EP0029619A1 - Brennkammer einer Gasturbine mit Vormisch/Vorverdampf-Elementen - Google Patents

Brennkammer einer Gasturbine mit Vormisch/Vorverdampf-Elementen Download PDF

Info

Publication number
EP0029619A1
EP0029619A1 EP80200979A EP80200979A EP0029619A1 EP 0029619 A1 EP0029619 A1 EP 0029619A1 EP 80200979 A EP80200979 A EP 80200979A EP 80200979 A EP80200979 A EP 80200979A EP 0029619 A1 EP0029619 A1 EP 0029619A1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
flame holder
openings
chamber according
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80200979A
Other languages
English (en)
French (fr)
Other versions
EP0029619B1 (de
Inventor
Eduard Brühwiler
Hans Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4363297&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0029619(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0029619A1 publication Critical patent/EP0029619A1/de
Application granted granted Critical
Publication of EP0029619B1 publication Critical patent/EP0029619B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/30Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices
    • F23R3/32Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices being tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements
    • F23D2209/10Flame flashback

Definitions

  • the invention relates to the combustion chamber of a gas turbine, in which the air distribution chamber and combustion chamber are spatially separated from one another within the combustion chamber shell.
  • the invention has for its object to provide a combustion chamber of a gas turbine in which the pollutants released by the combustion fall below the values permitted by the emission regulations.
  • the advantage of the invention can be seen in particular in the fact that the emission values of pollutants fall below the values permitted by the emission regulations without the injection of expensive aids into the combustion chamber. This is achieved by adding a pre-mixing / pre-evaporation phase to the actual combustion process.
  • the pre-mixing / pre-evaporation in performed several tubular elements the fuel being premixed / pre-evaporated with air from the compressor with a large excess of air.
  • This optimization process in the present combustion chamber can be driven in the direction of even lower NO x values by keeping the space for combustion and after-reactions much longer than would be necessary for the actual combustion.
  • pilot elements it is expedient to distribute them geometrically evenly among the tubular elements used. If those are still put into operation by initial ignition, this does not apply to the elements that are put into operation later: the flame jumps from the pilot elements to the surrounding ones, favored by the fact that the flame holders of these pilot elements are either provided with swirl bodies or with oblique holes so that divergent tongues of flame are generated, which additionally promote a good caloric and air jet mixing, which is reflected in a more uniform temperature and speed distribution after the combustion chamber.
  • both the oblique openings and the openings in the flame holder parallel to the axis of the flame holder have a length of at least 1.5 opening diameters. Through this opening, the air-fuel oil vapor mixture or the air-fuel gas mixture flows to the combustion chamber at an increased speed, as a result of which flame back ignition is avoided.
  • a further embodiment in order to avoid a flashback, is to design the openings in the flame holder as injectors, so that air is introduced into the boundary layer of the openings.
  • Another configuration of the openings in the flame holder is to design them as diffusers. With this solution, a higher speed is possible with the same pressure loss. The higher speed offers more security against the flame reigniting from the combustion chamber. For the safe functioning of the diffuser, it is necessary to have a cylindrical section with a minimum length of 1.5 diameter.
  • the injection of the fuel is directed against the air inflow direction.
  • the pre-mixing / pre-evaporation process is promoted to such an extent that the length of the tubular element can be kept considerably shorter compared to another type of fuel supply.
  • the residence time of the mixture in the tubular element is reduced and the risk of auto-ignition is prevented.
  • FIG. 1 shows schematically the concept of such a combustion chamber.
  • a larger number of tubular elements 2 are arranged in the upper area of the combustion chamber casing 1, which optimally fill the available space.
  • FIG. 2 An example of such an arrangement is shown in FIG. 2, in which thirty-seven tubular elements 2 are arranged. However, this number is not mandatory, because it depends on the size of the combustion chamber, which in turn depends on the desired combustion output.
  • a support bridge 27, on which the tubular elements 2 are connected by means of end nuts 5, is anchored to a support rib 23. In order to connect the tubular elements 2 to the support bridge 27, other types of connection can of course also be used.
  • the tubular elements 2 are guided laterally in the lower region by means of a guide plate 6.
  • the tubular elements 2 can also be guided individually, as can be seen in FIG. 16, in which case no guide plate is then used, but individual guide rings 25 take on this task.
  • the guide rings 25 are also carried here by support elements 22 which are firmly connected to the support bridge 27.
  • the tubular elements 2 can also be anchored differently than with the illustrated support bridge 27, but in such cases it will always be necessary to ensure that the selected anchoring is placed as far away from the combustion chamber 7 as possible. so that the thermal expansion cannot have a disruptive effect.
