EP0189086B1 - Glühelement - Google Patents

Glühelement Download PDF

Info

Publication number
EP0189086B1
EP0189086B1 EP86100372A EP86100372A EP0189086B1 EP 0189086 B1 EP0189086 B1 EP 0189086B1 EP 86100372 A EP86100372 A EP 86100372A EP 86100372 A EP86100372 A EP 86100372A EP 0189086 B1 EP0189086 B1 EP 0189086B1
Authority
EP
European Patent Office
Prior art keywords
resistor
glow
resistors
conductor
glow plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86100372A
Other languages
English (en)
French (fr)
Other versions
EP0189086A3 (en
EP0189086A2 (de
Inventor
Helmut Dipl.-Ing. Müller (FH)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BERU Ruprecht GmbH and Co KG
Original Assignee
BERU Ruprecht GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BERU Ruprecht GmbH and Co KG filed Critical BERU Ruprecht GmbH and Co KG
Publication of EP0189086A2 publication Critical patent/EP0189086A2/de
Publication of EP0189086A3 publication Critical patent/EP0189086A3/de
Application granted granted Critical
Publication of EP0189086B1 publication Critical patent/EP0189086B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/025Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs with means for determining glow plug temperature or glow plug resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines

Definitions

  • the invention relates to a glow element according to the preamble of patent claim 1.
  • Such a glow element is known from GB-A-2 084 649, the electrical conductor acting on any winding of the one-piece resistance element.
  • DE-A-2 802 625 describes a glow element in which the resistance element consists of two resistors connected in series, the resistor connected to the closed tip of the glow tube as the heating resistor and the resistor connected to the inner pole as the control resistor with a positive temperature coefficient is trained. This configuration enables the heating resistor to be regulated.
  • a heating resistor is also provided in a glow plug, the temperature or heating behavior of which is effected solely by external electrical wiring.
  • External connections of this type are often complex and expensive, whereas in the case of a self-regulating glow plug with a heating and regulating resistor in the glow plug, a very short heating-up time, as would be necessary for an immediate start of diesel engines, cannot be achieved without endangering the glow plug.
  • the object of the invention is to design a glow element of the type mentioned at the outset in such a way that the individual elements can be connected outside the glow element.
  • the glow plug with a heating coil and a control coil, which has a positive temperature coefficient of resistance, from the outside in such a way that the wiring of the individual elements within the glow element is possible, so that afterglowing after a very short heating-up time low heating element temperature is made possible, whereby the concentricity of a still cold diesel engine can be improved and the exhaust gas emission can be reduced.
  • the glow element according to the invention enables measured values to be taken directly from one. Partial resistance, which can then be fed to a control device for evaluation.
  • self-regulation can be made possible by simple external wiring.
  • FIG. 2 shows a glow plug, which is denoted overall by 1, the heating or glow element according to FIG. 1, denoted overall by 2.
  • This glow element 2 is mounted in a known manner with the seal 4, the insulating washer 5, the thrust washer 6 and the round nut 7 in a body 3 of the glow plug 1 designed in a known manner.
  • the glow element 2 contains two series-connected electrical resistors 10 and 11.
  • the two resistors are known to be embedded in an insulating material 13 and surrounded by a metallic glow tube 30, which projects coaxially to the body 3 and is closed at its outer end. At this tip 14 of the glow tube, one of the resistors 11 is connected to the glow tube 30 in an electrically conductive manner.
  • the inner pole 9 is electrically insulated and inserted tightly into the glow tube 30 and is connected in an electrically conductive manner at 17 to the other resistor, 10.
  • a sealing ring 15 is preferably used between the glow tube and the inner pole.
  • One of the two resistors 10 and 11 has a positive temperature coefficient and thus acts as a variable resistor.
  • the resistor 11 connected to the closed tip 14 of the glow tube 30 is designed as a heating resistor and the resistor 10 remote from the tip connected to the inner pole is designed as the variable resistor.
  • the inner pole 9 is designed as a hollow cylinder, an electrical conductor 8 being guided through it.
  • the passage of the conductor 8 through the inner pole 9 must be electrically insulating.
  • This insulation can preferably an insulating oxidation or an insulating tube 16, which simultaneously seals the bushing against the penetration of moisture, or another electrically insulating layer.
  • the conductor 8 is guided centrally through the resistor 10, which is closer to the body 3, up to the connection point of the resistors 10 and 11, where the conductor 8 is electrically conductively connected to this connection point.
  • the resulting electrical circuit diagram of the glow element is shown in FIG. 7, where resistor 10 is shown as variable resistor R1 and the other resistor 11 as R2.
  • resistor 10 is shown as variable resistor R1 and the other resistor 11 as R2.
  • the conductor 8 is designed to have a very low resistance compared to the resistors 10 and 11.
  • the described design of the glow element 2 enables any external wiring of individual resistances of the glow element.
  • the possibility of the individual wiring of the resistors contained in the heating element results in a simplification of the external wiring as a whole in relation to the respective intended purpose.
  • Some examples of simple types of wiring are shown in FIGS. 8 to 13.
  • another resistor R3 with a positive temperature coefficient is used in parallel to the control resistor R1 outside the glow element.
  • This arrangement of a parallel PTC resistor R3 outside the glow plug 1 or glow element 2 brings about a clearer curtailment of the current flowing through the heating resistor R2 (11) and thus a shortening of the heating time.
  • the total resistance of the control resistor R1 (10) and the parallel PTC resistor R3 is kept at a low level despite the heating of the control resistor R1. Due to self-heating, the PTC resistor R3 lying outside the glow plug finally reaches its switching temperature and its resistance value rises to a multiple of the variable resistor R1, so that only further variable regulation means the variable resistor R1 (10).
  • the PTC resistor R3 located outside the glow plug could be accommodated as a temperature sensor in the cooling water, engine oil, exhaust gas or cylinder head and take over a temperature measurement task after the glow process.
  • Fig. 9 shows the possibility of a temperature measurement via the voltage drop across the heating resistor R2 (11) or control resistor R1 (11).
  • the voltage drop U1 or U2 at the control resistor R1 or at the heating resistor R2 is a measure of the temperature of the glow tube.
  • This variable can be used for glow monitoring, as a display or as a manipulated variable in a control loop.
  • the conductor 8 connected between the heating resistor 11 and the control resistor 10 and led out through the inner pole 9 also enables the construction of all possible bridge circuits, for example the one in FIG Fig. 10 shown measuring bridge.
  • the external wiring of the measuring bridge is designed so that the bridge is balanced at the desired annealing temperature. The reversal of the current direction in the bridge then corresponds to the signal for reaching the desired glow tube temperature.
