EP0460144B1 - Process for operating a water-jet drive for water craft and arrangement for implementing the process - Google Patents

Process for operating a water-jet drive for water craft and arrangement for implementing the process Download PDF

Info

Publication number
EP0460144B1
EP0460144B1 EP91900165A EP91900165A EP0460144B1 EP 0460144 B1 EP0460144 B1 EP 0460144B1 EP 91900165 A EP91900165 A EP 91900165A EP 91900165 A EP91900165 A EP 91900165A EP 0460144 B1 EP0460144 B1 EP 0460144B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
speed
pump
water
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91900165A
Other languages
German (de)
French (fr)
Other versions
EP0460144A1 (en
Inventor
Josef Merz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0460144A1 publication Critical patent/EP0460144A1/en
Application granted granted Critical
Publication of EP0460144B1 publication Critical patent/EP0460144B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/10Marine propulsion by water jets the propulsive medium being ambient water having means for deflecting jet or influencing cross-section thereof
    • B63H11/107Direction control of propulsive fluid
    • B63H11/11Direction control of propulsive fluid with bucket or clamshell-type reversing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/10Marine propulsion by water jets the propulsive medium being ambient water having means for deflecting jet or influencing cross-section thereof
    • B63H11/107Direction control of propulsive fluid
    • B63H11/117Pivoted vane

Definitions

  • the invention relates to a method for operating a water jet drive for watercraft according to the preamble of patent claim 1 and an arrangement for carrying out the method according to the preamble of patent claim 9.
  • propulsion devices for water vehicles using propulsion means that is to say both ship propellers of different geometries and so-called water jet drives cannot be adapted to larger speed ranges without adversely affecting the efficiency.
  • Variable pitch propellers also have only a limited working range, whereby the best efficiency over the entire propeller blade extension can only be achieved with one propeller blade position and a propeller speed / degree of progress ratio.
  • a water jet drive Compared to a ship's propeller, which has to process an inflow speed that changes with the speed of the watercraft, but cannot otherwise be influenced, a water jet drive has the advantage that for the pump accelerating the water, an optimal inflow of the pump blade profiles in all driving ranges and all pump speeds and thus Operating points of the best efficiency can be achieved if the throughput-determining nozzle of the water jet drive is designed so that its effective exit cross-section can be changed during operation.
  • nozzle outlet speed of the water jet is optimal with regard to the nozzle efficiency, a flow velocity of the pump that changes with the speed of the watercraft, and a throughput that changes as a function of the speed of the water; see. GB-PS 1 063 945.
  • a second requirement in water-jet-operated watercraft relates to the possibility of trimming, which can basically be achieved by vertically deflecting the propulsion jet.
  • trimming the change in the vertical component of the thrust produced, which is known as trimming, is more advantageous than trimming by means of trim tabs which generate additional resistance, for the optimal mode of operation of a watercraft at different speeds and thus different centers of lift of the watercraft in the longitudinal direction.
  • All of these controls have the characteristic that either beam deflection is only possible in a vertical direction with a simultaneous reduction of the nozzle exit area that cannot be influenced separately or a vertical jet deflection upwards and downwards is possible without changing the nozzle cross-section.
  • the invention has for its object to provide a method and an arrangement for performing the method for a manual or automatic control of the nozzle outlet cross-section regardless of the driving speed and as a result of the different pressures present at the nozzle outlet cross-section, the operation of the water accelerating pump in the area guarantees the optimum efficiency in the entire operating range and also allows the watercraft to be trimmed by means of a controlled vertical deflection of the propulsion jet, which also enables extensive thrust reversal for the reverse travel and for the braking process, and that the arrangement can also be used in towing mode, i.e. when the drive device fails - Drive motor and / or pump - should still generate a usable control pressure.
  • the method according to the invention achieves optimal operation in terms of thrust and efficiency of the water jet drive in all operating areas with regard to speeds and driving speeds, since the variable effective nozzle cross section "Fw”, regardless of the driving speed "w”, depending on the pump speed "n”, the associated water throughput " Q "is adjusted.
  • a speed "vx" proportional to the throughput "Q” or the associated dynamic pressure “pdynx” at a suitable location "x" within the flow channel are advantageously used, and used as a control criterion for the nozzle outlet cross section "F” to be regulated
  • the values "pdynx" and "n” or vx can either be supplied as a control signal to a computer and associated automatic control device or can be displayed in a suitable form for manual adjustment of the optimum.
  • the invention also allows the vertical component of the effective water jet and thus the trimming to be carried out automatically, the deviation from the desired value of the inclination of the watercraft about the transverse axis in the case of a water jet drive and / or also about the longitudinal axis when using two or more for the actuation of the flaps required for this purpose
  • Several water jet drives on the watercraft are detected by suitable sensors and fed to the control in a suitable signal form.
  • the nozzle according to the invention has an at least partially rectangular cross-section that is easy to control in terms of production technology and, in addition to an effective change in the nozzle cross-section by changing the position of the two control flaps relative to one another, also permits a change in the vertical component of the effective one that is possible through the simultaneous adjustment of the two flaps Thrust. Furthermore, an almost complete reversal of thrust is possible by the possible lowering of the front mounting of the lower flap.
  • a bypass opening is created within the nozzle, so that due to the resulting injector effect, the accelerated water mass increases with a lower exit speed from the nozzle, which occurs particularly at low water depths in ports or on rivers the agitation of the bottom is reduced and is advantageously used in the area of low speeds to improve the jet efficiency and the thrust.
  • the water-bearing bypass generated in this way can also be used as a passive rudder in towing and can generate useful control forces.
  • the component carrying the nozzle is designed as a housing and is mounted so as to be pivotable about a vertical axis, which axis can be inclined relative to the vertical, cornering can be carried out easily and safely. All parts of the control, which generate the change in cross-section of the nozzle, the vertical thrust deflection and the thrust reverser for reversing, are directly or indirectly connected to the housing, which leads to a simple and reliable and powerful design of the water jet drive.
  • the upper flap has an oppositely curved surface at the lower end, which serves as the upper limit of the nozzle cross section.
  • pdynx * means the dynamic pressure in the measuring cross section "Fx" at the operating point (10) optimum efficiency at the design speed "n *” (3) and the throughput "Q *", the pressure "pdynx” the measured value at the current pump speed "n”.
  • FIG. 2 An exemplary embodiment for carrying out the method according to the invention will now be described with reference to FIG. 2, only the parts belonging to the invention being shown. From that in advance to one A flow channel arranged in the watercraft with an inlet having an intake opening at its front end, a pump downstream of the inlet in its central region for drawing in and accelerating water, and a nozzle at the jet outlet opening at its rear end, therefore only the rear end of the pump body 18 is shown.
  • the pump body has an approximately circular cross section and merges downstream into a nozzle D formed by a nozzle body 19, an upper flap 20 and a lower flap 21.
  • the nozzle body 19 is pivotally mounted on the pump body in the pivot axis 22, which is only partially shown, and can be adjusted vertically at an angle to the pump axis by means of the pivot device 37 (not shown in more detail).
  • the end face 23 of the nozzle body 19 is designed in the form of a circular arc.
  • the underside of the nozzle body is open and closed by the lower flap 21.
  • the flap 21 movably supported by means of bearing eyes 27 and 32 thus forms the lower boundary of the flow channel and the nozzle.
  • the lower flap 21 also has lateral cheeks 24 which serve to guide the flap 21 in the nozzle body 19 and to limit the water jet laterally when reversing.
  • the upper flap 20 is rotatably mounted about a pivot axis 25 in bearing eyes 25 'of the nozzle body 19 and is adjustable by an adjusting device 26 which engages on a bearing 31 and on the other hand is pivotably mounted on the nozzle body 19 in a bearing eye 38. Furthermore, two adjustment devices 33 are provided between the bearing eyes 32 of the lower flap and the bearing eye 31 of the upper flap 20.
  • the lower flap 21 has bearings 27 at its front end, in which the swiveling device consisting of the indicated adjusting device 28, the angle levers 39 and the linkage 40 engages, with which the lower flap can be lowered at this end.
  • Spacer tabs 29 are arranged on the bearing 27, the other ends of which are pivotably articulated on the upper flap 20 in the bearings 30.
  • the effective nozzle cross section is obtained by changing the gap 34 between the lower circular surface 35 the upper flap 20 and the rear edge 36 of the lower flap 21 changeable.
  • the lower flap 21 is adjusted simultaneously with the upper flap 20 by the actuating device 26 and thus only a vertical change in direction of the emerging water jet is produced with a constant gap 34 and thus constant nozzle cross section.
  • a complete closing of the gap 34 is achieved by the surface 41 of the lower flap 21 being directly supported on the circular surface 35 of the upper flap 20. In this way, the cross-section of the nozzle and thus the flow channel can be closed at least on one side when the port is idle, so that contamination is largely avoided.
  • FIGS. 3 to 8 schematically show the various possible positions of the control flaps 20 and 21 with respect to the nozzle body 19 serving as a flow channel and the outflow directions of the propulsion jet thus generated, as well as the lowering of the flap 21.
  • FIG. 5 shows the “bypass position” of the nozzle, the driving jet flowing in cross section 42 having the speed 43 of the water mass flowing through the bypass cross section 44 corresponding to the driving speed 45 by friction and mixing having a mean exit speed 46 in cross section 34 that is lower than the driving jet communicates and thus improves the nozzle efficiency in the low driving speed range.
  • FIGS. 9 to 11 show a second exemplary embodiment of such a control nozzle.
  • the gap 34 between the rear edges 36a, 36b of the flaps 21a, 21b is closed, the front edge 47a or 47b or both is adjusted such that the gap accelerated by the pump accelerates the water in almost the same way Flow direction in the pump can flow in the opposite direction and thrust opposite to the normal direction of travel. If, on the other hand, the gap 34 is additionally opened, a bypass acting as an injector is created.
  • FIGS. 12 to 14 show a further embodiment of the control device shown in FIGS. 9 to 11 rotated by 90 °, the horizontal beam deflection and thus the control of the direction of travel and the simultaneous pivoting of the two flaps 21a, 21b here the pivoting of the nozzle body 19 about the horizontal axis 22, the vertical deflection of the drive jet for trimming is achieved.
  • the trimming of the watercraft described above can of course be carried out automatically using a computer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Control Of Turbines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Water-jet drive for water craft with a nozzle whose effective cross-section can be altered depending upon the water flow rate to pump rotation speed = constant ratio, as can its effective direction of propulsion, the effective nozzle cross-section of which can be altered via two mutually independently adjustable flaps (20, 21), whereby one control flap (20) is curved and arranged to be directly dirigible about a bearing fitted in the nozzle body (19) while the other is straight and adjustable for position via two mutually independent adjusting devices (26, 33) with bearings at each end in such a way that they can free a slot for the emerging water jet at their forward end for the nozzle body or at the rear end for the lower edge of the curved flap or at both ends.