  • the greater part of the compressed air which is provided in the compressor (not shown), flows through the openings 9 into a distribution chamber 19 provided in the combustion chamber casing 1, which is down through the support bridge 27 and up through the cover 35 flanged on the flange rib 38 is narrowed down. From this distribution chamber 19, the compressed air then flows through the air funnels 14 into the individual tubular elements 2.
  • the fuel supply is provided for each tubular element 2 through a fuel line 4, a fuel nozzle 15, which projects into the tubular element 2 and has one or more fuel openings (not shown), atomizing the fuel against the direction of air inflow.
  • the fuel does not necessarily have to be injected against the air flow. If fuel gas (natural gas) is used, for example, the gas is blown in in the direction of air inflow.
  • the smallest possible amount of compressed air can be added through the nozzle 15, which has an overpressure compared to the process pressure.
  • the fuel accordingly mixes with the inflowing compressed air in such a way that a pre-mixing / pre-evaporation process takes place in the tubular element 2.
  • This process can be carried out by inserting a flange 34 at the air inlet of the tubular element 2, as can be seen in FIG resulting turbulence can be intensified.
  • the fuel injection or fuel injection through the fuel nozzle 15 must be carried out at an optimal distance from the mouth 34, but still in the region of the turbulence that has arisen.
  • the fuel evaporates and mixes with the air.
  • the degree of evaporation is stronger, the greater the temperature and the residence time and the smaller the drop size of the atomized fuel.
  • the critical time until the mixture self-ignites decreases, so that the length of the tubular elements 2 is coordinated such that the best possible evaporation results for the shortest possible time.
  • the gas there is no evaporation; the gas only needs to be distributed evenly with the air.
  • a remaining amount of compressed air does not flow into the distribution chamber 19, but into the combustion chamber casing 1 through the openings 26, is distributed between the tubular elements 2 and flows through the openings 18 recessed in the flame holder edge 13 (FIG. 2) to the combustion chamber, as a result of which the outer part of the flame holder 3 is cooled in such a way that the risk of burning, which is latent especially when producing divergent flame tongues, is counteracted.
  • the combustion of the mixture aims for the largest possible excess of air, which is given by the fact that the flame is still burning and then by the fact that not too much CO is produced.
  • a good optimization can be present, for example, if the air content of the mixture is kept at 1.8 times the stoichiometric value.
  • the lower terminating rib 24 prevents free convection of the hot air from the combustion chamber 7, the terminating rib 24 being cooled with the same residual air flowing in through the openings 26, which then flows out through the openings 18 of the adjacent flame holder edges 13 to the combustion chamber 7.
  • the flame holder 3 which forms the end of the downstream part of the tubular element 2, has the task of preventing the flame from reigniting from the combustion chamber 7 into the interior of the tubular element 2.
  • the inner wall of the combustion chamber casing 1 is provided with a cooling system (not shown) in the area of the combustion chamber 7, that is to say from the flame holder 3.
  • the flame holder 3 shown has a number of cylindrical holes 21 which run parallel to the axis of the tubular element 2. If additional diverging flame tongues are to be produced, as can be seen from FIGS. 4 and 5, the holes 30 in the flame holder 3, with the exception of the central hole, can be made obliquely in radial planes of the flame holder 3, the angle 36 from the center to the periphery of the flame holder 3 steadily increases or remains the same.
  • the length of both the parallel holes 21 and the oblique holes 30, 31 must be at least 1.5 hole diameter.
  • the resulting increased mixture speed in the holes 21, 30, 31 and the length of the holes counteract flame reignition from the combustion chamber 7.
  • the number of holes 21, 30, 31 must be adapted to the given conditions. In the example shown in FIG. 7, there are for example twenty-one holes 31.
  • the flame holder 3 consists of an upper plate 3a and a lower plate 3b, between which a channel 10 connected to the openings 8 runs.
  • the openings 8 provided in the flame holder 3 are each lined with two slightly conical bushes 11, 12, these overlapping in the region of the channel 10 telescopically and with play 16. Burning back of the flame from the combustion chamber 7, in particular in the boundary layer along the wall of the sleeve 12, is counteracted by introducing compressed air through the channel 10, which flows through the play 16 along the endangered wall of the sleeve 12 with the mixture . Flow separations, which would favor reignition, are prevented by the conical shape of the openings 8.
  • the flame holder 3 shown in FIG. 11 has sixteen openings 8, which can be fed symmetrically from two channels 10 with compressed air.
  • the supply of the openings 8 made in the flame holder 3 with compressed air can be fulfilled by other channel configurations.
  • the openings 8 in the flame holder 3 are designed as diffusers 39.
  • an initial cylindrical bore 32 is followed by a section formed as a diffuser 40, which is followed by a cylindrical bore 33 of larger diameter than the inlet bore 32, which has a length of at least 1.5 bore diameter.