  • the heating resistor R2 (11) can be controlled via a switch S designed as a changeover switch. Then if e.g. at the tip of the glow tube 30, the desired temperature is reached, one or more heating resistors R2 'are switched in gradually, which then heat the entire glow tube to the operating temperature.
  • the switch S can be operated mechanically, thermally (e.g. as a bimetal switch) or electrically (e.g. time-controlled).
  • a control resistor R1 can be connected upstream of these.
  • One of the heating resistors can also be replaced by a variable resistor.
  • the switching element can also be a simple switch in the parallel branch to the variable resistor R1 (10) constructed with the aid of the conductor 8.
  • FIG. 13 shows an example of the step-by-step connection of heating resistors R2, R1 by means of a temperature-dependent resistor R3 with a negative temperature coefficient and a temperature-dependent resistor R4 with a positive temperature coefficient.
  • the PTC resistor R4 after switching on (PTC resistor R4 and NTC resistor R3 still cold), the PTC resistor R4 has a small resistance value and the NTC resistor R3 has a large resistance value, which means that initially only the Heating resistor R2 in the glow tube tip acts until it has warmed up to the set temperature. Due to self-heating, the PTC resistor becomes high-resistance and the NTC resistor R3 becomes low-resistance, which has the consequence that the second heating resistor R1 is continuously effective.
  • the second heating resistor R1 can be provided as a control resistor with a positive temperature coefficient.
  • the PTC resistor R4 and the NTC resistor R3 can in turn be housed as a thermal sensor in the cooling water, engine oil, exhaust gas or cylinder head.
  • the conductor 8 led through the inner pole 9 forms one pole of one.
  • Thermocouple T This results at a welding point 12 if, for example, the control resistor R1 (10) is made of Ni and the conductor 8 is made of NiCr.
  • An external circuit can be used to switch from "heating" to "temperature measurement”. In this way, for example, the glow rod temperature can be monitored after the heating process and the heating energy can be switched on again if the temperature drops accordingly. Furthermore, the temperature profile can be monitored during the heating process by means of corresponding clocking processes and the heating energy can thus be regulated from the outside.
  • FIG. 4 shows a further embodiment of a glow plug 1, in which the glow element 2 shown in FIG. 3 contains a series connection of three individual resistors 20, 21 and 22.
  • the conductor 8 led through the inner pole 9 taps off an individual resistor (e.g. the resistor 20 located in the glow tube tip) at 23 or 24.
  • the three individual resistors are preferably designed so that at least one of them has a positive temperature coefficient and can therefore perform control or measurement tasks.
  • the glow element shown in FIG. 3 and the glow plug shown in FIG. 4 do not differ from those of FIGS. 1 and 2.
  • variable resistor R3 in the glow tube tip, which is tapped off by the conductor 8. It is a glow element that requires a hot shaft of the glow plug, which is why the variable resistor can sit in the tip of the glow tube.
  • the resistance value of the variable resistor R3 (20) located in the glow tube tip and thus the temperature of the glow tube tip can be monitored or measured via the additional conductor 8. If a resistor with a positive temperature coefficient is used as the measuring resistor R3, this supports the self-regulation of the heating energy. If energy is supplied to the glow tube tip from the outside (e.g. flame energy), the measuring resistor R3 automatically regulates the heating energy; if the external energy fails, more electrical energy is readjusted. With a corresponding design, a further control resistor R1 can be completely replaced by the measuring resistor R3.
  • FIG. 6 shows a glow plug 1 with a glow element 2 designed according to FIG. 6, in which a two-wire conductor 8 or two conductors 25, 26 are guided through the inner pole 9.
  • the resistors in the glow tube 30 are formed by three resistors 20, 21 and 22 connected in series.
  • One conductor 25 is connected to the connection point 24 of the resistors 20 and 21 and the second conductor 26 to the connection point 23 of the resistors 21 and 22, so that each of the three individual resistors can be connected individually outside the glow element or glow plug. This makes it e.g. It is possible to switch on three heating resistors in stages, to measure the temperature by tapping a temperature-dependent resistor or to carry out other switching operations.
  • FIG. 16 is a circuit diagram for such an embodiment of the glow element 2, with resistors R1 (22) and R2 (21) acting as variable resistors and R3 (20) acting as a heating resistor.
  • FIG. 17 shows a possibility of wiring the glow element of FIG. 5 or the glow plug of FIG. 6, in which the control resistors R1 and R2 are continuously effective.
  • two resistors R4 and R5 with a negative temperature coefficient are connected in series to the resistors of the glow element 2.
  • the parallel resistors R6 and R7 also connected outside the heating element 2 via the conductors 25 and 26 have a positive temperature coefficient.
  • the resistances present outside these glow plugs are only present once.
  • the control resistors R1 and R2 are continuously effective in addition to the glow element R3. This enables the heating element to heat up quickly.
  • Resistor R2 regulates, for example, the temperature of glow tube 30 to the desired value for the starting process. For the subsequent afterglow, the glow tube temperature is lowered even further via R1.
  • the resistors R4 to R7 can be housed as temperature sensors in the cooling water, engine oil, exhaust gas or cylinder head and take over the temperature measurement task after the annealing process.
  • R4 and R6 are connected to each other in a heat-conducting manner, but are also well coupled in a heat-conducting manner to the cooling water, engine block or engine oil (e.g. housed in a temperature sensor housing).
  • R5 and R7 are thermally more closely coupled than with the engine temperature, so that the self-heating from R7 is quickly transferred to R5, but both are only delayed by the engine heat (e.g. together on a circuit board near the engine).
  • Branch 111 becomes live when R4 is heated (eg cooling water warm) and the glow plug is not yet at operating temperature or has already cooled down due to increased fuel supply (accelerating under engine load).
  • branch I When starting warm, the current flow in branch I is blocked because R7 is warm. Branch 11 also blocks since R6 is also warm. A decreasing current flows in branch 111 due to the behavior of R1 and R2.
  • connection of the inner pole 9 and conductor 8 of the heating element 2 is not shown in detail.
  • this can be designed as a coaxial plug connection.
  • the inner conductor 27 of the plug connection is connected to the conductor 8 and the outer conductor 28 of the plug connection is connected to the inner pole 9.
  • an electrically insulating layer e.g. a glass melt 29 is provided.
  • the coaxial connector according to FIG. 24 can also be integrally formed on the inner pole 9 and the conductor 8. 31 denotes an insulating tube that surrounds the conductor 8.
  • FIG. 19 shows a further embodiment of the connection of the conductor 8 to the resistors 10 and 11.
  • the beginning of the coil of the resistor 11 was first wound on the conductor 8 and then the coil end of the resistor 10.
  • Resistors 10 and 11 are firmly connected to conductor 8 by means of a reduction process in which insulating material 13 is compressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