Description

Die Erfindung betrifft ein Verfahren zum Betrieb eines Wasserstrahlantriebs für Wasserfahrzeuge gemäß dem Oberbegriff des Patentanspruchs 1 und eine Anordnung zur Durchführung des Verfahrens nach dem Oberbegriff des Patentanspruchs 9.The invention relates to a method for operating a water jet drive for watercraft according to the preamble of patent claim 1 and an arrangement for carrying out the method according to the preamble of patent claim 9.

Alle bekannten Wasser als Vortriebsmittel verwendenden Vortriebseinrichtungen für Wasserfahrzeuge, also sowohl Schiffspropeller unterschiedlicher Geometrie als auch sogenannte Wasserstrahlantriebe können bekanntlich nicht größeren Geschwindigkeitsbereichen so angepaßt werden, ohne daß sich dabei nachteilige Auswirkungen auf den Wirkungsgrad ergeben. Auch Verstellpropeller haben nur einen beschränkten Arbeitsbereich, wobei nur bei einer Propellerflügelstellung und einem Propellerdrehzahl/Fortschrittsgrad-Verhältnis der beste Wirkungsgrad über die gesamte Propellerflügelerstreckung erreicht werden kann.All known propulsion devices for water vehicles using propulsion means, that is to say both ship propellers of different geometries and so-called water jet drives cannot be adapted to larger speed ranges without adversely affecting the efficiency. Variable pitch propellers also have only a limited working range, whereby the best efficiency over the entire propeller blade extension can only be achieved with one propeller blade position and a propeller speed / degree of progress ratio.

Gegenüber einem Schiffspropeller, der eine sich mit der Geschwindigkeit des Wasserfahrzeuges ändernde, sonst aber nicht beeinflußbare Zuströmgeschwindigkeit verarbeiten muß, hat ein Wasserstrahlantrieb den Vorteil, daß für die das Wasser beschleunigende Pumpe eine in allen Fahrbereichen und allen Pumpendrehzahlen optimale Anströmung der Pumpen-Schaufelprofile und damit Betriebspunkte bester Wirkungsgrade erzielt werden kann, wenn die durchsatzbestimmende Düse des Wasserstrahlantriebes so ausgebildet wird, daß sich deren wirksamer Austritts-Querschnitt während des Betriebes verändern läßt.Compared to a ship's propeller, which has to process an inflow speed that changes with the speed of the watercraft, but cannot otherwise be influenced, a water jet drive has the advantage that for the pump accelerating the water, an optimal inflow of the pump blade profiles in all driving ranges and all pump speeds and thus Operating points of the best efficiency can be achieved if the throughput-determining nozzle of the water jet drive is designed so that its effective exit cross-section can be changed during operation.

Hierzu ist es bekannt, den Austrittsquerschnitt einer zylindrischen Düse mittels eines einstellbaren, sich der Kontur anpassenden flexiblen Bauteiles, zu verändern.For this purpose, it is known to change the outlet cross section of a cylindrical nozzle by means of an adjustable, flexible component that adapts to the contour.

Hierbei wird von einer bezüglich des Düsenwirkungsgrades optimalen Düsenaustrittsgeschwindigkeit des Wasserstrahles, einer sich mit der Fahrgeschwindigkeit des Wasserfahrzeugs ändernden Anströmgeschwindigkeit der Pumpe und von einem sich damit in Abhängigkeit der Fahrgeschwindigkeit veränderndem Durchsatzes ausgegangen; vgl. GB-PS 1 063 945.It is assumed that the nozzle outlet speed of the water jet is optimal with regard to the nozzle efficiency, a flow velocity of the pump that changes with the speed of the watercraft, and a throughput that changes as a function of the speed of the water; see. GB-PS 1 063 945.

Eine andere Lösung sieht vor, die Steuerklappen eines Wasserstrahlantriebes um je eine senkrechte Achse gegensinnig schwenkbar zu lagern, die der Strahlaustrittsöffnung einer Radialpumpe nachgeschaltet sind, wobei durch die Steuerklappen der Düsenquerschnitt gemäß der Gleichung

Figure imgb0001

verändert werden soll, wobei
A = Düsenquerschnitt (in square inches) und
H = Leistung der Antriebsmaschine (in horse power) ist; vgl. US-PS 3 055 175.Another solution provides for the control flaps of a water jet drive to be pivoted in opposite directions about each of a vertical axis, which are connected downstream of the jet outlet opening of a radial pump, with the control valve's flap cross section according to the equation
Figure imgb0001

should be changed, whereby
A = nozzle cross section (in square inches) and
H = horsepower of horsepower; see. U.S. Patent 3,055,175.

Dieser mathematische Ansatz führt jedoch zu unbrauchbaren Regelbedingungen, da - wie sich zeigen läßt - über die Antriebsleistung nicht ein bestimmter Punkt im Pumpenkennfeld beschrieben ist, sondern eine Kurve unterschiedlicher Durchsatzmengen und damit auch unterschiedlicher Düsenquerschnitte.However, this mathematical approach leads to unusable control conditions because - as can be shown - the drive power does not describe a specific point in the pump map, but rather a curve of different throughput quantities and thus also different nozzle cross sections.

Eine zweite Forderung bei wasserstrahlbetriebenen Wasserfahrzeugen bezieht sich auf die Möglichkeit zu Trimmen, was grundsätzlich durch eine vertikale Umlenkung des Treibstrahles erzielbar ist. Für die optimale Fahrweise eines Wasserfahrzeuges bei unterschiedlichen Geschwindigkeiten und damit in Längsrichtung unterschiedlichen Auftriebsschwerpunkten des Wasserfahrzeuges ist - wie die Erfahrung gezeigt hat - die als Trimmung bekannte Veränderung der Vertikalkomponente des erzeugten Schubes vorteilhafter als eine Trimmung durch einen zusätzlichen Widerstand erzeugende Trimmklappen.A second requirement in water-jet-operated watercraft relates to the possibility of trimming, which can basically be achieved by vertically deflecting the propulsion jet. As experience has shown, the change in the vertical component of the thrust produced, which is known as trimming, is more advantageous than trimming by means of trim tabs which generate additional resistance, for the optimal mode of operation of a watercraft at different speeds and thus different centers of lift of the watercraft in the longitudinal direction.

Bei sogenannten Außenbordern und Z-Drives wird dies durch Veränderung des Winkels der Propellerachse zum Wasserfahrzeug erzielt. Diese Anstellwinkeländerung ergibt jedoch eine unterschiedliche Schräganströmung der Propellerflügel und somit die daraus folgenden bekannten Nachteile.In the case of so-called outboards and Z-drives, this is achieved by changing the angle of the propeller axis to the watercraft. However, this change in the angle of attack results in a different inclined flow of the propeller blades and thus the known disadvantages that result therefrom.

Bei Wasserstrahlantrieben ist es hierzu bekannt, dem Austrittsende des Wasserstrahlantriebs als Zylindermantelabschnitte ausgebildete von sektorenförmigen Wangen gehaltene Steuerklappen zuzuordnen, die in einem Gehäuse, das mittels Traversen durchsetzende Lagerschrauben am Pumpengehäuse um eine senkrechte Achse schwenkbar gelagert ist, um je eine waagerecht liegende Achse gegensinnig schwenkbar zu lagern; vgl. DE-OS 26 44 743.In the case of water jet drives, it is known for this purpose to assign control flaps held by sector-shaped cheeks to the outlet end of the water jet drive as cylinder jacket sections, which flaps are mounted in a housing which is pivotably supported by crossbeams on the pump housing by means of crossbeams, about a vertical axis in each case in order to pivot a horizontally lying axis in opposite directions to store; see. DE-OS 26 44 743.