  • a higher speed at the narrowest point is possible with the same pressure loss, which is reflected in greater safety against flame reignition from the combustion chamber 7.
  • the beginning of the flame in the combustion chamber 7 is brought into a corresponding distance from the diffuser 40 through the cylindrical bore 33.
  • the flow in the subsequent cylindrical part 33 will rest against the wall.
  • the flame holder 3 can, as can be seen from FIGS. 9 and 10, be provided with a swirl body 28, the mixture being passed through the openings 41, for example fourteen in number, to the combustion chamber 7 in a swirling manner.
  • the swirl body 28 promotes good air-jet mixing of the fuel / air mixture and good heat distribution, which results in a homogeneous temperature and speed distribution after the combustion chamber 7 with the effect that the turbine, not shown is applied evenly.
  • tubular elements 2 and the individual flame holder 3 itself in combination according to Figures 3, 4/5, 6/7/8, 9/10, 11/15 or 14 can be formed.
  • the combustion chamber casing 1 is optimally filled with a larger number of tubular elements 2. As shown in FIG. 2, among the thirty-seven tubular elements 2 used, thirteen pilot elements 17 are geometrically evenly distributed.
  • the pilot elements 17 are initially put into operation by an initial ignition unit (not shown).
  • the load increases, the flame jumps from the pilot elements 17 to the surrounding ones, which have just been put into operation.
  • the openings 8 in the flame holder 3 of the pilot elements 17 can optionally be formed after the holes 30 and / or after the holes 31.
  • the use of swirl bodies 28 can also be provided for the pilot elements 17, which, like the holes 30, 31, also produce divergent flame tongues and thus favor the ignition of the surrounding tubular elements 2.
  • the flame holder 3 is hexagonal 20 in the circumferential direction. From these figures it can also be seen that the openings 18 made in the flame holder base 13 are evenly distributed between the hexagonal shape 20 and the tubular element. A polygon game 29 absorbs the thermal expansion in this area.
  • a bord mouth 34 is used, which in this area, that is to say directly around the fuel nozzle 15, generates turbulence which is suitable for to intensify the premixing, atomization and pre-evaporation process in addition to the measures described above, that is to say in particular by the fine injection of the fuel against the direction of air inflow.
  • turbulence amplifiers can also be used instead of the on-board mouth 34. long.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spray-Type Burners (AREA)

Abstract

Brennkammer einer Gasturbine, versehen mit einer Anzahl rohrförmiger Elemente (2), in denen zwischen Brennstoff und Verdichterluft ein Vormisch/Vorverdampfungsprozess abläuft, wobei jedes rohrförmige Element (2) an seinem Brennraum-seitigen Ende durch einen mit einer oder mehreren Oeffnungen (8) versehenen Flammenhalter (3) verschlossen ist, so dass die Verbrennung erst stromabwärts von dem Flammenhalter (3) stattfinden kann, wodurch die Emissionswerte an Schadstoffen aus der Verbrennung erheblich reduziert werden.

Description

  • Die Erfindung betrifft die Brennkammer einer Gasturbine, in welcher innerhalb der Brennkammerhülle Luftverteilkammer und Brennraum örtlich voneinander getrennt sind.
  • Gasturbinen unterliegen zunehmend den strengen Umweltschutzvorschriften vieler Staaten bezüglich Abgaszusammensetzung. Aus dem Betrieb einer Gasturbine bereitet vor allem die Einhaltung der Vorschriften über die max. erlaubten NOx-Emissionen grosse Schwierigkeiten. So sind gegenwärtig rechtsgültige Vorschriften in Kraft, namentlich in USA, wonach der Gehalt an NOx-Emissionen 75 ppm bei 15 Vol.% 02 nicht überschritten werden darf. Aehnliche Vorschriften gilt es in den meisten Industriestaaten zu beachten, wobei eher zu erwarten ist, dass in Zukunft die zulässigen Emissionswerte eine Korrektur nach unter erfahren werden. Diese Vorschriften konnten bis anhin nur unter Zuhilfenahme grosser Wasser- oder Dampfeinspritzungen in den Verbrennungsraum eingehalten werden. Die für die Herabsetzung der Emissionswerte eingesetzten Hilfsmittel, also Wasser oder Dampf, bringen aber einige bedeutende Nachteile mit sich.
  • Wird Wasser in den Verbrennungsraum eingespritzt, so ist mit einer Einbusse des Wirkungsgrades zu rechnen. Darüber hinaus ist Wasser nicht immer und überall in verfügbarer Menge vorhanden, so z.B. in niederschlagsarmen Ländern. Ferner muss das Wasser vor dessen Einsatz einer Aufbereitung unterzogen werden, denn viele im Wasser vertretene Mineralien, so z.B. Natrium, Kochsalz etc., wirken sich auf ihre Umgebung stark korrosiv aus. Diese Aufbereitung ist indessen kostspielig und energieintensiv.
