *” (3) and the throughput "Q *", the pressure "pdynx” the measured value at the current pump speed "n”.
  • FIG. 2 An exemplary embodiment for carrying out the method according to the invention will now be described with reference to FIG. 2, only the parts belonging to the invention being shown. From that in advance to one A flow channel arranged in the watercraft with an inlet having an intake opening at its front end, a pump downstream of the inlet in its central region for drawing in and accelerating water, and a nozzle at the jet outlet opening at its rear end, therefore only the rear end of the pump body 18 is shown.
  • the pump body has an approximately circular cross section and merges downstream into a nozzle D formed by a nozzle body 19, an upper flap 20 and a lower flap 21.
  • the nozzle body 19 is pivotally mounted on the pump body in the pivot axis 22, which is only partially shown, and can be adjusted vertically at an angle to the pump axis by means of the pivot device 37 (not shown in more detail).
  • the end face 23 of the nozzle body 19 is designed in the form of a circular arc.
  • the underside of the nozzle body is open and closed by the lower flap 21.
  • the flap 21 movably supported by means of bearing eyes 27 and 32 thus forms the lower boundary of the flow channel and the nozzle.
  • the lower flap 21 also has lateral cheeks 24 which serve to guide the flap 21 in the nozzle body 19 and to limit the water jet laterally when reversing.
  • the upper flap 20 is rotatably mounted about a pivot axis 25 in bearing eyes 25 'of the nozzle body 19 and is adjustable by an adjusting device 26 which engages on a bearing 31 and on the other hand is pivotably mounted on the nozzle body 19 in a bearing eye 38. Furthermore, two adjustment devices 33 are provided between the bearing eyes 32 of the lower flap and the bearing eye 31 of the upper flap 20.
  • the lower flap 21 has bearings 27 at its front end, in which the swiveling device consisting of the indicated adjusting device 28, the angle levers 39 and the linkage 40 engages, with which the lower flap can be lowered at this end.
  • Spacer tabs 29 are arranged on the bearing 27, the other ends of which are pivotably articulated on the upper flap 20 in the bearings 30.
  • the effective nozzle cross section is obtained by changing the gap 34 between the lower circular surface 35 the upper flap 20 and the rear edge 36 of the lower flap 21 changeable.
  • the lower flap 21 is adjusted simultaneously with the upper flap 20 by the actuating device 26 and thus only a vertical change in direction of the emerging water jet is produced with a constant gap 34 and thus constant nozzle cross section.
  • a complete closing of the gap 34 is achieved by the surface 41 of the lower flap 21 being directly supported on the circular surface 35 of the upper flap 20. In this way, the cross-section of the nozzle and thus the flow channel can be closed at least on one side when the port is idle, so that contamination is largely avoided.
  • FIGS. 3 to 8 schematically show the various possible positions of the control flaps 20 and 21 with respect to the nozzle body 19 serving as a flow channel and the outflow directions of the propulsion jet thus generated, as well as the lowering of the flap 21.
  • FIG. 5 shows the “bypass position” of the nozzle, the driving jet flowing in cross section 42 having the speed 43 of the water mass flowing through the bypass cross section 44 corresponding to the driving speed 45 by friction and mixing having a mean exit speed 46 in cross section 34 that is lower than the driving jet communicates and thus improves the nozzle efficiency in the low driving speed range.
  • FIGS. 9 to 11 show a second exemplary embodiment of such a control nozzle.
  • the gap 34 between the rear edges 36a, 36b of the flaps 21a, 21b is closed, the front edge 47a or 47b or both is adjusted such that the gap accelerated by the pump accelerates the water in almost the same way Flow direction in the pump can flow in the opposite direction and thrust opposite to the normal direction of travel. If, on the other hand, the gap 34 is additionally opened, a bypass acting as an injector is created.
  • FIGS. 12 to 14 show a further embodiment of the control device shown in FIGS. 9 to 11 rotated by 90 °, the horizontal beam deflection and thus the control of the direction of travel and the simultaneous pivoting of the two flaps 21a, 21b here the pivoting of the nozzle body 19 about the horizontal axis 22, the vertical deflection of the drive jet for trimming is achieved.
  • the trimming of the watercraft described above can of course be carried out automatically using a computer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Control Of Turbines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Propulsion par jet d'eau pour engins aquatiques comportant une tuyère (D) de section efficace variable grâce à des volets de commande réglables (20, 21) en fonction du rapport débit d'eau - vitesse de pompe = constante, et variable dans le sens efficace de l'éjection. La section transversale efficace de ladite tuyère est modifiée par l'intermédiaire de deux volets (20, 21) logés de manière ajustable indépendamment l'un de l'autre, dont le premier (20) a la forme d'un arc de cercle et est disposé de manière pivotante directement autour d'un palier (25') fixé dans le corps de la tuyère (19), et dont le second (21) est de forme rectiligne et peut être positionné au moyen de deux dispositifs de réglage (26, 33) situés indépendamment l'un de l'autre à ses deux extrémités de sorte que non seulement à son extrémité avant du côté du corps de la tuyère, mais aussi à l'extrémité arrière, du côté du bord inférieur du volet en forme d'arc de cercle, ou bien aux deux extrémités, le second volet peut ménager une fente pour le jet d'eau sortant.