Auch ist es bekannt, der Steuereinrichtung eines solchen Wasserstrahlantriebs eine Düse mit Steuerklappen mit im wesentlichen rechteckigem Querschnitt zuzuordnen, die im Bereich der Strahlaustrittsöffnung der Düse zwei gleichsinnig kreisbogenförmige Steuerklappen unterschiedlicher Radien besitzt; vgl. DE-OS 37 00 530.8.It is also known to assign to the control device of such a water jet drive a nozzle with control flaps with an essentially rectangular cross-section, which has two control flaps of different radii in the same direction in the area of the jet outlet opening of the nozzle; see. DE-OS 37 00 530.8.

Alle diese Steuerungen haben die Eigenart, daß entweder eine nur nach einer vertikalen Richtung mögliche Strahlablenkung mit einer damit gekoppelten gleichzeitigen und nicht gesondert beeinflußbaren Verminderung der Düsenaustrittsfläche oder aber eine vertikalte Strahlablenkung nach oben und unten ohne Veränderung des Düsenquerschnittes möglich ist.All of these controls have the characteristic that either beam deflection is only possible in a vertical direction with a simultaneous reduction of the nozzle exit area that cannot be influenced separately or a vertical jet deflection upwards and downwards is possible without changing the nozzle cross-section.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Anordnung zur Durchführung des Verfahrens für eine manuelle oder automatische Regelung des Düsenaustrittsquerschnittes unabhängig von der Fahrgeschwindigkeit und der als deren Folge am Düsenaustrittsquerschnitt anstehenden unterschiedlichen Drücke anzugeben, das einen Betrieb der das Wasser beschleunigenden Pumpe im Bereich der optimalen Wirkungsgrade im gesamten Betriebsbereich gewährleistet und durch eine gesteuerte vertikale Ablenkung des Treibstrahles auch eine Trimmung des Wasserfahrzeuges gestattet, wobei ferner eine weitgehende Schubumkehr für die Rückwärtsfahrt und für den Bremsvorgang ermöglicht wird, und daß die Anordnung auch im Schleppbetrieb, also bei ausgefallener Antriebseinrichtung - Antriebsmotor und/oder Pumpe - noch einen brauchbaren Steuerdruck erzeugen soll.The invention has for its object to provide a method and an arrangement for performing the method for a manual or automatic control of the nozzle outlet cross-section regardless of the driving speed and as a result of the different pressures present at the nozzle outlet cross-section, the operation of the water accelerating pump in the area guarantees the optimum efficiency in the entire operating range and also allows the watercraft to be trimmed by means of a controlled vertical deflection of the propulsion jet, which also enables extensive thrust reversal for the reverse travel and for the braking process, and that the arrangement can also be used in towing mode, i.e. when the drive device fails - Drive motor and / or pump - should still generate a usable control pressure.

Diese Aufgabe ist gemäß der Erfindung für das Verfahren durch die kennzeichnenden Merkmale des Patentanspruches 1 und für die Anordnung durch die kennzeichnenden Merkmale des Patentanspruches 9 gelöst.This object is achieved according to the invention for the method by the characterizing features of claim 1 and for the arrangement by the characterizing features of claim 9.

Weitere Merkmale der Erfindung ergeben sich aus den Unteransprüchen.Further features of the invention emerge from the subclaims.

Durch das erfindungsgemäße Verfahren wird ein optimaler Betrieb hinsichtlich Schub und Wirkungsgrad des Wasserstrahlantriebes in allen Betriebsbereichen bezüglich Drehzahlen und Fahrgeschwindigkeiten erreicht, da über den veränderbaren wirksamen Düsenquerschnitt "Fw" unabhängig von der Fahrgeschwindigkeit "w" in Abhängigkeit der Pumpendrehzahl "n" der zugehörige Wasserdurchsatz "Q" eingeregelt wird. Hierzu werden vorteilhafterweise als Regelsignal eine, dem Durchsatz "Q" proportionale Geschwindigkeit "vx" oder der zugehörige dynamische Druck "pdynx" an einem geeigneten Ort "x" innerhalb des Strömungskanals als Regelkriterium für den einzuregelnden Düsenaustrittsquerschnitt "F" herangezogen, benutzt und Q n = Q* n* = vx n = vx* n* = pdynx n = pdynx* n*

Figure imgb0002

konstant gehalten, wobei "vx*" die Strömungsgeschwindigkeit und "pdynx*" der zugehörige dynamische Druck "pdyn" an der Meßstelle "x" im Betriebspunkt optimalen Wirkungsgrades bei dem Durchsatz "Q*" und der Auslegungsdrehzahl "n*", und die Geschwindigkeit "vx" beziehungsweise deren dynamischer Druck "pdynx" den Meßwert bei der augenblicklichen Pumpendrehzahl "n" und dem einzuregelnden Durchsatz "Q" bedeuten.The method according to the invention achieves optimal operation in terms of thrust and efficiency of the water jet drive in all operating areas with regard to speeds and driving speeds, since the variable effective nozzle cross section "Fw", regardless of the driving speed "w", depending on the pump speed "n", the associated water throughput " Q "is adjusted. For this purpose, a speed "vx" proportional to the throughput "Q" or the associated dynamic pressure "pdynx" at a suitable location "x" within the flow channel are advantageously used, and used as a control criterion for the nozzle outlet cross section "F" to be regulated Q n = Q * n * = vx n = vx * n * = pdynx n = pdynx * n *
Figure imgb0002

kept constant, with "vx *" the flow velocity and "pdynx *" the associated dynamic pressure "pdyn" at the measuring point "x" at the operating point optimum efficiency at the throughput "Q *" and the design speed "n *", and the velocity "vx" or their dynamic pressure "pdynx" mean the measured value at the current pump speed "n" and the throughput to be regulated "Q".

Die Werte "pdynx" und "n" bzw. vx können als Regelsignal entweder einem Rechner und zugehöriger automatischer Regeleinrichtung zugeführt oder in geeigneter Form für eine manuelle Einregelung des Optimums angezeigt werden.The values "pdynx" and "n" or vx can either be supplied as a control signal to a computer and associated automatic control device or can be displayed in a suitable form for manual adjustment of the optimum.

Ebenso erlaubt die Erfindung die Vertikalkomponente des wirksamen Wasserstrahls und damit die Trimmung automatisch durchzuführen, wobei für die hierzu notwendige Betätigung der Klappen die Abweichung vom Sollwert der Neigung des Wasserfahrzeugs um die Querachse bei einem Wasserstrahlantrieb und/oder auch um die Längsachse bei Einsatz von zwei oder mehreren Wasserstrahlantrieben an dem Wasserfahrzeug durch geeignete Sensoren erfaßt und der Regelung in geeigneter Signalform zugeführt werden.The invention also allows the vertical component of the effective water jet and thus the trimming to be carried out automatically, the deviation from the desired value of the inclination of the watercraft about the transverse axis in the case of a water jet drive and / or also about the longitudinal axis when using two or more for the actuation of the flaps required for this purpose Several water jet drives on the watercraft are detected by suitable sensors and fed to the control in a suitable signal form.

Eine solche Anordnung besitzt entscheidende Vorteile gegenüber der üblichen passiven Steuerung durch Trimmklappen oder durch verstellbare Flügel bei Tragflügelbooten oder ähnlichen Wasserfahrzeugen mit vollgetauchten Tragflügeln oder Auftriebskörpern, die einen zusätzlichen Fahrtwiderstand erzeugen, deren Wirksamkeit stark von der Fahrgeschwindigkeit abhängt und die eine gewünschte Trimmung zum Ausgleich eines durch starken Seegang erzeugten Stampfens oder Gierens wegen der in solchen Fällen nur zulässigen niedrigen Fahrgeschwindigkeit ungenügend oder gar nicht erzielen können.Such an arrangement has decisive advantages over the conventional passive control by trim tabs or by adjustable wings on hydrofoils or similar watercraft with fully submerged hydrofoils or buoyancy bodies, which generate additional driving resistance, the effectiveness of which depends heavily on the speed of travel and which provide a desired trim to compensate for pounding or yawing caused by rough seas because of the only permissible in such cases low driving speed insufficient or not at all.