  • Führt man hingegen Dampf dem Verbrennungsraum zu, so umgeht man die oben erwähnte Wirkungsgradeinbusse. Die Dampferzeugung setzt aber auch Wasser voraus und die Bereitstellung ist nicht minder energieintensiv.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Brennkammer einer Gasturbine zu schaffen, in welcher die durch die Verbrennung freiwerdenden Schadstoffe unter die von den Emissionsvorschriften erlaubten Werte fallen.
  • Diese Aufgabe wird erfindungsgemäss mit den kennzeichnenden Merkmalen des Patentanspruchs 1 gelöst.
  • Der Vorteil der Erfindung ist insbesondere darin zu sehen, dass die Emissionswerte von Schadstoffen ohne Einspritzung kostspieliger Hilfsmittel in den Verbrennungsraum unter die von den Emissionsvorschriften erlaubten Werte fallen. Dies wird erreicht, indem dem eigentlichen Verbrennungsprozess eine Vormisch/Vorverdampfungs-phase vorgeschaltet wird.
  • Zu diesem Zweck wird das Vormischen/Vorverdampfen in mehreren rohrförmigen Elementen durchgeführt, wobei der Brennstoff mit Luft aus dem Verdichter bei grosser Luftüberschusszahl vorgemischt/vorverdampft wird. Die Verbrennung mit der grösstmöglichen Luftüberschusszahl - einmal dadurch gegeben, dass die Flamme überhaupt noch brennt und im weiteren dadurch, dass nicht zuviel CO entsteht - vermindert indessen nicht nur die Schadstoffmenge von NO , sondern bewirkt darüber hinaus auch eine konsistente Tiefhaltung anderer Schadstoffe, nämlich, wie bereits erwähnt, von CO und von unverbrannten Kohlenwasserstoffen. Dieser Optimierungsprozess kann bei der vorliegenden Brennkammer dadurch in Richtung noch tieferer NOX-Werte getrieben werden, dass der Raum für Verbrennung und Nachreaktionen viel länger gehalten wird als für die eigentliche Verbrennung notwendig wäre. Dies erlaubt die Wahl einer grösseren Luftüberschusszahl, wobei dann zwar zunächst grössere Mengen CO entstehen, diese aber zu C02 weiterreagieren können, so dass schliesslich die CO-Emissionen klein bleiben. Auf der anderen Seite bildet sich aber, wegen des grossen Luftüberschusses, nur wenig zusätzliches NO.
  • Da mehrere rohrförmige Elemente das Vormischen/Vorverdampfen übernehmen, ergibt sich daraus der Verteil, dass bei der Lastregelung jeweils nur soviele Elemente mit Brennstoff betrieben werden, dass sich für die jeweilige Betriebsphase (Start, Teillast etc.) die optimale Luftüberschusszahl ergibt.
  • Sofern mehrere Pilotelemente zum Einsatz gelangen, ist es zweckmässig, diese geometrisch gleichmässig unter den eingesetzten rohrförmigen Elementen zu verteilen. Wenn jene noch durch Initialzündung in Betrieb genommen werden, so entfällt eine solche für die später in Betrieb genommenen Elemente: Von den Pilotelementen springt die Flamme zu den umliegenden über, dadurch begünstigt, dass die Flammenhalter dieser Pilotelemente entweder mit Drallkörpern oder mit Schräglöchern versehen werden, so dass divergierende Flammenzungen erzeugt werden, welche zusätzlich eine gute kalorische und luftstrahlige Durchmischung begünstigen, was sich in einer gleichmässigeren Temperatur und Geschwindigkeitsverteilung nach dem Brennraum niederschlägt.
  • Von Vorteil ist es, wenn sowohl die schrägen als auch die zur Achse des Flammenhalters parallelen Oeffnungen im Flammenhalter eine Länge von mindestens 1,5 Oeffnungsdurchmesser besitzen. Durch diese Oeffnung strömt das Luft-Brennöldampfgemisch bzw. das Luft-Brenngasgemisch mit erhöhter Geschwindigkeit zum Brennraum, wodurch eine Flammenrückzündung vermieden wird.
  • Eine weitere Ausgestaltung, um ein Flammenrückschlagen zu vermeiden, besteht darin, die Oeffnungen im Flammenhalter als Injektoren auszubilden, so dass Luft in die Grenzschicht der Oeffnungen eingeführt wird.