  • Die Erfindung betrifft ein Glühelement gemäß Oberbegriff des Patentanspruchs 1.
  • Ein solches Glühelement ist aus der GB-A-2 084 649 bekannt, wobei der elektrische Leiter an einer beliebigen Windung des einstückigen Widerstandselements angreift.
  • In der DE-A-2 802 625 wird ein Glühelement beschrieben, bei dem das Widerstandselement aus zwei in Reihe geschalteten Widerständen besteht, wobei der mit der verschlossenen Spitze des Glührohrs verbundene Widerstand als Heizwiderstand und der mit dem Innenpol verbundene Widerstand als Regelwiderstand mit positivem Temperaturkoeffizienten ausgebildet ist. Durch diese Ausbildung ist die Regelung des Aufheizens des Heizwiderstandes möglich.
  • Aus der DE-A-3 224 587 ist ferner in einer Glühstiftkerze ein Heizwiderstand vorgesehen, dessen Temperatur bzw. dessen Aufheizverhalten allein durch eine äußere elektrische Beschaltung erfolgt. Derartige äußere Beschaltungen sind oft aufwendig und teuer, während bei einer selbstregelnden Glühstiftkerze mit Heiz- und Regelwiderstand im Glühstift eine sehr kurze Aufheizzeit, wie sie für einen Sofortstart von Dieselmotoren notwendig wären, ohne Gefährdung der Glühkerze nicht erreicht werden kann.
  • Aufgabe der Erfindung ist es, ein Glühelement der eingangs genannten Art so zu gestalten, daß eine Beschaltung der Einzelelemente außerhalb des Glühelements möglich ist.
  • Diese Aufgabe wird erfindungsgemäß durch ein Glühelement gemäß den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.
  • Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der nachfolgenden Ansprüche 2 bis 12.
  • Erfindungsgemäß ist es demnach möglich, eine Glühstiftkerze mit einer Heizwendel und einer Regelwendel, die einen positiven Temperaturkoeffizienten des Widerstand aufweist, von außen derart zu schalten, daß die Beschaltung der Einzelelemente innerhalb des Glühelements möglich ist, so daß nach einer sehr kurzen Aufheizzeit ein Nachglühen bei geringer Heizstabtemperatur ermöglichtwird,wodurch der Rundlauf eines noch kalten Dieselmotors verbessert und die Abgasabgabe reduziert werden kann. Ferner ermöglicht das erfindungsgemäße Glühelement die Abnahme von Messwerten direkt von einem. Teilwiderstand, die dann einer Regeleinrichtung zur Auswertung zugeführt werden können. Außerdem kann durch eine einfache äußere Beschaltung eine Selbstregelung ermöglicht werden.
  • Im folgenden werden Ausführungsformen der Erfindung anhand der beigefügten Zeichnung beschrieben. Auf dieser zeigt bzw. zeigen
    • Fig. 1 ein Glühelement gemäß einer Ausführungsform der Erfindung,
    • Fig. 2 eine Glühstiftkerze mit dem in Fig. 1 dargestellten Glühelement,
    • Fig. 3 ein Glühelement gemäß einer weiteren Ausführungsform der Erfindung,
    • Fig. 4 eine Glühstiftkerze mit dem in Fig. 3 dargestellten Glühelement,
    • Fig. 5 ein Glühelement gemäß einer weiteren Ausführungsform der Erfindung,
    • Fig. 6 eine Glühstiftkerze mit dem in Fig. 5 dargestellten Glühelement,
    • Fig. 7 das Schaltbild des in Fig. 1 dargestellten Glühelements,
    • Figuren 8 bis 13 Beispiele äußerer Beschaltungen des in Fig. 1 dargestellten Glühelements,
    • Fig. 14 das Schaltbild eines Glühelements nach Fig. bzw. einer Glühstiftkerze nach Fig. 2, in einer Ausbildung als Temperaturmeß-Glühelement bzw. -Glühkerze.
    • Fig. 15 das Schaltbild des in Fig. 3 dargestellten Glühelements,
    • Fig. 16 das Schaltbild des in Fig. 5 dargestellten Glühelements,
    • Fig. 17 ein Beispiel für die äußere Beschaltung der in Fig. 6 dargestellten Glühstiftkerze,
    • Fig. 18einAusführungsbeispielfürein koaxiales Anschlußelement für z.B. die Glühstiftkerze nach Fig. 1, und
    • Fig. 19 eine besondere Ausführungsform der Verbindung des Leiters mit dem gemeinsamen Punkt zweier Widerstände.
  • Fig. 2 zeigt eine insgesamt mit 1 bezeichnete Glühstiftkerze, deren insgesamt mit 2 bezeichnetes Heiz- bzw. Glühelement gemäß Fig. 1 ausgeführt ist. Dieses Glühelement 2 ist in bekannter Weise mit Dichtung 4, Isolierscheibe 5, Druckscheibe 6 und Rundmutter7 in einem in bekannter Weise ausgeführten Körper 3 der Glühstiftkerze 1 montiert. Das Glühelement 2 enthält zwei hintereinandergeschaltete als Drahtwendeln ausgebildete elektrische Widerstände 10 und 11. Die beiden Widerstände sind in bekannterweise in ein Isoliermaterial 13 eingebettet und von einem metallischen Glührohr 30 umgeben, welches koaxial zum Körper 3 aus diesem herausragt und an seinem äußeren Ende verschlossen ist. An dieser Spitze 14 des Glührohres ist der eine der Widerstände, 11, mit dem Glührohr 30 elektrisch leitend verbunden. Am anderen Ende des Glührohres ist der Innenpol 9 elektrisch isoliert und dicht in das Glührohr 30 eingeführt und mit dem anderen Widerstand, 10, bei 17 elektrisch leitend verbunden. Zur Abdichtung und Isolierung wird vorzugsweise ein Dichtring 15 zwischen Glührohr und Innenpol eingesetzt. Von den beiden Widerständen 10 und 11 weist einer einen positiven Temperaturkoeffizienten auf und wirkt dadurch als Regelwiderstand. In den heute üblichen Anwendungsfällen als Glühstiftkerze in Verbrennungsmotoren wird der mit der verschlossenen Spitze 14 des Glührohres 30 verbundene Widerstand 11 als Heizwiderstand und der spitzenferne mit dem Innenpol verbundene Widerstand 10 als der Regelwiderstand ausgelegt.
  • Der Innenpol 9 ist als Hohlzylinder ausgebildet, wobei durch ihn hindurch ein elektrischer Leiter 8 geführt ist.
  • Die Durchführung des Leiters 8 durch den Innenpol 9 muß hierbei elektrisch isolierend ausgeführt sein. Diese Isolierung kann vorzugsweise eine isolierende Oxidation sein oder ein Isolierschlauch 16, der gleichzeitig die Durchführung gegen das Eindringen von Feuchtigkeit abdichtet oder eine andere elektrisch isolierende Schicht. Der Leiter 8 wird zentrisch durch den näher zum Körper 3 liegenden Widerstand 10 bis zu der Verbindungsstelle der Widerstände 10 und 11 geführt, wo der Leiter 8 elektrisch leitend mit dieser Verbindungsstelle verbunden ist.