Die erfindungsgemäße Düse weist einen fertigungstechnisch leicht zu beherrschenden zumindest teilweise rechteckigen Querschnitt auf und erlaubt zur Durchführung des Verfahrens neben einer wirkungsvollen Veränderung des Düsenquerschnittes durch Veränderung der Stellung der beiden Steuerklappen zueinander auch eine durch die gleichzeitige gleichsinnige Verstellung der beiden Klappen mögliche Veränderung der Vertikalkomponente des wirksamen Schubes. Ferner ist durch das mögliche Absenken der vorderen Lagerung der unteren Klappe eine nahezu vollständige Schubumkehr möglich.The nozzle according to the invention has an at least partially rectangular cross-section that is easy to control in terms of production technology and, in addition to an effective change in the nozzle cross-section by changing the position of the two control flaps relative to one another, also permits a change in the vertical component of the effective one that is possible through the simultaneous adjustment of the two flaps Thrust. Furthermore, an almost complete reversal of thrust is possible by the possible lowering of the front mounting of the lower flap.

Weiter ist durch das erfindungsgemäß mögliche Absenken des vorderen Endes der unteren Klappe eine Bypaßöffnung innerhalb der Düse geschaffen, so daß infolge der auf diese Weise entstehenden Injektorwirkung eine Vergrößerung der beschleunigten Wassermasse mit geringerer Austrittsgeschwindigkeit aus der Düse entsteht, die besonders bei geringer Wassertiefe in Häfen oder auf Flüssen die Aufwühlung des Grundes vermindert und vorteilhafterweise im Bereich niedriger Geschwindigkeiten zu einer Verbesserung des Strahlwirkungsgrades und des Schubes genutzt wird.Furthermore, by lowering the front end of the lower flap according to the invention, a bypass opening is created within the nozzle, so that due to the resulting injector effect, the accelerated water mass increases with a lower exit speed from the nozzle, which occurs particularly at low water depths in ports or on rivers the agitation of the bottom is reduced and is advantageously used in the area of low speeds to improve the jet efficiency and the thrust.

Der auf diese Weise erzeugte wasserführende Bypaß kann zudem auch im Schleppbetrieb als Passivruder benutzt werden und hierbei brauchbare Steuerkräfte erzeugen.The water-bearing bypass generated in this way can also be used as a passive rudder in towing and can generate useful control forces.

Da das die Düse tragende Bauteil als Gehäuse ausgebildet und um eine senkrechte Achse verschwenkbar gelagert ist, wobei diese Achse gegen die Senkrechte geneigt sein kann, ist eine Kurvenfahrt leicht und sicher durchführbar. Mit dem Gehäuse sind alle Teile der Steuerung, welche die Querschnittsänderung der Düse, die vertikale Schubumlenkung und die Schubumkehr für Rückwärtsfahrt erzeugen, mittelbar oder unmittelbar verbunden, was zu einer einfachen und betriebssicheren sowie leistungsfähigen Ausbildung des Wasserstrahlantriebes führt.Since the component carrying the nozzle is designed as a housing and is mounted so as to be pivotable about a vertical axis, which axis can be inclined relative to the vertical, cornering can be carried out easily and safely. All parts of the control, which generate the change in cross-section of the nozzle, the vertical thrust deflection and the thrust reverser for reversing, are directly or indirectly connected to the housing, which leads to a simple and reliable and powerful design of the water jet drive.

Da dem Gehäuse mindestens zwei Klappen zugeordnet sind, wobei eine als Zylinderschalensegment und die zweite als zweifach gelagerte untere Klappe ausgebildet ist, und ein unveränderbarer Abstand des vorderen Lagers der unteren Klappe zu dem unteren Ende der oberen Klappe durch Laschen oder ähnliche Bauteile sichergestellt wird, kann die obere Klappe am unteren Ende eine entgegengesetzt gewölbte Fläche besitzen, die als obere Begrenzung des Düsenquerschnittes dient. Dies ist sehr vorteilhaft, da durch gleichzeitiges Schließen des Strömungsquerschnittes an der Vorderkante der unteren Steuerklappe im Bereich der Lager und an der Hinterkante zwischen den zugewandten Flächen von unterer und oberer Klappe der Wasserkanal des gesamten Wasserstrahlantriebes von der Austrittseite her verschließbar ist, so daß eine Durchströmung und/oder Beschädigung der inneren Pumpenteile bei Stillstand des Antriebes während der Liegezeiten im Hafen mit Sicherheit vermieden wird.Since at least two flaps are assigned to the housing, one being designed as a cylinder shell segment and the second as a double-mounted lower flap, and an unchangeable distance between the front bearing of the lower flap and the lower end of the upper flap is ensured by tabs or similar components the upper flap has an oppositely curved surface at the lower end, which serves as the upper limit of the nozzle cross section. This is very advantageous because by simultaneously closing the flow cross-section on the front edge of the lower control flap in the area of the bearings and on the rear edge between the facing surfaces of the lower and upper flap, the water channel of the entire water jet drive can be closed from the outlet side, so that a throughflow and / or damage to the inner pump parts when the drive is at a standstill while in port is safely avoided.

Die Erfindung ist nachfolgend anhand mehrerer in der Zeichnung mehr oder minder schematisch dargestellten Ausführungsbeispiele beschrieben.The invention is described below with reference to several exemplary embodiments shown more or less schematically in the drawing.

Es zeigen:

Figur 1
ein Pumpenkennfeld mit Linien konstanter Drehzahl, Drossellinien konstanten Düsenquerschnittes und die infolge des im Einlauf zurückgewonnenen Teiles der Geschwindigkeitshöhe sich ergebenden Düsen- und Pumpen-Betriebspunkte,
Figur 2
eine Parallelprojektion einer Steuereinheit für die Düse eines Wasserstrahl-Reaktionsantriebs gemäß der Erfindung,
Figur 3
einen Schnitt durch die schematische Düse nach Figur 2 mit den zugeordneten Steuerklappen in "geschlossener Stellung für Stillstandzeiten",
Figur 4
einen Schnitt durch die schematische Düse nach Figur 2 mit den zugeordneten Steuerklappen in der Stellung "Langsamfahrt mit horizontaler Umlenkung nach untern zur Verringerung der Aufkimmung",
Figur 5
einen Schnitt durch die schematisch dargestellte Düse nach Figur 2 mit den zugeordneten Steuerklappen in der Stellung "Langsamfahrt mit durch Injektorwirkung vergrößerten Wassermenge geringerer Geschwindigkeit" zugleich auch Stellung der Steuerklappen als "Passivruder",
Figur 6
einen Schnitt durch die schematisch dargestellte Düse nach Figur 2 mit den zugeordneten Steuerklappen in der Stellung "Schnellfahrt mit verringerter Düsenfläche und horizontaler Umlenkung nach oben = positives Aufkimm-Moment",
Figur 7
einen Schnitt durch die schematisch dargestellte Düse nach Figur 2 mit den zugeordneten Steuerklappen in der Stellung "Schnellfahrt mit verringerter Düsenfläche und horizontaler Umlenkung nach unten (negatives "Aufkimm-Moment")
Figur 8
einen Schnitt durch die schematisch dargestellte Düse nach Figur 2 mit den zugeordneten Steuerklappen in der Stellung "Rückwärtsfahrt und Bremsen"
Figur 9
eine in Parallelprojektion schematisch dargestellte weitere Steuerdüse mit zwei an beiden Enden verstellbaren Klappen in einem um die senkrechte Achse schwenkbaren Düsenkörper in der Stellung für "Langsamfahrt mit negativem Trimmoment"
Figur 10
eine Düse gemäß Figur 9 in der Stellung "Bremsen und Rückwärtsfahrt"
Figur 11
eine Düse gemäß Figur 9 in der Stellung "Langsamfahrt mit durch Injektorwirkung vergrößerten Wassermenge geringerer Geschwindigkeit"
Figur 12
eine in Parallelprojektion schematisch dargestellte weitere Steuerdüse mit zwei an beiden Enden verstellbaren Klappen in einem um die horizontale Achse schwenkbaren Düsenkörper in der Stellung "Fahrt bei geringer Geschwindigkeit in einer Rechtskurve"
Figur 13
eine Düse gemäß Figur 12 in der Stellung "Schnellfahrt mit positivem Trimm entsprechend einem positivem Aufkimmoment"
Figur 14
eine Düse gemäß Figur 12 in der Stellung "Rückwärtsfahrt oder Bremsen" und
Figur 15
ein Regelschema für Wasserstrahlantriebe gemäß der Erfindung.
Show it:
Figure 1
a pump map with lines of constant speed, throttle lines of constant nozzle cross-section and the nozzle and pump operating points resulting from the part of the speed level recovered in the inlet,
Figure 2
a parallel projection of a control unit for the nozzle of a water jet reaction drive according to the invention,
Figure 3
3 shows a section through the schematic nozzle according to FIG. 2 with the associated control flaps in the "closed position for downtimes",
Figure 4
3 shows a section through the schematic nozzle according to FIG. 2 with the associated control flaps in the position "slow travel with horizontal deflection downwards to reduce the rise",
Figure 5
3 shows a section through the schematically illustrated nozzle according to FIG. 2 with the associated control flaps in the position "slow travel with the amount of water increasing at a lower speed due to the injector effect" and also the position of the control flaps as "passive rudder",
Figure 6
3 shows a section through the schematically illustrated nozzle according to FIG. 2 with the associated control flaps in the position "fast travel with reduced nozzle area and horizontal deflection upwards = positive coming-up moment"
Figure 7
3 shows a section through the schematically illustrated nozzle according to FIG. 2 with the associated control flaps in the position "fast travel with reduced nozzle area and horizontal deflection downwards (negative" coming-up moment ")
Figure 8
a section through the schematically illustrated nozzle of Figure 2 with the associated control flaps in the "reverse travel and braking" position
Figure 9
a further control nozzle shown schematically in parallel projection with two flaps adjustable at both ends in a nozzle body which can be pivoted about the vertical axis in the position for "slow travel with negative trim torque"
Figure 10
a nozzle according to Figure 9 in the position "braking and reverse travel"
Figure 11
a nozzle according to Figure 9 in the position "slow travel with increased amount of water at lower speed by injector effect"
Figure 12
a further control nozzle shown schematically in parallel projection with two flaps which can be adjusted at both ends in a nozzle body which can be pivoted about the horizontal axis in the position "travel at low speed in a right-hand curve"
Figure 13
a nozzle according to Figure 12 in the position "fast travel with positive trim corresponding to a positive rise moment"
Figure 14
a nozzle according to Figure 12 in the position "reverse travel or braking" and
Figure 15
a control scheme for water jet drives according to the invention.