  • Eine weitere Ausgestaltung der Oeffnungen im Flammenhalter besteht darin, sie als Diffusoren auszubilden. Mit dieser Lösung ist bei gleichem Druckverlust eine höhere Geschwindigkeit möglich. Die höhere Geschwindigkeit bietet mehr Sicherheit gegen die Rückzündung der Flamme aus dem Brenn- raum. Zur sicheren Funktionsweise des Diffusors ist es notwendig eine zylindrische Partie mit einer Mindestlänge von 1,5 Durchmesser nachzuschalten.
  • Von Vorteil ist es auch, wenn die Einspritzung des Brennstoffes gegen die Lufteinströmungsrichtung gerichtet ist. Dadurch wird der Vormisch/Vorverdampfungsprozess soweit begünstigt, dass die Länge des rohrförmigen Elementes gegenüber einer anderen Brennstoffzufuhrsart erheblich kürzer gehalten werden kann. Hierdurch wird die Verweilzeit des Gemisches im rohrförmigen Element reduziert und die Selbstzündungsgefahr unterbunden.
  • Durch den Einsatz einer Bordamündung am Lufteingang des rohrförmigen Elementes wird in diesem Bereich eine Turbulenz erzeugt, welche den Vormischungs-, Zerstäubungs- und Vorverdampfungsprozess zusätzlich intensiviert.
  • Es ist zweckmässig, den Umfang des Flammenhalterrandes als Polygon auszubilden, so dass sich die rohrförmigen Elemente platzsparend ineinanderfügen.
  • Es empfiehlt sich, im Flammenhalterrand, um den Aussenmantel des rohrförmigen Elementes herum, mehrere Oeffnungen auszunehmen, durch welche eine Teilmenge der Verdichterluft durchströmt und so den Flammenhalterrand kühlt.
  • Im folgenden ist anhand der Figuren ein Ausführungsbeispiel der erfindungsgemässen Brennkammer schematisch dargestellt und näher erläutert. Alle für das Verständnis der Erfindung unwesentlichen Elemente sind nicht dargestellt. Gleiche Elemente sind in den verschiedenen Figuren mit gleichen Bezugsziffern versehen.
  • Es zeigt:
    • Fig. l: Eine Schnittdarstellung einer Brennkammer,
    • Fig. 2: Eine Anordnung der rohrförmigen Elemente in der Brennkammer,
    • Fig. 3: Eine Schnittdarstellung eines Flammenhalters mit parallelen Löchern,
    • Fig. 4 Eine Darstellung eines weiteren Flammenhalters
    • Fig. 5 mit schrägen Löchern,
    • Fig. 6 Eine Darstellung eines weiteren Flammenhalters
    • Fig. 7 mit schrägen Löchern,
    • Fig. 8
    • Fig. 9 Eine Darstellung eines weiteren Flammenhalters
    • Fig. 10 mit Drallkörper versehen,
    • Fig. ll: Eine Schnittdarstellung eines weiteren Flammenhalters mit Oeffnungen als Injektoren ausgebildet,
    • Fig. 12 Eine Darstellung eines Pilotelementes mit
    • Fig. 13 Diffusionsflamme,
    • Fig. 14: Eine Schnittdarstellung eines weiteren Flammenhalters mit Oeffnungen als Diffusoren ausgebildet,
    • Fig. 15: Eine Ansicht des Flammenhalters von Fig. 11 einschliesslich Ausgestaltung des Luftzuführungskanals,
    • Fig. 16: Eine Darstellung der mittels Ringe geführten rohrförmigen Elemente mit Bordamündung.
  • Fig. 1 zeigt schematisch die Konzeption einer solchen Brennkammer. Im oberen Bereich der Brennkammerhülle 1 sind eine grössere Anzahl rohrförmiger Elemente 2 angeordnet, welche den zur Verfügung stehenden Raum optimal ausfüllen. Ein Beispiel einer solchen Anordnung geht aus Fig. 2 hervor, in der siebenunddreissig rohrförmige Elemente 2 angeordnet sind. Diese Anzahl ist indessen nicht zwingend, denn sie hängt von der Grösse der Brennkammer ab, welche wiederum in Abhängigkeit zur gewünschten Brennleistung steht. Eine Tragbrücke 27, an der die rohrförmigen Elemente 2 mittels Abschlussmuttern 5 verbunden sind, ist an einer Tragrippe 23 verankert. Um die rohrförmigen Elemente 2 mit der Tragbrücke 27 zu verbinden, können selbstverständlich auch andere Verbindungsarten herangezogen werden. Die rohrförmigen Elemente 2 sind im unteren Bereich mittels einer Führungsplatte 6 seitlich geführt. Mehrere Tragelemente 22, welche ihrerseits mit der Tragbrücke 27 fest verbunden sind, tragen die Führungsplatte 6. Selbstverständlich können die rohrförmigen Elemente 2 auch einzeln geführt werden, wie dies aus Fig. 16 hervorgeht, wobei dann nicht mehr eine Führungsplatte eingesetzt wird, sondern einzelne Führungsringe 25 diese Aufgabe übernehmen. Die Führungsringe 25 werden auch hier von Tragelementen 22 getragen, die mit der Tragbrücke 27 fest verbunden sind. Selbstverständlich können die rohrförmigen Elemente 2 auch anders als mit der dargestellten Tragbrücke 27 verankert werden, immer wird man aber in solchen Fällen darauf achten müssen, dass die gewählte Verankerung möglichst weit weg vom Brennraum 7 plaziert ist. damit die Wärmedehnungen keine störende Wirkung entfalten können.