Claims (16)

  1. Procédé pour faire fonctionner un dispositif d'entraînement à jet d'eau destiné à des bâtiments de navigation sur l'eau, comprenant un canal d'écoulement comportant une entrée, une pompe et un orifice de refoulement ainsi qu'une tuyère, qui est associée à l'orifice de refoulement, dont la section transversale efficace peut être modifiée et dont la direction efficace du jet peut être commandée, caractérisé en ce qu'il consiste à régler la section transversale de la tuyère, quelle que soit la vitesse de déplacement du bâtiment de navigation sur l'eau en fonction de la vitesse de rotation de la pompe et du débit correspondant d'eau dans le canal d'écoulement, pour obtenir une valeur constante du rapport du débit d'eau à la vitesse de rotation de la pompe.
  2. Procédé suivant la revendication 1, caractérisé en ce qu'il consiste à utiliser, comme grandeur de commande, la pression dynamique pdyn, qui peut être détectée dans des parties de section transversale invariable et à direction d'écoulement constante dans le canal d'écoulement et à la régler suivant l'équation pdyn k.n² = 1
    Figure imgb0013
    k étant une constante déterminée en fonction de la caractéristique de la pompe par l'optimum du rendement de la pompe et n étant la vitesse de rotation de la pompe.
  3. Procédé suivant la revendication 1, caractérisé en ce qu'il consiste à utiliser, comme grandeur de commande, la vitesse vx proportionnelle au débit et à maintenir constant le rapport du débit à la vitesse de rotation de la pompe suivant Q n = Q* n* = vx n = vx* n*
    Figure imgb0014
    "vx*" étant la vitesse d'écoulement au point de mesure "x" au point de fonctionnement à rendement optimum pour le débit "Q*" et pour la vitesse de rotation "n*" déterminée par le calcul et la vitesse "vx" étant la valeur mesurée pour la vitesse de rotation "n" instantanée de la pompe et pour le débit "Q" à régler.
  4. Procédé suivant l'une des revendications 1 à 3, caractérisé en ce qu'il consiste à effectuer le réglage de la valeur de la section transversale efficace de sortie de la tuyère, automatiquement ou manuellement, par au moins deux volets ou tiroirs, qui sont réglables indépendamment l'un de l'autre et qui sont associés à l'orifice de refoulement du canal d'écoulement.
  5. Procédé suivant la revendication 4 caractérisé, en ce qu'il consiste, pour le réglage du rapport débit/vitesse de rotation, à transformer les signaux pour les grandeurs de réglage pdynx et vitesse de rotation par un ordinateur en les signaux de réglage provoquant les déplacements des volets de commande qui sont nécessaires.
  6. Procédé suivant la revendication 4, caractérisé en ce qu'il consiste, pour le réglage du débit/vitesse de rotation, à afficher les signaux qui sont nécessaires en vue d'une commande manuelle de la section transversale optimum de la tuyère.
  7. Procédé suivant l'une des revendications 1 à 6, caractérisé en ce qu'il consiste à utiliser les volets ou les tiroirs déterminant la section transversale efficace de la tuyère en plus pour dévier verticalement le jet de propulsion destiné à équilibrer le bâtiment de navigation sur l'eau.
  8. Procédé suivant la revendication 7, caractérisé en ce qu'il consiste à utiliser, pour manoeuvrer le dispositif de déviation verticale du jet de propulsion destiné à équilibrer le bâtiment de navigation, des capteurs qui sont destinés à déterminer la position du bâtiment de navigation sur l'eau et son axe transversal et/ou longitudinal et dont les signaux sont utilisés pour indiquer l'écart à la valeur de consigne et/ou pour former des ordres de commande.
  9. Procédé suivant l'une des revendications 7 et 8, caractérisé en ce qu'il consiste à effectuer l'équilibrage du bâtiment de navigation sur l'eau par rapport à son axe transversal et/ou longitudinal automatiquement à l'aide d'un ordinateur.