Um das Verständnis der Erfindung zu erleichtern seien vorab die theoretischen Zusammenhänge erläutert.In order to facilitate understanding of the invention, the theoretical relationships are explained in advance.

Wie bekannt, verändert sich mit steigender Geschwindigkeit w des Fahrzeuges die durch die Düse des Wasserstrahlantriebes von der Fläche F durchströmende Wassermenge Qw nach: Qw = F. 2g . (Hp + ξ . hw

Figure imgb0003

wobei Hp die Pumpenförderhöhe, hw die Geschwindigkeitshöhe des Fahrzeuges: hw = w² / 2g
Figure imgb0004

und den ξ Anteil der Geschwindigkeitshöhe bezeichnet, der im Einlauf der Pumpe durch vorteilhafte Ausbildung des Saugmundes und des Diffusors zurückgewonnen werden kann.As is known, as the speed w of the vehicle increases, the amount of water Qw flowing through the nozzle of the water jet drive from the surface F changes to: Qw = F. 2g. (Hp + ξ. Hw
Figure imgb0003

where Hp is the pump head, hw is the speed of the vehicle: hw = w² / 2g
Figure imgb0004

and denotes the ξ portion of the speed level that can be recovered in the inlet of the pump by advantageously designing the suction mouth and the diffuser.

In der Figur 1 ist in der üblichen Darstellung eines Pumpenkennfeldes mit der Pumpenförderhöhe H auf der Ordinate 1 und dem Pumpendurchsatz Q auf der Abszisse 2 die Pumpenkennlinie 3 konstanter Drehzahl ohne Geschwindigkeitsrückgewinn (identisch mit der Pumpenkennlinie bei der Fahrgeschwindigkeit w = 0) und die Pumpenkennlinie 4 mit Geschwindigkeitsrückgewinn 9, die Drossellinie 5 für den optimalen Standschub 6 und die Drossellinie 7 für den optimalen Schub 8 bei der Auslegungsgeschwindigkeit w.In FIG. 1, the pump characteristic curve with the pump delivery head H on the ordinate 1 and the pump throughput Q on the abscissa 2 is the pump characteristic curve 3 of constant speed without speed recovery (identical to the pump characteristic curve at the driving speed w = 0) and the pump characteristic curve 4 with speed recovery 9, the throttle line 5 for the optimal standing thrust 6 and the throttle line 7 for the optimal thrust 8 at the design speed w.

Bei Stillstand, also einer Fahrgeschwindigkeit w = 0 entspricht der Pumpenbetriebspunkt 10 zugleich dem Düsenbetriebspunkt. Bleibt der Düsenquerschnitt unverändert, so wandert mit steigender Fahrgeschwindigkeit w geschwindigkeitsbedingt wegen des an der Düse um den Wert 9 = ξ . w²/2g anstehenden höheren Druckes der Betriebspunkt zu dem neuen Düsenbetriebspunkt 11 und folglich zu dem Pumpenbetriebspunkt 12 entsprechend der Charakteristik der Drehzahlkennlinie 3 in ein Gebiet geringerer Pumpenförderhöhen und schlechterer Wirkungsgrade der Pumpe, so daß nun nur der geringere Schub 13 erreicht werden kann.When the vehicle is at a standstill, that is to say a travel speed w = 0, the pump operating point 10 also corresponds to the nozzle operating point. If the nozzle cross section remains unchanged, so with increasing driving speed w moves due to the speed at the nozzle around the value 9 = ξ. w² / 2g pending higher pressure the operating point to the new nozzle operating point 11 and consequently to the pump operating point 12 in accordance with the characteristic of the speed characteristic curve 3 in an area of lower pump delivery heights and poorer pump efficiency, so that now only the lower thrust 13 can be achieved.

Aus der Formel (1) und der Figur 1 ist klar ersichtlich, daß mit steigender Fahrgeschwindigkeit "w" und größerem Geschwindigkeitsrückgewinn der die Drossellinie bestimmende Düsenquerschnitt "F" auf die Größe "Fw" verkleinert werden muß, um die Förderhöhen/Durchsatzcharakteristik der Drossellinie 5 zur Drossellinie 7 und den Düsenbetriebspunkt 11 zum Düsenbetriebspunkt 14 zu verlagern, damit der Durchsatz 15 des Wirkungsgradbestpunktes 10 der Drehzahlkennlinie 3 der Pumpe und der höchstmögliche Schub 8 erzielt wird.From the formula (1) and FIG. 1 it is clearly evident that with increasing driving speed "w" and greater speed recovery, the nozzle cross section "F" determining the throttle line must be reduced to the size "Fw" in order to increase the delivery head / throughput characteristic of the throttle line 5 to the throttle line 7 and the nozzle operating point 11 to the nozzle operating point 14 so that the throughput 15 of the efficiency point 10 of the speed characteristic 3 of the pump and the highest possible thrust 8 is achieved.

Wird dagegen der Düsenquerschnitt "F" für den Höchstschub 8 bei der angestrebten Höchstgeschwindigkeit "w" mit "Fw" ausgeführt, kann nur ein gegenüber dem leistungsbedingten größtmöglichen Standschub 6 geringerer Standschub 17 entsprechend der Drossellinie 7 erreicht werden.If, on the other hand, the nozzle cross section "F" for the maximum thrust 8 is carried out at the desired maximum speed "w" with "Fw", only a lower thrust 17 corresponding to the throttle line 7 can be achieved compared to the largest possible thrust 6 which is related to the performance.

Diese Kriterien gelten natürlich für den gesamten Drehzahlbereich der Pumpe, da für alle Punkte der Parabel 5 durch den Optimalpunkt 10 die gleichen optimalen Strömungsverhältnisse innerhalb der Pumpenbeschaufelung herrschen.These criteria naturally apply to the entire speed range of the pump, since the optimal flow conditions within the pump blading prevail for all points of the parabola 5 due to the optimal point 10.

Wird also ein optimaler Betrieb - Schub und Wirkungsgrad - eines Wasserstrahlantriebes in allen Betriebsbereichen - Drehzahlen und Fahrgeschwindigkeiten - angestrebt, muß über den wirksamen Düsenquerschnitt "Fw" unabhängig von der Fahrgeschwindigkeit "w" stets in Abhängigkeit der Pumpendrehzahl "n" der zugehörige Wasserdurchsatz "Q" eingeregelt werden. Da Q = Fa . va = Fx . vx = Fx 2 ξ . pdynx

Figure imgb0005

ist, kann der dem Durchsatz Q proportionale dynamische Druck pdynx an einer beliebigen Stelle konstanten Querschnittes und konstanter Strömungsrichtung innerhalb der Pumpe bzw. des Strömungskanals gewählt werden.So if optimal operation - thrust and efficiency - of a water jet drive in all operating areas - speeds and driving speeds - is sought, the effective nozzle cross section "Fw" must always be dependent on the pump speed regardless of the driving speed "w" "n" the associated water flow "Q" can be adjusted. There Q = Fa. va = Fx. vx = Fx 2nd ξ . pdynx
Figure imgb0005

the dynamic pressure pdynx proportional to the throughput Q can be selected at any point of constant cross-section and constant flow direction within the pump or the flow channel.

Wird im gewählten optimalen Kennfeldpunkt 10 ein Durchsatz Q* bei der Drehzahl n* erreicht, ist folglich im Meßquerschnitt Fx eine Strömungsgeschwindigkeit vx* und damit der dynamische Druck pdynx* vorhanden. Somit kann für das Regelkriterium Q*/n* auch vx*/n* oder pdynx*

Figure imgb0006
/n* angesetzt werden.If a throughput Q * is reached at the speed n * in the selected optimal map point 10, a flow velocity vx * and thus the dynamic pressure pdynx * is consequently present in the measuring cross section Fx. Thus vx * / n * or can also be used for the control criterion Q * / n * pdynx *
Figure imgb0006
/ n * can be used.