  • Der grössere Teil der verdichteten Luft, die im nicht dargestellten Verdichter bereitgestellt wird, strömt durch die Oeffnungen 9 in eine in der Brennkammerhülle 1 vorgesehene Verteilkammer 19 ein, welche nach unten durch die Tragbrücke 27 und nach oben durch den an der Flanschrippe 38 geflanschten Deckel 35 eingegrenzt ist. Von dieser Verteilkammer 19 aus strömt dann die verdichtete Luft durch die Lufttrichter 14 in die einzelnen rohrförmigen Elemente 2 ein. Die Brennstoffzuführung wird je rohrförmiges Element 2 durch eine Brennstoffleitung 4 beigestellt, wobei eine Brennstoffdüse 15, welche ins rohrförmige Element 2 hineinragt und eine oder mehrere nicht dargestellte Brennstoff- öffnungen aufweist, die Zerstäubung des Brennstoffes gegen die Lufteinströmungsrichtung besorgt. Der Brennstoff muss aber nicht notwendigerweise gegen den Luftstrom eingespritzt werden. Im Falle eines Einsatzes von Brenngas (Erdgas) beispielsweise wird das Gas in Lufteinströmungsrichtung eingeblasen. Es ist auch möglich, Oel und Gas gleichzeitig einzugeben und zu verbrennen. Auch kann bei Einsatz von Brennöl, zur Erzielung einer feineren Zerstäubung, durch die Düse 15 eine kleinstmögliche Menge Druckluft beigegeben werden, welche gegenüber dem Prozessdruck einen Ueberdruck aufweist. Der Brennstoff vermischt sich demnach mit der einströmenden verdichteten Luft, dergestalt, dass im rohrförmigen Element 2 ein Vormisch/Vorverdampfungsprozess abläuft. Dieser Prozess kann durch die Einsetzung einer Bordamündung 34 am Lufteingang des rohrförmigen Elementes 2, wie dies aus Fig. 16 hervorgeht, auf Grund der entstehenden Turbulenz intensiviert werden. In einem solchen Falle muss die Brennstoffeinspritzung bzw. Brennstoffeinblasung durch die Brennstoffdüse 15 in optimalem Abstand von der Bordamündung 34,aber noch im Bereich der entstandenen Turbulenz vorgenommen werden.
  • In der Zeit, in der das Gemisch durch das rohrförmige Element 2 bis zum Ausgang durch die im Flammenhalter 3 ausgenommenen Oeffnungen 8 strömt, verdampft der Brennstoff und vermischt sich mit der Luft. Der Grad der Verdampfung ist umso stärker, je grösser die Temperatur und die Verweilzeit und je kleiner die Tropfengrösse des zerstäubten Brennstoffes sind. Mit der Zunahme von Druck und Temperatur verringert sich jedoch die kritische Zeitdauer bis zur Selbstzündung des Gemisches, so dass die Länge der rohrförmigen Elemente 2 derart abgestimmt ist, dass eine möglichst gute Verdampfung während einer möglichst kurzen Zeit resultiert. Im Falle von Gas entfällt die Verdampfung; das Gas muss mit der Luft nur gleichmässig verteilt werden.
  • Eine restliche Menge verdichteter Luft strömt nicht in die Verteilkammer 19, sondern durch die Oeffnungen 26 in die Brennkammerhülle 1 ein, verteilt sich zwischen den rohrförmigen Elementen 2 und strömt durch die im Flammenhalterrand 13 (Fig. 2) ausgenommenen Oeffnungen 18 dem Brennraum zu, wodurch der äussere Teil des Flammenhalters 3 gekühlt wird, dermassen, dass der Abbrandgefahr, die insbesondere bei Erzeugung von divergierenden Flammenzungen latent vorhanden ist, entgegengewirkt wird.