  10. Dispositif de propulsion à jet d'eau pour la mise en oeuvre du procédé suivant les revendications 1 à 9, comprenant un canal d'écoulement qui est monté de manière centrée sur le bâtiment de navigation sur l'eau, qui comporte à son extrémité avant une entrée ayant un orifice d'aspiration ainsi que, dans la partie intermédiaire du canal d'écoulement, une pompe en aval de l'entrée, ayant un étage ou plusieurs étages et destinée à aspirer et à accélérer de l'eau, et des dispositifs destinés à modifier la section transversale efficace d'une tuyère qui est sur l'orifice de refoulement du jet et dont la direction efficace du jet peut être commandée, caractérisé en ce qu'il est prévu des volets (20, 21) de commande, qui peuvent être réglés indépendamment l'un des volets de commande étant en forme d'arc de cercle et monté basculant directement autour d'un palier (25') prévu sur le corps (19) de la tuyère, et en ce que le second volet de commande est droit et sa position peut être modifiée au moyen de deux dispositifs de réglage montés aux deux extrémités et indépendants l'un de l'autre, de manière à dégager, aussi bien à son extrémité avant en direction du corps de la tuyère que par rapport à l'extrémité arrière allant vers le bord inférieur du volet en forme d'arc de cercle et que par rapport aux deux extrémités, un intervalle pour le jet d'eau qui est refoulé.
  11. Dispositif de propulsion à jet d'eau suivant la revendication 10, caractérisé en ce que le bord (47) avant du volet (21) inférieur de commande est monté basculant au moyen d'un dispositif (28) de réglage, de manière à créer une dérivation qui sert d'injecteur et par laquelle une quantité d'eau supplémentaire est aspirée par le bas, du courant de la quantité d'eau véhiculée par la pompe et servant de jet propulseur, et est accélérée de façon à augmenter la quantité d'eau quittant la tuyère, quantité d'eau dont la vitesse moyenne est diminuée, et à obtenir ainsi, pour de petites vitesses du bâtiment de navigation, une augmentation de poussée.
  12. Dispositif de propulsion à jet d'eau suivant la revendication 10 ou 11, caractérisé en ce que le volet (21) inférieur est monté sur le palier (27) avant, de manière à pouvoir s'abaisser, lorsque l'intervalle (34) est ouvert, de façon à former un gouvernail passif permettant de commander le bâtiment de navigation sur l'eau, même en remorquage.
  13. Dispositif de propulsion à jet d'eau suivant l'une des revendications 10 à 12, caractérisé en ce que le volet (21) inférieur est monté de manière à pouvoir être fermé, du côté du refoulement, en s'appliquant par le bord (47) avant dans la région du palier (27) et par le bord (36) arrière au volet (20) supérieur du canal de passage de l'eau de tout le dispositif de propulsion à jet d'eau, de façon à supprimer tout passage et/ou tout dommage aux parties intérieures de la pompe lorsque le dispositif de propulsion est à l'arrêt.
  14. Dispositif de propulsion à jet d'eau suivant l'une des revendications 10 à 13, caractérisé en ce que les volets (20, 21) de commande sont montés réglables simultanément et dans le même sens (dispositif de réglage 26).
  15. Dispositif de propulsion à jet d'eau suivant l'une des revendications 10 à 14, caractérisé en ce que la pièce portant la tuyère (D) est constituée en boîte (19) basculant par rapport à un axe (22) vertical, cet axe (22) étant vertical ou incliné sur la verticale.
  16. Dispositif de propulsion à jet d'eau suivant l'une des revendications 10 à 15, caractérisé en ce que le volet (20) supérieur associé à la boîte (19) a une forme incurvée correspondant à la forme de la section transversale de sortie de la boîte (19) et sert de démarcation supérieure de la section transversale de la tuyère, en ce que le volet (21) inférieur est plan et monté sur deux paliers (27,32), et en ce que le palier (27) avant du volet (21) inférieur peut être abaissé par un dispositif (28) de réglage.
EP91900165A 1989-12-22 1991-07-25 Procede pour l'utilisation d'une propulsion par jet d'eau pour engins aquatiques et agencement pour la realisation du procede Expired - Lifetime EP0460144B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3942631 1989-12-22
DE3942631 1989-12-22
DE4033674A DE4033674A1 (de) 1989-12-22 1990-10-23 Verfahren zum betrieb eines wasserstrahlantriebs fuer wasserfahrzeuge und anordnung zur durchfuehrung des verfahrens
DE4033674 1990-10-23