Damit kann geschrieben werden: pdynx* n* = pdynx n = konst

Figure imgb0007

oder für den einzuregelnden dynamischen Druck pdynx = pdynx* n*² . n² = K . n²
Figure imgb0008
It can be used to write: pdynx * n * = pdynx n = const
Figure imgb0007

or for the dynamic pressure to be regulated pdynx = pdynx * n * ² . n² = K. n²
Figure imgb0008

Hierbei bedeutet "pdynx*" den dynamischen Druck im Meßquerschnitt "Fx" im Betriebspunkt (10) optimalen Wirkungsgrades bei der Auslegungsdrehzahl "n*" (3) und dem Durchsatz "Q*", der Druck "pdynx" den Meßwert bei der augenblicklichen Pumpendrehzahl "n".Here "pdynx *" means the dynamic pressure in the measuring cross section "Fx" at the operating point (10) optimum efficiency at the design speed "n *" (3) and the throughput "Q *", the pressure "pdynx" the measured value at the current pump speed "n".

Nunmehr sei ein Ausführungsbeispiel zur Durchführung de-s erfindungsgemäßen Verfahrens anhand der Figur 2 beschrieben, wobei lediglich die zur Erfindung gehörenden Teile dargestellt sind. Von dem in Vorausrichtung an einem Wasserfahrzeug angeordneten Strömungskanal mit einem eine Ansaugöffnung aufweisenden Einlauf an seinem vorderen Ende, eine dem Einlauf nachgeordnete Pumpe in seinem mittleren Bereich zum Ansaugen und Beschleunigen von Wasser sowie einer Düse an der Strahlaustrittsöffnung an seinem hinteren Ende ist daher lediglich das hintere Ende des Pumpenkörpers 18 gezeigt. Der Pumpenkörper weist einen etwa kreisringförmigen Querschnitt auf und geht stromab in eine durch einen Düsenkörper 19, eine obere Klappe 20 und eine untere Klappe 21 gebildete Düse D über.An exemplary embodiment for carrying out the method according to the invention will now be described with reference to FIG. 2, only the parts belonging to the invention being shown. From that in advance to one A flow channel arranged in the watercraft with an inlet having an intake opening at its front end, a pump downstream of the inlet in its central region for drawing in and accelerating water, and a nozzle at the jet outlet opening at its rear end, therefore only the rear end of the pump body 18 is shown. The pump body has an approximately circular cross section and merges downstream into a nozzle D formed by a nozzle body 19, an upper flap 20 and a lower flap 21.

Der Düsenkörper 19 ist in der nur teilweise dargestellten Schwenkachse 22 am Pumpenkörper schwenkbar gelagert und durch die nicht näher dargestellte Schwenkeinrichtung 37 im Winkel zur Pumpenachse vertikal verstellbar.The nozzle body 19 is pivotally mounted on the pump body in the pivot axis 22, which is only partially shown, and can be adjusted vertically at an angle to the pump axis by means of the pivot device 37 (not shown in more detail).

Die Stirnseite 23 des Düsenkörpers 19 ist kreisbogenförmig ausgebildet. Die Unterseite des Düsenkörpers ist offen und durch die untere Klappe 21 verschlossen. Die mittels Lageraugen 27 und 32 beweglich gelagerte Klappe 21 bildet so die untere Begrenzung des Strömungskanals und der Düse. Die untere Klappe 21 weist ferner seitliche Wangen 24 auf, die zur Führung der Klappe 21 im Düsenkörper 19 und zur seitlichen Begrenzung des Wasserstrahles bei Rückwärtsfahrt dienen.The end face 23 of the nozzle body 19 is designed in the form of a circular arc. The underside of the nozzle body is open and closed by the lower flap 21. The flap 21 movably supported by means of bearing eyes 27 and 32 thus forms the lower boundary of the flow channel and the nozzle. The lower flap 21 also has lateral cheeks 24 which serve to guide the flap 21 in the nozzle body 19 and to limit the water jet laterally when reversing.

Die obere Klappe 20 ist um eine Schwenkachse 25 in Lageraugen 25' des Düsenkörpers 19 drehbar gelagert und durch eine an einer Lagerung 31 angreifenden und andererseits am Düsenkörper 19 schwenkbar in einem Lagerauge 38 gelagerten Verstelleinrichtung 26 verstellbar. Ferner sind zwei Verstelleinrichtungen 33 zwischen den Lageraugen 32 der unteren Klappe und dem Lagerauge 31 der oberen Klappe 20 vorgesehen.The upper flap 20 is rotatably mounted about a pivot axis 25 in bearing eyes 25 'of the nozzle body 19 and is adjustable by an adjusting device 26 which engages on a bearing 31 and on the other hand is pivotably mounted on the nozzle body 19 in a bearing eye 38. Furthermore, two adjustment devices 33 are provided between the bearing eyes 32 of the lower flap and the bearing eye 31 of the upper flap 20.

Die untere Klappe 21 besitzt an ihrem vorderen Ende Lager 27, in denen die aus der angedeuteten Verstelleinrichtung 28, den Winkelhebeln 39 und dem Gestänge 40 bestehende Ausschwenkvorrichtung eingreift, mit der die untere Klappe an diesem Ende abgesenkt werden kann. Auf dem Lager 27 sind Abstandslaschen 29 angeordnet, die mit ihren anderen Enden an der oberen Klappe 20 in den Lagern 30 drehbeweglich angelenkt sind.The lower flap 21 has bearings 27 at its front end, in which the swiveling device consisting of the indicated adjusting device 28, the angle levers 39 and the linkage 40 engages, with which the lower flap can be lowered at this end. Spacer tabs 29 are arranged on the bearing 27, the other ends of which are pivotably articulated on the upper flap 20 in the bearings 30.

Die Wirkungsweise der beschriebenen Anordnung ist folgende.The operation of the arrangement described is as follows.

Mittels der einerseits an der oberen Klappe 20 an dem als Lagerung dienendem Befestigungsauge 31 und andererseits in den ebenfalls als Lagerung dienenden Befestigungsaugen 32 am hinteren Ende der unteren Klappe 21 gelagerten Betätigungseinrichtungen 33 ist der wirksame Düsenquerschnitt durch Veränderrung des Spaltes 34 zwischen der unteren kreisbogenförmigen Fläche 35 der oberen Klappe 20 und der hinteren Kante 36 der unteren Klappe 21 veränderbar. Bei unveränderter Stellung der Betätigungseinrichtung 33 wird durch die Betätigungseinrichtung 26 die untere Klappe 21 gleichzeitig mit der oberen Klappe 20 verstellt und so mit gleichbleibendem Spalt 34 und somit gleichbleibendem Düsenquerschnitt nur eine vertikale Richtungsänderung des austretenden Wasserstrahles erzeugt. In der Endstellung von 33 wird ein vollständiges Schließen des Spaltes 34 durch unmittelbare Auflage der Fläche 41 der unteren Klappe 21 an der kreisbogenförmigen Fläche 35 der oberen Klappe 20 erzielt. Auf diese Weise kann bei Liegezeiten im Hafen der Düsenquerschnitt und damit der Strömungskanal zumindest einseitig geschlossen werden, so daß eine Verschmutzung weitestgehend vermieden wird.By means of the actuating devices 33 mounted on the one hand on the upper flap 20 on the mounting eye 31 serving as storage and on the other hand in the mounting eyes 32 also serving as storage on the rear end of the lower flap 21, the effective nozzle cross section is obtained by changing the gap 34 between the lower circular surface 35 the upper flap 20 and the rear edge 36 of the lower flap 21 changeable. With the actuating device 33 in the unchanged position, the lower flap 21 is adjusted simultaneously with the upper flap 20 by the actuating device 26 and thus only a vertical change in direction of the emerging water jet is produced with a constant gap 34 and thus constant nozzle cross section. In the end position of FIG. 33, a complete closing of the gap 34 is achieved by the surface 41 of the lower flap 21 being directly supported on the circular surface 35 of the upper flap 20. In this way, the cross-section of the nozzle and thus the flow channel can be closed at least on one side when the port is idle, so that contamination is largely avoided.

In den Figuren 3 bis 8 sind die verschiedenen möglichen Stellungen der Steuerklappen 20 und 21 in bezug auf den als Strömungskanal dienenden Düsenkörper 19 und die damit erzeugten Abströmrichtungen des Treibstrahles sowie die Absenkung der Klappe 21 schematisch dargestellt.FIGS. 3 to 8 schematically show the various possible positions of the control flaps 20 and 21 with respect to the nozzle body 19 serving as a flow channel and the outflow directions of the propulsion jet thus generated, as well as the lowering of the flap 21.

In der Figur 5 ist die "Bypaßstellung" der Düse dargestellt, wobei der im Querschnitt 42 strömende Treibstrahl mit der Geschwindigkeit 43 der durch den Bypaßquerschnitt 44 entsprechend der Fahrgeschwindigkeit 45 zuströmende Wassermasse durch Reibung und Mischung eine gegenüber dem Treibstrahl niedrigere mittlere Austrittsgeschwindigkeit 46 im Querschnitt 34 mitteilt und so den Düsenwirkungsgrad im niedrigen Fahrgeschwindigkeitsbereich verbessert.FIG. 5 shows the “bypass position” of the nozzle, the driving jet flowing in cross section 42 having the speed 43 of the water mass flowing through the bypass cross section 44 corresponding to the driving speed 45 by friction and mixing having a mean exit speed 46 in cross section 34 that is lower than the driving jet communicates and thus improves the nozzle efficiency in the low driving speed range.