  • Das sich daraus ergebende elektrische Schaltbild des Glühelements ist in Figur 7 wiedergegeben, wo der Widerstand 10 als Regelwiderstand R1 und der andere Widerstand 11 als R2 dargestellt ist. Um einen merklichen Spannungsabfall am durch den Innenpol 9 geführten Leiter 8 und damit die Entstehung von Wärme an der Isolation 16 zu vermeiden, ist der Leiter 8 im Vergleich zu den Widerständen 10 und 11 sehr niederohmig ausgelegt.
  • Die beschriebene Ausführung des Glühelements 2 ermöglicht eine beliebige äußere Beschaltung von Einzelwiderständen des Glühelements. Durch die Möglichkeit der Einzelbeschaltung der im Heizelement enthaltenen Widerstände ergibt sich in Bezug auf den jeweiligen angestrebten Zweck eine Vereinfachung der äußeren Beschaltung insgesamt. Einige Beispiele von einfachen Beschaltungsarten sind in den Figuren 8 bis 13 dargestellt.
  • Gemäß Fig. 8 ist parallel zum Regelwiderstand R1 außerhalb des Glühelements ein weiterer Widerstand R3 mit positivem Temperaturkoeffizienten eingesetzt. Diese Anordnung eines parallelen PTC Widerstands R3 außerhalb der Glühkerze 1 bzw. Glühelements 2 bewirkt eine deutlichere Abregelung des durch den Heizwiderstand R2 (11) fließenden Stroms und damit eine Verkürzung der Aufheizzeit.
  • Nach dem Einschalten wird der Gesamtwiderstand aus Regelwiderstand R1 (10) und parallelem PTC-Widerstand R3 trotz Erwärmung des Regelwiderstandes R1 auf niedrigem Niveau gehalten. Durch Eigenerwärmung erreicht der außerhalb der Glühstiftkerze liegende PTC-Widerstand R3 schließlich seine Schalttemperatur und sein Widerstandswert steigt auf ein Mehrfaches des Regelwiderstands R1 an, so daß hinsichtlich einer weiteren Abregelung dann nur mehr der Regelwiderstand R1 (10) wirkt.
  • In einer weiteren Ausführung könnte der außerhalb der Glühstiftkerze liegende PTC-Widerstand R3 als Temperaturfühler im Kühlwasser, Motoröl, Abgas oder Zylinderkopf untergebracht sein und nach dem Glühvorgang eine Temperaturmeßaufgabe übernehmen.
  • Fig. 9 zeigt die Möglichkeit einer Temperaturmessung über den Spannungsabfall am Heizwiderstand R2 (11) oder Regelwiderstand R1 (11). Der Spannungsabfall U1 bzw. U2 am Regelwiderstand R1 bzw. am Heizwiderstand R2 ist ein Maß für die Temperatur des Glührohres. Diese Größe kann zur Glühüberwachung, als Anzeige oder als Stellgröße in einem Regelkreis verwendet werden.
  • Der zwischen Heizwiderstand 11 und Regelwiderstand 10 angeschlossene und durch den Innenpol 9 herausgeführte Leiter 8 ermöglicht ferner mit Vorsehen eines zum Regelwiderstand R1 (10) parallelen Widerstands R3 und eines zum Heizwiderstand R2 (11) parallelen Widerstands R4 den Aufbau aller möglichen Brückenschaltungen, etwa der in Fig. 10 dargestellten Meßbrücke. Die äußere Beschaltung der Meßbrücke wird so ausgelegt, daß die Brücke bei der gewünschten Glühtemperatur abgeglichen ist. Die Umkehr der Stromrichtung in der Brücke enspricht dann dem Signal für das Erreichen der gewünschten Glührohrtemperatur.
  • Durch das Beschalten des Leiters 8 des Glühelements 2 mit einem mechanischen oder elektronischen Schaltelement ist ein zwei- oder mehrstufiges Zuschalten von Einzelwiderständen möglich.
  • Gemäß Fig. 11 kann über einen als Umschalter ausgebildeten Schalter S zunächst nur der Heizwiderstand R2 (11) angesteuert werden. Wenn dann z.B. an der Spitze des Glührohres 30 die gewünschte Temperatur erreicht ist, werden stufenweise ein oder mehrere Heizwiderstände R2' zugeschaltet, die dann das gesamte Glührohr bis zur Betriebstemperatur aufheizen. Der Schalter S kann sowohl mechanisch, thermisch (z.B. als Bimetallschalter) oder auch elektrisch (z.B. zeitgesteuert) betätigt werden. Zusätzlich zu den Heizwiderständen R2 und R2' kann diesen noch ein Regelwiderstand R1 vorgeschaltet sein. Ebenso kann einer der Heizwiderstände durch einen Regelwiderstand ersetzt sein.
  • Gemäß einer in Fig. 13 dargestellten weiteren Ausführungsform kann das Schaltelement anstelle des Umschalters der Fig. 11 auch ein einfacher Ausschalter im mit Hilfe des Leiters 8 aufgebauten Parallelzweig zum Regelwiderstand R1 (10) sein.
  • Fig. 13 zeigt ein Beispiel für das stufenweise Zuschalten von Heizwiderständen R2, R1 durch einen temperaturabhängigen Widerstand R3 mit negativem Temperaturkoeffizienten und einen temperaturabhängigen Widerstand R4 mit positivem Temperaturkoeffizienten. Bei der in Fig. 13 gezeigten Schaltung hat nach dem Einschalten (PTC-Widerstand R4 und NTC-Widerstand R3 noch kalt) der PTC-Widerstand R4 einen kleinen und der NTC-Widerstand R3 einen großen Widerstandswert, was bedeutet, daß zu Beginn nur der Heizwiderstand R2 in der Glührohrspitze wirkt, bis sich diese auf die Solltemperatur erwärmt hat. Durch Eigenerwärmung wird der PTC-Widerstand hochohmig und der NTC-Widerstand R3 niederohmig, was zur Folge hat, daß der zweite Heizwiderstand R1 kontinuierlich wirksam wird. Dadurch wird die Glührohrspitze schnell aufgeheizt und ohne zusätzliche Beschaltung die Beheizung des gesamten Glührohres zugeschaltet. Zur weiteren Abregelung der Heizleistung kann der zweite Heizwiderstand R1 als Regelwiderstand mit positivem Temperaturkoeffizienten vorgesehen sein. Der PTC-Widerstand R4 und der NTC-Widerstand R3 können wiederum als Thermofühler im Kühlwasser, Motoröl, Abgas oder Zylinderkopf untergebracht sein.
  • Nach der in Fig. 14 dargestellten Schaltung bildet der durch den Innenpol 9 geführte Leiter 8 den einen Pol eines. Thermoelements T. Dieses ergibt sich an einer Schweißstelle 12, wenn beispielsweise der Regelwiderstand R1 (10) aus Ni und der Leiter 8 aus NiCr ausgeführt ist. Durch eine äußere Beschaltung kann von "Heizen" auf "Temperaturmessen" umgeschaltet werden. Auf diese Weise kann beispielsweise nach dem Heizvorgang die Glühstabtemperatur überwacht werden und bei entsprechendem Absinken der Temperatur die Heizenergie wieder zugeschaltet werden. Ferner kann während des Heizvorgangs durch entsprechende Taktvorgänge der Temperaturverlauf überwacht und so die Heizenergie von außen geregelt werden.
  • Fig. 4 zeigt eine weitere Ausführungsform einer Glühstiftkerze 1, bei welcher das in Fig. 3 dargestellte Glühelement 2 eine Hintereinanderschaltung von drei Einzelwiderständen 20, 21 und 22 enthält. Der durch den Innenpol 9 geführte Leiter 8 greift einen Einzelwiderstand (z.B. den in der Glührohrspitze sitzenden Widerstand 20) bei 23 bzw. 24 ab. Die drei Einzelwiderstände werden vorzugsweise so ausgeführt, daß mindestens einer derselben einen positiven Temperaturkoeffizienten aufweist und dadurch Regel- oder Meßaufgaben übernehmen kann.