Publications (2)

Publication Number Publication Date
EP0460144A1 EP0460144A1 (fr) 1991-12-11
EP0460144B1 true EP0460144B1 (fr) 1994-03-23

Family

ID=25888404

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91900165A Expired - Lifetime EP0460144B1 (fr) 1989-12-22 1991-07-25 Procede pour l'utilisation d'une propulsion par jet d'eau pour engins aquatiques et agencement pour la realisation du procede

Country Status (3)

Country Link
EP (1) EP0460144B1 (fr)
DE (2) DE4033674A1 (fr)
WO (1) WO1991009773A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678891B1 (fr) * 1991-07-09 1996-01-26 Chaneac Andre Dispositif de propulsion de navires comportant des helices concentriques et contra-rotatives et navires equipes d'un tel dispositif.
JP2788216B2 (ja) * 1995-12-08 1998-08-20 川崎重工業株式会社 舶用ウオータジェット推進機の操縦装置
ATE433908T1 (de) 2001-08-06 2009-07-15 Robert Morvillo Integrale ablenkvorrichtung für schubumkehr und trimm sowie steuerungsmechanismus hierfür
US7037150B2 (en) 2001-09-28 2006-05-02 Morvillo Robert A Method and apparatus for controlling a waterjet-driven marine vessel
US7222577B2 (en) 2001-09-28 2007-05-29 Robert A. Morvillo Method and apparatus for controlling a waterjet-driven marine vessel
US11472531B2 (en) 2003-07-15 2022-10-18 Robert A. Morvillo Method and apparatus for controlling a waterjet-driven marine vessel
AU2005309486A1 (en) 2004-11-24 2006-06-01 Robert A. Morvillo System and method for controlling a waterjet driven vessel
US7601040B2 (en) 2005-12-05 2009-10-13 Morvillo Robert A Method and apparatus for controlling a marine vessel
US8126602B2 (en) 2006-12-19 2012-02-28 Morvillo Robert A Method and apparatus for controlling a water-jet driven marine vessel
EP2536623B1 (fr) 2010-02-18 2015-07-15 Robert A. Morvillo Système de déflecteur pour assiette variable et méthode de maîtrise d'un navire marin
NL2009897C2 (en) * 2012-11-28 2014-06-02 Jacob Bruijn Water jet apparatus, vessel with water jet apparatus.
US9233740B2 (en) 2013-02-08 2016-01-12 Robert A. Morvillo Variable trim deflector system with protruding foil and method for controlling a marine vessel
CN103303451B (zh) * 2013-06-17 2015-09-23 北京理工大学 一种液压驱动的全矢量喷水推进器喷口