In den Figuren 9 bis 11 ist ein zweites Ausführungsbeispiel einer solchen Steuerdüse dargestellt. Der um eine teilweise dargestellte vertikale Schwenkachse 22 im Pumpenkörper 18 schwenkbare Düsenkörper 19 weist zwei parallele Wangen 19 auf, zwischen denen die beiden Klappen 21a und 21b geführt und mittels nicht dargestellter Verstelleinrichtungen in ihrer Lage an den Lageraugen 27a, 27b, 32a und 32b derart verstellbar sind, daß sowohl der Austrittsquerschnitt durch den Abstand 34 der beiden hinteren Kanten 36a, 36b der Klappen 21a, 21b einstellbar ist als auch durch eine gleichzeitige, gleichsinnige Verstellung der beiden Hinterkanten 36a, 36b der Klappen 21a, 21b eine vertikale Ablenkung der wirksamen Strahlrichtung zur Trimmung erzielt werden kann.FIGS. 9 to 11 show a second exemplary embodiment of such a control nozzle. The nozzle body 19, which can be pivoted about a partially shown vertical pivot axis 22 in the pump body 18, has two parallel cheeks 19, between which the two flaps 21a and 21b are guided and their position on the bearing eyes 27a, 27b, 32a and 32b can be adjusted in this way by means of adjusting devices (not shown) are that both the outlet cross section is adjustable by the distance 34 of the two rear edges 36a, 36b of the flaps 21a, 21b and by a simultaneous, same-directional adjustment of the two rear edges 36a, 36b of the flaps 21a, 21b a vertical deflection of the effective beam direction Trimming can be achieved.

Durch Verschließen der Querschnitte im Bereich der Vorderkanten 47a, 47b und des Spaltes 34 zwischen den Kanten 36a, 36b wird eine Durchströmung der Pumpe vorteilhafterweise bei Stillstand und während Liegezeiten im Hafen und damit deren Beschädigung verhindert.By closing the cross sections in the area of the front edges 47a, 47b and the gap 34 between the edges 36a, 36b, flow through the pump is advantageously prevented during standstill and during idle times in the port and thus its damage.

Für den Bremsvorgang oder für die Rückwärtsfahrt wird der Spalt 34 zwischen den hinteren Kanten 36a, 36b der Klappen 21a, 21b geschlossen, die Vorderkante 47a oder 47b oder beide derart verstellt, daß durch den so entstehenden Spalt das von der Pumpe beschleunigte Wasser in fast der Strömungsrichtung in der Pumpe entgegengesetzter Richtung ausströmen kann und so einen der normalen Fahrtrichtung entgegengesetzten Schub erzeugt. Wird dagegen zusatzlich der Spalt 34 geöffnet, entsteht ein als Injektor wirkender Bypaß.For the braking process or for driving backwards, the gap 34 between the rear edges 36a, 36b of the flaps 21a, 21b is closed, the front edge 47a or 47b or both is adjusted such that the gap accelerated by the pump accelerates the water in almost the same way Flow direction in the pump can flow in the opposite direction and thrust opposite to the normal direction of travel. If, on the other hand, the gap 34 is additionally opened, a bypass acting as an injector is created.

In den Figuren 12 bis 14 ist eine weitere um 90° gedrehte Ausführung der in den Figuren 9 bis 11 dargestellten Steuereinrichtung gezeigt, wobei hier durch die gleichzeitige, gleichsinnige Schwenkung der beiden Klappen 21a, 21b die horizontale Strahlablenkung und damit die Steuerung der Fahrtrichtung und durch das Verschwenken des Düsenkörpers 19 um die horizontale Achse 22 die vertikale Ablenkung des Treibstrahles zur Trimmung erzielt wird.FIGS. 12 to 14 show a further embodiment of the control device shown in FIGS. 9 to 11 rotated by 90 °, the horizontal beam deflection and thus the control of the direction of travel and the simultaneous pivoting of the two flaps 21a, 21b here the pivoting of the nozzle body 19 about the horizontal axis 22, the vertical deflection of the drive jet for trimming is achieved.

Aus Figur 15 ist das Zusammenwirken der vorstehend beschriebenen Baugruppen-Anordnung Antrieb-Pumpe-Düse-Regler und Servo zu ersehen, also das Betätigen der beschriebenen Klappen der Düse über einen Regler und einen Servo in Abhängigkeit der zur Verfügung stehenden Meßwerte Pumpendrehzahl, dynamischer Druck und/oder Strömungsgeschwindigkeit im Strömungskanal, derart, daß der Querschnitt der Düse unabhängig von der Fahrgeschwindigkeit des Wasserfahrzeuges in Abhängigkeit der Drehzahl der Pumpe und dem zugehörigen Durchsatz an Wasser durch den Strömungskanal auf ein Verhältnis von Wasserdurchsatz zu Pumpendrehzahl = konstant geregelt wird, wobei als Regelgröße der erfaßbare dynamische Druck oder die Strömungsgeschwindigkeit im Strömungskanal und die Drehzahl der Pumpe benutzt werden.From Figure 15, the interaction of the assembly arrangement described above drive-pump-nozzle-controller and servo can be seen, i.e. the actuation of the described flaps of the nozzle via a controller and a servo depending on the available measured values pump speed, dynamic pressure and / or flow velocity in the flow channel, such that the cross section of the nozzle is controlled independently of the speed of the watercraft depending on the speed of the pump and the associated flow rate of water through the flow channel to a ratio of water flow rate to pump speed = constant, the control variable being detectable dynamic pressure or the flow velocity in the flow channel and the speed of the pump can be used.

Das oben beschriebene Trimmen des Wasserfahrzeuges kann selbstverständlich automatisch mit Hilfe eines Rechners durchgeführt werden.The trimming of the watercraft described above can of course be carried out automatically using a computer.

Claims (16)

  1. Method of operating a hydrojet drive for water-craft, whith a flow duct comprising an inlet, a pump and an outlet opening, and with nozzle which is assigned to the outlet opening, variable in its effective cross-section and steerable into the effective jet direction, characterized in that the cross-section of the nozzle is regulated, depending on the speed of the pump and the associated flow of water through the flow duct, to a ratio of water flow to pump speed = constant, irrespective of the travelling speed of the watercraft.
  2. Method according to Claim 1, characterized in that the dynamic pressure pdyn, which can be detected inside the flow duct in the region of invariable cross-section and constant flow direction, is used as reference variable and is regulated according to the equation pdyn k. n² = 1
    Figure imgb0011
    k being a constant which is fixed, depending on the pump characteristic, to the optimum of the pump efficiency, and n being the pump speed.
  3. Method according to Claim 1, characterized in that the speed vx which is proportional to the flow is used as reference variable and the flow to pump speed ratio is kept constant according to o n = o* n* = vx n = vx* n*
    Figure imgb0012
    "vx*" denoting the flow speed at the measuring point "x" at the optimum efficiency operating point at the flow "Q*" and the design speed "n*", and the speed "vx" denoting the measured value at the instantaneous pump speed "n" and the flow "Q" to be set.
  4. Method according to Claims 1 to 3, characterized in that the setting of the size of the effective nozzle outlet cross-section takes place manually or automatically by at least two flaps or slides which can be displaced independently of one another and are assigned to the outlet opening of the flow duct.
  5. Method according to Claim 4, characterized in that, for regulating the flow/speed ratio, the signals for the regulating variables pdynx and speed are processed by a computer into actuating signals which bring about the necessary displacements of the control flaps.
  6. Method according to Claim 4, characterized in that the signals necessary for regulating the flow/speed ratio are displayed for the purpose of manual control of the optimum nozzle cross-section.
  7. Method according to Claims 1 to 6, characterized in that the flaps or slides which determine the effective nozzle outlet cross-section are additionally used for a vertical deflection of the driving jet for trimming the watercraft.
  8. Method according to Claim 7, characterized in that, for bringing about the vertical deflection of the driving jet for trimming the craft, sensors are used for the purpose of determining the position of the watercraft about its transverse and/or longitudinal axis, the signals of which are used to display the deviation from the set value and/or for forming control commands.
  9. Method according to Claims 7 and 8, characterized in that the trimming of the watercraft about its transverse and/or longitudinal axis is carried out automatically with the aid of a computer.
  10. Hydrojet drive for implementing the method according to Claims 1 to 9, with, arranged in the forward direction on the watercraft, a flow duct with an inlet at its front end having an intake opening, and with, arranged downstream of the inlet, a single-stage or multi-stage pump in the central region of the flow duct for intake and acceleration of water and with devices for varying the effective cross-section of a nozzle at the jet outlet opening which can be steered into the effective jet direction, characterized in that independently displaceably mounted control flaps (20, 21) are present, one control flap being designed in the shape of a circular arc and arranged pivotably directly about a bearing (25') mounted in the nozzle body (19), and in that the second control flap is of straight design and, by means of two displacement devices which are mounted at both ends and independent of one another, displaceable in its position in such a manner that a gap for the emerging water jet is opened by it at its front end towards the nozzle body or with regard to the rear end in relation to the lower edge of the flap in the shape of a circular arc or with regard to both ends.
  11. Hydrojet drive according to Claim 10, characterized in that the front edge (47) of the lower control flap (21) is mounted lowerably, by means of the displacement device (28), in such a manner that a bypass which acts as an injector is created, by means of which, from the flow of the quantity of water delivered by the pump serving as driving jet, an additional quantity of water is taken in from below and accelerated in such a manner that the quantity of water leaving the nozzle increases, its average speed decreases and consequently a thrust augmentation can be achieved at low speeds.
  12. Hydrojet drive according to Claims 10 and 11, characterized in that the lower flap (21) is mounted lowerably, when the gap (34) has been opened, on the front bearing (27) in such a manner that a passive rudder is formed, which makes possible steering of the watercraft even in towed operation.
  13. Hydrojet drive according to Claims 10 to 12, characterized in that the lower flap (21), with regard to the front edge (47) in the region of the bearing (27) and at the rear edge (36) in relation to the upper flap (20), the water-bearing duct of the entire hydrojet drive, is mounted closably from the outlet side, in such a manner that flowing through and/or damage of the internal pump parts is prevented during standstill of the drive.
  14. Hydrojet drive according to Claims 10 to 13, characterized in that the control flaps (20, 21) are mounted displaceably simultaneously and in the same direction (displacement device 26).
  15. Hydrojet drive according to Claims 10 to 14, characterized in that the component bearing the nozzle (D) is designed as a housing (19) which is pivotable about a vertical axis (22) and the axis (22) of which is vertical or inclined in relation to the vertical.
  16. Hydrojet drive according to Claims 10 to 15, characterized in that the upper flap (20) assigned to the housing (19) has a curved shape corresponding to the shape of the outlet cross-section of the housing (19) and serves as upper delimitation of the nozzle cross-section, in that the lower flap (21) is of plane design and mounted twice (27, 32), and in that the front bearing (27) of the lower flap (21) can be lowered via a displacement device (28).
EP91900165A 1989-12-22 1991-07-25 Process for operating a water-jet drive for water craft and arrangement for implementing the process Expired - Lifetime EP0460144B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3942631 1989-12-22
DE3942631 1989-12-22
DE4033674A DE4033674A1 (en) 1989-12-22 1990-10-23 METHOD FOR OPERATING A WATER JET DRIVE FOR WATER VEHICLES AND ARRANGEMENT FOR IMPLEMENTING THE METHOD
DE4033674 1990-10-23