  • Im übrigen Aufbau unterscheidet sich das in Fig. 3 dargestellte Glühelement bzw. die in Fig. 4 dargestellte Glühstiftkerze nicht von denjenigen der Figuren 1 bzw. 2.
  • Fig. 15 zeigt ein Schaltungsbeispiel, bei welchem in der Glührohrspitze ein veränderlicher Widerstand R3 liegt, der durch den Leiter 8 abgegriffen wird. Es handelt sich hier um ein Glühelement, bei dem ein heißer Schaft des Glühres erforderlich ist, weshalb der Regelwiderstand in der Glührohrspitze sitzen kann. In dieser Anordnung kann über den zusätzlichen Leiter 8 der Widerstandswert des in der Glührohrspitze liegenden veränderlichen Widerstands R3 (20) und damit die Temperatur der Glührohrspitze überwacht bzw. gemessen werden. Wird als Meßwiderstand R3 ein Widerstand mit positivem Temperaturkoeffizienten verwendet, unterstützt dieser die Selbstregelung der Heizenergie. Wird der Glührohrspitze von außen Energie zugeführt, (z.B. Flammenenergie), so regelt der Meßwiderstand R3 selbsttätig die Heizenergie ab, fällt die äußere Engergie aus, so wird wieder mehr elektrische Energie nachgeregelt. Durch eine entsprechende Auslegung kann ein weiterer Regelwiderstand R1 ganz durch den Meßwiderstand R3 ersetzt werden.
  • Fig. 6 zeigt eine Glühstiftkerze 1 mit einem gemäß Fig. 6 ausgebildeten Glühelement 2, bei welchem durch den Innenpol 9 ein zweiadriger Leiter 8 bzw. zwei Leiter 25, 26 geführt sind. Die Widerstände im Glührohr 30 sind wie in den Figuren 3 und 4 durch drei hintereinandergeschaltete Widerstände 20, 21 und 22 gebildet. Dabei ist der eine Leiter 25 an der Verbindungsstelle 24 der Widerstände 20 und 21 und der zweite Leiter 26 an der Verbindungsstelle 23 der Widerstände 21 und 22 angeschlossen, so daß jeder der drei Einzelwiderstände außerhalb des Glühelements bzw. der Glühstiftkerze einzeln beschaltet werden kann. Dadurch ist es z.B. möglich, drei Heizwiderstände stufenweise zuzuschalten, durch Abgreifen eines temperaturabhängigen Widerstands die Temperatur zu messen oder sonstige Schaltungen vorzunehmen.
  • Fig. 16 ist ein Schaltbild zu einer solchen Ausführungsform des Glühelements 2, wobei Widerstände R1 (22) und R2 (21) als Regelwiderstände wirken und R3 (20) als Heizwiderstand wirkt.
  • Fig. 17 zeigt eine Beschaltungsmöglichkeit des Glühelements der Fig. 5 bzw. der Glühstiftkerze der Fig. 6, bei der die Regelwiderstände R1 und R2 kontinuierlich wirksam werden. Dazu werden den Widerständen des Glühelements 2 außerhalb desselben zwei Widerstände R4 und R5 mit negativem Temperaturkoeffizienten in Reihe geschaltet. Die ebenfalls außerhalb des Heizelements 2 über die Leiter 25 und 26 angeschlossenen Parallelwiderstände R6 und R7 haben eine positiven Temperaturkoeffizienten. Bei einem mehrzylindrigen Motor, also mehreren vorgesehenen Glühstiftkerzen, sind die außerhalb dieser Glühstiftkerzen vorhandenen Widerstände nur einmal vorhanden.
  • Durch entsprechende Auslegung der Widerstände R4 bis R7 werden die Regelwiderstände R1 und R2 zusätzlich zum Glühelement R3 kontinuierlich wirksam. Dadurch wird ein schnelles Aufheizen des Heizstabes erreicht.
  • Der Widerstand R2 regelt beispielsweise die Temperatur des Glührohres 30 auf den gewünschten Wert für den Startvorgang ab. Für das anschließende Nachglühen wird die Glührohrtemperatur über R1 noch weiter abgesenkt.
  • Auch hier können die widerstände R4 bis R7 wieder als Temperaturfühler im Kühlwasser, Motoröl, Abgas oder Zylinderkopf untergebracht sein und nach dem Glühvorgang die Temperaturmeßaufgabe übernehmen.
  • Für eine Anwendung in einem Dieselmotor kann beispielsweise folgender Aufbau gewählt werden. R4 und R6 sind wärmeleitend miteinander verbunden, aber auch zum Kühlwasser, Motorblock oder Motoröl (z.B. in einem Temperaturfühlergehäuse untergebracht) wärmeleitend gut gekoppelt. R5 und R7 sind thermisch enger miteinander gekoppelt als mit der Motortemperatur, damit die Eigenerwärmung von R7 rasch nach R5 übertragen wird, beide aber nur verzögert durch die Motorwärme erwärmt werden (z.B. zusammen auf einer Leiterplatte in Motornähe).
  • Beim Kaltstart fließt der größte Strom über den Zweig I so lange, bis R7 durch Eigenerwärmung seine Schalttemperatur erreicht hat. Damit wird der Zweig I sehr stromarm. R7 hat aber nun R5 soweit erwärmt, daß R5 niederohmig geworden ist und im Zweig II ein mit der Temperatur von R2 (= Glühkerzentemperatur) und der Temperatur von R6 (z.B. Kühlwassertemperatur) abnehmender Strom fließt. Der Zweig 111 wird stromführend, wenn R4 erwärmt (z.B. Kühlwasser warm) und die Glühkerze noch nicht auf Betriebstemperatur ist oder sich durch erhöhte Kraftstoffzufuhr (Gasgeben bei Motorbelastung) schon wieder abgekühlt hat.
  • Beim Warmstart ist der Stromfluß im Zweig I gesperrt, da R7 warm ist. Der Zweig 11 sperrt ebenfalls, da auch R6 warm ist. Im Zweig 111 fließt ein abnehmender Strom, bedingt durch das Verhalten von R1 und R2.
  • In den Figuren 1 und 2, sowie 3 und 4 ist der Anschluß von Innenpol 9 und Leiter 8 des Heizelements 2 nicht näher dargestellt. Dieser kann, wie in Fig. 18 dargestellt, als koaxiale Steckverbindung ausgeführt sein. Der Innenleiter 27 der Steckverbindung ist dabei mit dem Leiter 8 und der Außenleiter 28 der Steckverbindung mit dem Innenpol 9 verbunden. Zwischen Innenleiter 27 und Außenleiter 28 ist eine elektrisch isolierende Schicht, z.B. eine Glaseinschmelzung 29 vorgesehen. Der koaxiale Stecker entsprechend Fig 24 kann auch einstückig an Innenpol 9 und Leiter 8 angeformt sein. 31 bezeichnet einen Isolierschlauch, der den Leiter 8 umgibt.
  • Fig. 19 zeigt eine weitere Ausführungsform der Verbindung des Leiters 8 mit den Widerständen 10 und 11. Dabei wurde zunächst der Wendelanfang des Widerstandes 11 auf den Leiter 8 und darauf das Wendelende des Widerstandes 10 gewickelt. Durch einen vorgenommenen Reduziervorgang, bei dem das Isoliermaterial 13 verdichtet wird, werden die Widerstände 10 und 11 fest mit dem Leiter 8 verbunden.