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE169974C (fr) *
US3055175A (en) * 1961-03-14 1962-09-25 Frank C Clark Marine propulsion means
US3267666A (en) * 1962-11-23 1966-08-23 Lakewood Mfg Co Combined marine propulsion and steering means
FR1409743A (fr) * 1964-03-17 1965-09-03 Grenobloise Etude Appl Perfectionnements aux dispositifs de propulsion des navires par réaction
GB1063945A (en) * 1964-07-23 1967-04-05 Silvio Barletta Improvements in or relating to liquid jet reaction propulsion units
US3942464A (en) * 1973-07-13 1976-03-09 Schoell Harry L Water jet propelling apparatus for boats
DE2644743A1 (de) * 1976-10-04 1978-04-06 Schubert Siegfried Abstroemkanal fuer den wasserstrahl- reaktionsantrieb eines wasserfahrzeuges
US4073258A (en) * 1977-04-07 1978-02-14 The Boeing Company Lateral maneuvering control for water-jet propulsion systems
DE3700530A1 (de) * 1987-01-09 1988-07-21 Dynafluids Inc In ihrem wirksamen querschnitt veraenderbare duese fuer einen wasserstrahlantrieb fuer wasserfahrzeuge
SE457166B (sv) * 1987-05-21 1988-12-05 Mjp Marine Jet Power Handelsbo Reverseringsanordning foer ett straaldriftsaggregat foer fartyg

Also Published As

Publication number Publication date
DE4033674C2 (fr) 1992-12-17
DE4033674A1 (de) 1991-07-04
WO1991009773A1 (fr) 1991-07-11
DE59005129D1 (de) 1994-04-28
EP0460144A1 (fr) 1991-12-11

Similar Documents

Publication Publication Date Title
EP0460144B1 (fr) Procede pour l'utilisation d'une propulsion par jet d'eau pour engins aquatiques et agencement pour la realisation du procede
DE3005682C2 (de) Schiffantriebsanlage
DE60308563T2 (de) Schiffsantrieb und Verfahren dazu
DE69607573T2 (de) Vorrichtung zur Steuerung eines Wasserstrahl-Antriebsgeräts für ein Wasserfahrzeug
WO2009046768A1 (fr) Procédé de commande d'un groupe propulseur de surface pour un bateau
DE2438147C2 (de) Antriebseinrichtung für Schiffe
DE2167236C2 (de) Strahltriebwerk für ein Wasserfahrzeug
WO2007016805A1 (fr) Direction et compensation d'assiette pour navire
DE3490269C2 (de) Wasserfahrzeug mit einstellbarem Tiefgang
DE69120541T2 (de) Ummanteltes schraubensystem für ein segelboot
DE1556504A1 (de) Strahlricht- und -umkehrvorrichtung zur Steuerung von Wasserfahrzeugen mit Wasserstrahltriebwerken
DE69200417T2 (de) Rumpfstruktur für Mehrrumpfschiffe.
DE3303554C2 (fr)
EP0775066A1 (fr) Propulsion a jet d'eau
DE1919833A1 (de) Gleitboot
DE3700530A1 (de) In ihrem wirksamen querschnitt veraenderbare duese fuer einen wasserstrahlantrieb fuer wasserfahrzeuge
DE1481576C3 (de) Flugzeug
DE2809662C2 (de) Antrieb für Schiffe bestehend aus einer düsenartigen Ummantelung mit einem Propeller und einem zugeordneten Ruder
DE69305167T2 (de) Verdrängungsschiff mit stabilisierter stampfbewegung
DE2336154A1 (de) Achtergleitplatte fuer motorboote mit duesenantrieb
DE2223389C2 (de) Schiffsbremsanlage
EP0644839B1 (fr) Direction pour vehicule a coussin d'air
DE3302180A1 (de) Brems- und hilfssteuereinrichtung fuer schiffe
EP1203715A2 (fr) Bateau, notamment bateau rapide avec propulsion du type POD
DE3343605A1 (de) Strahlantrieb mit strahlrohr und schwenkbaren strahlumlenkern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19911211

17Q First examination report despatched

Effective date: 19930503

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 59005129

Country of ref document: DE

Date of ref document: 19940428

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940413

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EAL Se: european patent in force in sweden

Ref document number: 91900165.1

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950831

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950701

EUG Se: european patent has lapsed

Ref document number: 91900165.1

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980820

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051212