  • Die Verbrennung des Gemisches wird, wie bereits erwähnt, mit dem grösstmöglichen Luftüberschuss angestrebt, wobei dieser einmal dadurch gegeben ist, dass die Flamme überhaupt noch brennt und im weiteren dadurch, dass nicht zuviel CO entsteht. Eine gute Optimierung kann beispielsweise vorliegen, wenn der Luftanteil des Gemisches auf das 1,8-fache des stöchiometrischen Wertes gehalten.wird. Die untere Abschlussrippe 24 verhindert eine freie Konvektion der heissen Luft aus dem Brennraum 7, wobei die Abschlussrippe 24 mit der gleichen durch die Oeffnungen 26 einströmenden Restluft, die dann durch die Oeffnungen 18 der benachbarten Flammenhalterränder 13 zum Brennraum 7 abströmt, mitgekühlt wird.
  • Der Flammenhalter 3, welcher den Abschluss des strömungsabwärts gelegenen Teils des rohrförmigen Elementes 2 bildet, hat die Aufgabe, eine Rückzündung der Flamme vom Brennraum 7 ins Innere des rohrförmigen Elementes 2 zu verhindern. Die innere Wandung der Brennkammerhülle 1 ist im Bereich des Brennraumes 7, also ab Flammenhalter 3, mit einem nicht dargestellten Kühlungssystem versehen.
  • Wie aus Fig. 3 hervorgeht, weist der dargestellte Flammenhalter 3 eine Anzahl zylindrische und parallel zur Achse des rohrförmigen Elementes 2 verlaufende Löcher 21 auf. Sollen zusätzlich divergierende Flammenzungen erzeugt werden, so können, wie aus Fig. 4 und Fig. 5 hervorgeht, die Löcher 30 im Flammenhalter 3, mit Ausnahme des zentralen Loches, schräg in Radialebenen des Flammenhalters 3 angebracht werden, wobei der Winkel 36 von der Mitte zur Peripherie des Flammenhalters 3 hin stetig zunimmt oder gleichbleibt. Wie aus Fig. 6, 7 und 8 hervorgeht, können die Löcher 31 im Flammenhalter 3, mit Ausnahme des zentralen Loches, auch schräg in Tangentialebenen des Flammenhalters 3 angebracht werden, wobei der Winkel 37, ähnlich wie oben, von der Mitte zur Peripherie des Flammenhalters 3 hin stetig zunimmt oder gleichbleibt. Die Länge sowohl der parallelen Löcher 21 als auch der schrägen Löcher 30,31 muss mindestens 1,5 Lochdurchmesser betragen. Durch die sich daraus ergebende erhöhte Gemischgeschwindigkeit in den Löchern 21, 30, 31 und die Länge der Löcher wird einer Flammenrückzündung aus dem Brennraum 7 entgegengewirkt. Die Anzahl der Löcher 21, 30, 31 muss jeweils den gegebenen Verhältnissen angepasst werden. Im dargestellten Beispiel aus Fig. 7 sind es beispielsweise einundzwanzig Löcher 31.
  • In der in Fig. 11 gezeigten Anordnung, besteht der Flammenhalter 3 aus einer Oberplatte 3a und einer Unterplatte 3b, zwischen denen ein mit den Oeffnungen 8 in Verbindung stehender Kanal 10 verläuft. Die im Flammenhalter 3 angebrachten Oeffnungen 8 sind mit je zwei leicht konischen Büchsen 11, 12 ausgekleidet, wobei diese im Bereich des Kanals 10 sich teleskopartig und mit Spiel 16 überlappen. Ein Rückbrennen der Flamme aus dem Brennraum 7, insbesondere in der Grenzschicht entlang der Wandung der Büchse 12, wird entgegengewirkt, indem durch den Kanal 10 Druckluft herangeführt wird, welche durch das Spiel 16, entlang der gefährdeten Wandung der Büchse 12, mit dem Gemisch abströmt. Strömungsablösungen, die ein Rückzünden begünstigen würden, werden durch die konische Form der Oeffnungen 8 verhindert.
  • Aus Fig. 15 geht hervor, dass der in Fig. 11 dargestellte Flammenhalter 3 sechzehn Oeffnungen 8 aufweist, welche symmetrisch aus zwei Kanälen 10 mit Druckluft gespeist werden. Selbstverständlich kann die Speisung der im Flammenhalter 3 angebrachten Oeffnungen 8 mit Druckluft durch andere Kanalkonfigurationen erfüllt werden.