Claims (12)

1. Glühelement mit einem am äußeren Ende verschlossenen Glührohr (30) mit einem Widerstandselement (10, 11, 20, 21, 22), dessen eines Ende (14) mit dem verschlossenen Ende des Glührohres leitend verbunden ist, und dessen entgegengesetztes Ende (17) mit einem vom anderen Ende des Glührohres her in dieses ragenden Innenpol (9) verbunden ist, wobei durch den Innenpol (9) ein elektrischer Leiter (8) geführt ist, dadurch gekennzeichnet, daß das Widerstandselement (10, 11, 20, 21, 22) aus mindestens zwei in Reihe geschalteten Widerständen (10, 11, 20, 21) besteht, wobei der mit der verschlossenen Spitze des Glührohrs verbundene Widerstand (11, 20) als Heizwiderstand und der mit dem Innenpol (9) verbundene Widerstand als Regelwiderstand mit positivem Temperaturkoeffizienten ausgebildet ist, und der elektrische Leiter (8) mit dem Verbindungspunkt (12, 23, 24) der Widerstände verbunden ist.
2. Glühelement nach Anspruch 1, dadurch gekennzeichnet, daß außerhalb derselben an den elektrischen Leiter (8) parallel zum Regelwiderstand (10) ein weiterer Regelwiderstand (R3) mit positivem Temperaturkoeffizienten angeschlossen ist (Fig. 8)
3. Glühelement, nach Anspruch 1, dadurch gekennzeichnet, daß das Material des elektrischen Leiters (8) und das Material eines der Widerstände (10) am Anschlußpunkt (12) des Leiters ein Thermoelement bilden (Fig. 14).
4. Glühelement nach Anspruch 1, dadurch gekennzeichnet, daß außerhalb derselben parallel zu Heizwiderstand (11) und Regelwiderstand (10) zwei weitere in der Reihe liegende Widerstände (R3, R4) vorgesehen sind und daß der elektrische Leiter (8) Teil einer Brücke dieser Widerstandsschaltung ist (Fig. 10).
5. Glühelement nach Anspruch 1, dadurch gekennzeichnet, daß der Leiter (8) über einen Schalter (S) mit dem Innenpol (9) verbunden ist (Fig. 11, Fig. 12).
6. Glühelement nach Anspruch 1, dadurch gekennzeichnet, daß drei in Reihe liegende Widerstände (20, 21, 22) im Glührohr vorgesehen sind, von denen mindestens einer ein Widerstand mit positivem Temperaturkoeffizienten ist und daß der Leiter (8) an einem der beiden Verbindungspunkte (23, 24) der drei Widerstände angeschlossen ist.
7. Glühelement nach Anspruch 6, dadurch gekennzeichnet, daß der Leiter (8) den oder einen der Widerstände mit positivem Temperaturkoeffizienten abgreift.
8. Glühelement nach Anspruch 7, dadurch gekennzeichnet, daß der oder einer der Widerstände mit positivem Temperaturkoeffizienten in der Glührohrspitze angeordnet ist (Fig. 15).
9. Glühelement nach Anspruch 1, dadurch gekennzeichnet, daß drei in Reihe geschaltete Widerstände (20, 21, 22) im Glührohr (30) vorgesehen sind, von denen zwei Widerstände mit positivem Temperaturkoeffizienten sind und daß zwei elektrische Leiter (25, 26) vorgesehen sind, von denen an jedem Verbindungspunkt (23, 24) der Widerstände jeweils einer der Leiter angeschlossen ist.
10. Glühelement nach Anspruch 1, dadurch gekennzeichnet, daß der Leiter (8) mit einer isolierenden Oxidation beschichtet ist.
11. Glühelement nach Anspruch 1, dadurch gekennzeichnet, daß für den Anschluß des Leiters (8) am Verbindungspunkt (12) der Wicklungsanfang des einen als Wendel ausgebildeten Widerstands (11) auf den Leiter (8) und darauf das Wicklungsende des anderen als Wendel ausgebildeten Widerstands (10) gewickelt ist, wobei Wicklungsanfang und darauf gewickeltes Wicklungsende durch Verdichtung von im Glührohr (30) befindlichem Isoliermaterial (13) gegen den Leiter gepreßt sind (Fig. 19).
12. Glühelement nach einem der vorstehenden Ansprüche als Teil einer Glühstiftkerze.
EP86100372A 1985-01-25 1986-01-13 Glühelement Expired - Lifetime EP0189086B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3502525 1985-01-25
DE3502525A DE3502525C2 (de) 1985-01-25 1985-01-25 Glühelement