Publications (2)

Publication Number Publication Date
EP0460144A1 EP0460144A1 (en) 1991-12-11
EP0460144B1 true EP0460144B1 (en) 1994-03-23

Family

ID=25888404

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91900165A Expired - Lifetime EP0460144B1 (en) 1989-12-22 1991-07-25 Process for operating a water-jet drive for water craft and arrangement for implementing the process

Country Status (3)

Country Link
EP (1) EP0460144B1 (en)
DE (2) DE4033674A1 (en)
WO (1) WO1991009773A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678891B1 (en) * 1991-07-09 1996-01-26 Chaneac Andre PROPULSION DEVICE FOR VESSELS COMPRISING CONCENTRIC AND CONTRA-ROTATING PROPELLERS AND VESSELS EQUIPPED WITH SUCH A DEVICE.
JP2788216B2 (en) * 1995-12-08 1998-08-20 川崎重工業株式会社 Control device for marine water jet propulsion
US7037150B2 (en) 2001-09-28 2006-05-02 Morvillo Robert A Method and apparatus for controlling a waterjet-driven marine vessel
US7052338B2 (en) * 2001-08-06 2006-05-30 Morvillo Robert A Integral reversing and trim deflector and control mechanism
US7222577B2 (en) 2001-09-28 2007-05-29 Robert A. Morvillo Method and apparatus for controlling a waterjet-driven marine vessel
US11472531B2 (en) 2003-07-15 2022-10-18 Robert A. Morvillo Method and apparatus for controlling a waterjet-driven marine vessel
US7641525B2 (en) 2004-11-24 2010-01-05 Morvillo Robert A System and method for controlling a waterjet driven vessel
EP1963175B1 (en) 2005-12-05 2015-07-29 Robert A. Morvillo Method and apparatus for controlling a marine vessel
US8126602B2 (en) 2006-12-19 2012-02-28 Morvillo Robert A Method and apparatus for controlling a water-jet driven marine vessel
US8631753B2 (en) 2010-02-18 2014-01-21 Robert A. Morvillo Variable trim deflector system and method for controlling a marine vessel
NL2009897C2 (en) * 2012-11-28 2014-06-02 Jacob Bruijn Water jet apparatus, vessel with water jet apparatus.
US9233740B2 (en) 2013-02-08 2016-01-12 Robert A. Morvillo Variable trim deflector system with protruding foil and method for controlling a marine vessel
CN103303451B (en) * 2013-06-17 2015-09-23 北京理工大学 A kind of hydraulically powered full vector waterjet propulsor spout

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE169974C (en) *
US3055175A (en) * 1961-03-14 1962-09-25 Frank C Clark Marine propulsion means
US3267666A (en) * 1962-11-23 1966-08-23 Lakewood Mfg Co Combined marine propulsion and steering means
FR1409743A (en) * 1964-03-17 1965-09-03 Grenobloise Etude Appl Improvements to jet propulsion systems for ships
GB1063945A (en) * 1964-07-23 1967-04-05 Silvio Barletta Improvements in or relating to liquid jet reaction propulsion units
US3942464A (en) * 1973-07-13 1976-03-09 Schoell Harry L Water jet propelling apparatus for boats
DE2644743A1 (en) * 1976-10-04 1978-04-06 Schubert Siegfried Transfer duct for water jet powered craft propulsion unit - has telescopic spherical elements linked to control nozzle for jet direction change
US4073258A (en) * 1977-04-07 1978-02-14 The Boeing Company Lateral maneuvering control for water-jet propulsion systems
DE3700530A1 (en) * 1987-01-09 1988-07-21 Dynafluids Inc Nozzle with a variable effective cross-section for hydrojet propulsion of watercraft
SE457166B (en) * 1987-05-21 1988-12-05 Mjp Marine Jet Power Handelsbo REVERSION DEVICE FOR A RADIATION OPERATOR FOR SHIP

Also Published As

Publication number Publication date
DE4033674A1 (en) 1991-07-04
EP0460144A1 (en) 1991-12-11
DE59005129D1 (en) 1994-04-28
WO1991009773A1 (en) 1991-07-11
DE4033674C2 (en) 1992-12-17

Similar Documents

Publication Publication Date Title
EP0460144B1 (en) Process for operating a water-jet drive for water craft and arrangement for implementing the process
DE3005682C2 (en) Ship propulsion system
DE60308563T2 (en) Ship propulsion and method
WO2009046768A1 (en) Method for controlling a surface drive for a watercraft
DE3332833C2 (en)
DE2167236C2 (en) Jet engine for a watercraft
EP1915289A1 (en) Watercraft steering mechanism and trimmer
DE3490269C2 (en) Vessel with adjustable draught
DE1556504A1 (en) Jet directing and reversing device for controlling watercraft with water jet engines
DE3303554C2 (en)
EP0775066A1 (en) Hydrojet
DE1919833A1 (en) Planing boat
DE3700530A1 (en) Nozzle with a variable effective cross-section for hydrojet propulsion of watercraft
EP1922246B1 (en) Water craft
DE1481576C3 (en) plane
DE2809662C2 (en) Propulsion for ships consisting of a nozzle-like casing with a propeller and an associated rudder
DE2336154A1 (en) Trim flap for fast motor boat - mounted away from hull line behind water intake for max. effect
DE2223389C2 (en) Ship braking system
EP0644839B1 (en) Steering gear for a hovercraft
DE3302180A1 (en) Braking and auxiliary control device for ships
EP1203715A2 (en) Ship, especially fast ship with PoD propulsion
DE2758557C3 (en) Propulsion for water vehicles
DE3343605A1 (en) Jet propulsion with jet tube and pivotable jet deflectors
DE2644757A1 (en) Thrust controller for water jet propulsion unit - has Bowden cable operated horizontally pivoted opposed cylindrical baffles which meet tangentially
DE2046868A1 (en) Control, stabilization or similar surfaces having element for bodies moving in flowing media, as well as ships or similar vehicles with such an element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19911211

17Q First examination report despatched

Effective date: 19930503

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 59005129

Country of ref document: DE

Date of ref document: 19940428

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940413

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EAL Se: european patent in force in sweden

Ref document number: 91900165.1

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950831

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950701

EUG Se: european patent has lapsed

Ref document number: 91900165.1

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980820

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051212