Publications (3)

Publication Number Publication Date
EP0189086A2 EP0189086A2 (de) 1986-07-30
EP0189086A3 EP0189086A3 (en) 1987-02-04
EP0189086B1 true EP0189086B1 (de) 1990-09-12

Family

ID=6260793

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86100372A Expired - Lifetime EP0189086B1 (de) 1985-01-25 1986-01-13 Glühelement

Country Status (5)

Country Link
US (1) US4733053A (de)
EP (1) EP0189086B1 (de)
JP (1) JPS61173023A (de)
DE (1) DE3502525C2 (de)
ES (1) ES8701358A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3613748A1 (de) * 1986-04-23 1987-10-29 Beru Werk Ruprecht Gmbh Co A Gluehelement
DE3631473A1 (de) * 1986-09-16 1988-03-24 Pischinger Franz Prof Dipl Ing Zuendvorrichtung fuer eine luftverdichtende brennkraftmaschine
JPS6446656U (de) * 1987-09-16 1989-03-22
DE3822693A1 (de) * 1988-07-05 1990-01-11 Vacuumschmelze Gmbh Widerstandselement fuer gluehkerzen
DE3923582C2 (de) * 1988-07-22 1993-11-18 Beru Werk Ruprecht Gmbh Co A Glühkerze
DE3825013A1 (de) * 1988-07-22 1990-01-25 Beru Werk Ruprecht Gmbh Co A Gluehkerze
DE8811380U1 (de) * 1988-09-08 1988-10-27 BERU Ruprecht GmbH & Co KG, 7140 Ludwigsburg Zündvorrichtung für einen Heizölbrenner
JP2745225B2 (ja) * 1989-02-15 1998-04-28 自動車機器株式会社 デイーゼルエンジン用グロープラグ
DE3911506A1 (de) * 1989-04-08 1990-10-11 Bosch Gmbh Robert Gluehstiftkerze
JPH0814376B2 (ja) * 1989-09-11 1996-02-14 自動車機器株式会社 自己温度制御型グロープラグ
DE4014356A1 (de) * 1990-05-04 1991-11-07 Beru Werk Ruprecht Gmbh Co A Gluehkerze
DE4133338A1 (de) * 1991-10-08 1993-04-15 Beru Werk Ruprecht Gmbh Co A Gluehkerze
US5251589A (en) * 1992-03-16 1993-10-12 Wellman Automotive Products, Inc. Hot tip glow plug and method for making
US6037568A (en) * 1996-01-18 2000-03-14 Jidosha Kiki Co., Ltd. Glow plug for diesel engine with ptc control element disposed in small-diameter sheath section and connected to the distal end thereof
DE19707764A1 (de) * 1996-02-29 1997-09-04 Beru Werk Ruprecht Gmbh Co A Selbstregelndes Heizelement
US5813383A (en) * 1996-09-04 1998-09-29 Cummings; Henry W. Variable displacement diesel engine
US5922232A (en) * 1997-02-26 1999-07-13 Beru Ag Self-regulating heating element
DE19810000A1 (de) * 1998-03-09 1999-09-16 Eberspaecher J Gmbh & Co Glühelement mit einem elektrischen Heizdraht zum Zünden eines Brennstoffes zu einer Flamme
DE19914619A1 (de) * 1999-03-31 2000-10-12 Beru Ag Verfahren zum abdichtenden Verschließen des anschlußseitigen Endbereichs des Glührohres einer Glühkerze und Glühkerzen mit verfahrensgemäßem Verschluß
WO2001016528A1 (de) * 1999-08-27 2001-03-08 Robert Bosch Gmbh Keramische glühstiftkerze
JP2002367760A (ja) * 2001-06-11 2002-12-20 Ngk Spark Plug Co Ltd ヒータ及びグロープラグ
JP2009536780A (ja) * 2006-05-09 2009-10-15 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド セラミック発熱体
JP5964547B2 (ja) * 2011-01-25 2016-08-03 日本特殊陶業株式会社 グロープラグおよびその製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1590892A (en) * 1926-06-29 Tohies
US1948974A (en) * 1931-03-21 1934-02-27 Talmey Paul Ignition system for combustion engines
US2492755A (en) * 1945-03-19 1949-12-27 Stewart Warner Corp Igniter
US2840067A (en) * 1954-09-23 1958-06-24 Hoffman Electronics Corp Glow plug ignition systems or the like
DE1426173A1 (de) * 1962-02-12 1969-01-23 Bern Werk Albert Ruprecht Regelung der elektrischen Leistung von Heizelementen,z.B. von Gluehkerzen
DE1576654A1 (de) * 1967-12-14 1970-06-18 Bosch Gmbh Robert Gluehstiftkerze mit Temperaturfuehler
DE2031607A1 (de) * 1970-06-26 1971-12-30 Robert Bosch Gmbh, 7000 Stuttgart Flammglühkerze als Anlaßhilfe für Diesel- und Vielstoffmotoren
JPS51144433A (en) * 1975-06-06 1976-12-11 Kureha Chem Ind Co Ltd Coating process with vinylidene fluoride resin and its paint
DE2802625C3 (de) * 1978-01-21 1985-07-18 BERU Ruprecht GmbH & Co KG, 7140 Ludwigsburg Glühkerze
JPS5923576B2 (ja) * 1978-08-10 1984-06-02 ダイキン工業株式会社 加硫可能な組成物
DE2937884A1 (de) * 1979-09-19 1981-04-09 Siemens AG, 1000 Berlin und 8000 München Dieselmotor mit gluehkerze
US4351291A (en) * 1980-10-02 1982-09-28 Champion Spark Plug Company Glow plug
US4549071A (en) * 1981-04-30 1985-10-22 Jidosha Kiki Co., Ltd. Glow plug for use in diesel engine
JPS57204727A (en) * 1981-06-09 1982-12-15 Nippon Soken Inc Glow plug for diesel engine
JPS58210412A (ja) * 1982-05-31 1983-12-07 Ngk Spark Plug Co Ltd セラミツクグロ−プラグ
US4423309A (en) * 1982-06-28 1983-12-27 General Motors Corporation Quick heat self regulating electric glow heater
DE3224587A1 (de) * 1982-07-01 1984-01-05 Bayerische Motoren Werke AG, 8000 München Schaltanordnung fuer gluehkerzen einer diesel-brennkraftmaschine
US4572119A (en) * 1983-04-28 1986-02-25 Toyota Jidosha Kabushiki Kaisha Ignition timing sensor for diesel engine
JPS60219A (ja) * 1983-06-17 1985-01-05 Ngk Spark Plug Co Ltd 自己制御型グロ−プラグ
DE3334038A1 (de) * 1983-09-21 1985-04-11 Webasto-Werk W. Baier GmbH & Co, 8035 Gauting Gluehkerze
DE3429262A1 (de) * 1984-08-08 1986-02-20 BERU Ruprecht GmbH & Co KG, 7140 Ludwigsburg Gluehzuender
DE8423614U1 (de) * 1984-08-08 1984-12-06 BERU Ruprecht GmbH & Co KG, 7140 Ludwigsburg Gluehzuender

Also Published As

Publication number Publication date
JPS61173023A (ja) 1986-08-04
ES8701358A1 (es) 1986-12-01
DE3502525A1 (de) 1986-07-31
EP0189086A3 (en) 1987-02-04
DE3502525C2 (de) 1993-11-11
ES551237A0 (es) 1986-12-01
EP0189086A2 (de) 1986-07-30
US4733053A (en) 1988-03-22

Similar Documents

Publication Publication Date Title
EP0189086B1 (de) Glühelement
DE2802625C3 (de) Glühkerze
DE19810519C2 (de) Kombination aus Heizelement und Meßfühler
DE2726458C2 (de)
DE2822760C2 (de) Anlaßschaltvorrichtung für Diesel-Brennkraftmaschinen
DE10028073A1 (de) Verfahren und Schaltungsanordnung zum Aufheizen einer Glühkerze
DE2827928C2 (de) Anlaßschaltvorrriichtung für Diesel-Brennkraftmaschinen
DE10147675A1 (de) Verfahren zum Aufheizen eines elektrischen Heizelementes, insbesondere einer Glühkerze für eine Brennkraftmaschine
EP0315934A1 (de) Verfahren zur Temperaturregelung von Glühkerzen bei Dieselmotoren und Schaltungsanordnung zur Durchführung des Verfahrens
EP0455256B2 (de) Glühkerze
DE4028860A1 (de) Gluehkerze mit selbsttemperatursteuerung
DE3109608A1 (de) Vorrichtung zur messung der masse eines stroemenden mediums
DE2239549A1 (de) Uebertemperatur-anzeige- und -schutzvorrichtung, insbesondere in katalytisch wirkenden abgasentgiftungsanlagen von brennkraftmaschinen
EP0202401A2 (de) Heizelement
DE1918662A1 (de) Schaltgeraet
DE3207015A1 (de) Heizvorrichtung fuer wenigstens zwei heiztemperaturstufen mit wenigstens zwei einzelnen ptc-heizelementen
DE2733006C3 (de) Temperaturwächter
EP0392181B1 (de) Glühstiftkerze
EP1321751B1 (de) Verfahren und Schaltungsanordnung zum Bestimmen des elektrischen Widerstandes eines PTC-Heizelementes
EP0793399B1 (de) Selbstregelndes Heizelement
EP0279042B2 (de) Vorrichtung zum Schonen von Relaiskontakten
DE3522546A1 (de) Schaltungsanordnung in elektroherden zur heizleistungssteuerung
DE2937522C3 (de) Vorglühsteuereinrichtung für eine Brennkraftmaschine
DE102021113989A1 (de) Abgasheizer
DE102018211950A1 (de) Elektrische Heizeinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): FR GB IT SE

17P Request for examination filed

Effective date: 19870423

17Q First examination report despatched

Effective date: 19880219

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950106

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950127

Year of fee payment: 10

EAL Se: european patent in force in sweden

Ref document number: 86100372.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950131

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960114

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960930

EUG Se: european patent has lapsed

Ref document number: 86100372.1

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050113