  • Wie in Fig. 14 dargestellt ist, werden die Oeffnungen 8 im Flammenhalter 3 als Diffusoren 39 ausgebildet. In Strömungsrichtung des Gemisches zum Brennraum 7 folgt einer anfänglichen zylindrischen Bohrung 32 eine Partie als Diffusor 40 ausgebildet, welchem eine zylindrische Bohrung 33 grösseren Durchmessers als die Eingangsbohrung 32 folgt, wobei jene eine Länge von mindestens 1,5 Bohrungsdurchmesser aufweist. Mit dieser Ausbildung ist bei gleichem Druckverlust eine höhere Geschwindigkeit an der engsten Stelle möglich, was sich in mehr Sicherheit gegen eine Flammenrückzündung aus dem Brennraum 7 niederschlägt. Durch die zylindrische Bohrung 33 wird der Flammenanfang im Brennraum 7 in eine entsprechende Distanz zum Diffusor 40 gebracht. Dadurch wird bei momentanen Strömungsablösungen im Diffusor 40 die Strömung im nachfolgenden zylindrischen Teil 33 wieder an die Wandung anliegen.
  • Der Flammenhalter 3 kann, wie dies aus Fig. 9 und 10 hervorgeht, mit einem Drallkörper 28 versehen werden, wobei durch dessen Oeffnungen 41, beispielsweise mit vierzehn an der Zahl, das Gemisch drallförmig zum Brennraum 7 geleitet wird. Der Drallkörper 28 begünstigt eine gute luftstrahlige Durchmischung des Brennstoff/Luftgemisches und eine gute Wärmeverteilung, wodurch daraus eine homogene Temperatur-und Geschwindigkeitsverteilung nach dem Brennraum 7 resultiert mit dem Effekt, dass die nicht dargestellte Turbine gleichmässig beaufschlagt wird.
  • Selbstverständlich können die rohrförmigen Elemente 2 und der einzelne Flammenhalter 3 selbst, kombinationsweise nach Figuren 3, 4/5, 6/7/8, 9/10, 11/15 oder 14 ausgebildet werden.
  • Wie vorne bereits angedeutet, wird die Brennkammerhülle 1 mit einer grösseren Anzahl rohrförmiger Elemente 2 optimal ausgefüllt. Wie in Fig. 2 gezeigt ist, sind unter den eingesetzten siebenunddreissig rohrförmigen Elementen 2 dreizehn Pilotelemente 17 geometrisch gleichmässig verteilt. Beim Start der Brennkammer werden vorerst die Pilotelemente 17 durch ein nicht dargestelltes Initialzündungsaggregat in Betrieb genommen. Bei Lasterhöhung springt die Flamme von den Pilotelementen 17 zu den umliegenden, die soeben in Betrieb genommen wurden, über.
  • Die Oeffnungen 8 im Flammenhalter 3 der Pilotelemente 17 können wahlweise nach den Löchern 30 und/oder nach den Löchern 31 ausgebildet werden. Für die Pilotelemente 17 kann auch der Einsatz von Drallkörpern 28 vorgesehen werden, welche ebenfalls wie die Löcher 30, 31 divergierende Flammenzungen erzeugen und so die Zündung der umliegenden rohrförmigen Elemente 2 begünstigen.
  • Die Anordnung wie sie aus Fig. 12 und 13 hervorgeht, also mit Drallkörper 28, ist als weitere Variante für die Pilotelemente 17 gedacht. Da hierbei die Brennstoffdüse 15 in den Brennraum 7 hineinragt, findet im rohrförmigen Element 2 kein Vormisch/Vorverdampfungsprozess statt. Diese Variante eignet sich dementsprechend auch nur als Starthilfe, womit gesagt ist, dass nur wenige Pilotelemente 17 nach dieser Ausführung vorgesehen zu werden brauchen.
  • Wie aus Fig. 2, 5, 7, 10, 13 und 15 hervorgeht, ist der Flammenhalter 3 in Umfangsrichtung sechskantförmig 20 ausgebildet. Aus diesen Figuren geht ferner hervor, dass die im Flammenhalterboden 13 angebrachten Oeffnungen 18 zwischen sechskantförmigem Umfang 20 und rohrförmigem Element gleichmässig verteilt sind. Ein Polygonspiel 29 fängt die Wärmedehnungen in diesem Bereich auf.
  • Wie bereits angedeutet geht aus Fig. 16 hervor, dass am Lufteingang des rohrförmigen Elementes 2, nach dem Lufttrichter 14, eine Bordamündung 34 eingesetzt ist, welche in diesem Bereich, also unmittelbar um die Brennstoffdüse 15, eine Turbulenz erzeugt, die dazu geeignet ist, den Vormischungs-, Zerstäubungs- und Vorverdampfungsprozess zusätzlich zu den weiter oben beschriebenen Massnahmen, also insbesondere durch die feine Einspritzung des Brennstoffes gegen die Lufteinströmungsrichtung, zu intensivieren. Selbstverständlich können auch andere Turbulenzverstärker an Stelle der Bordamündung 34 zum Einsatz ge- . langen.
  • B e z e i c h n u n g s l i s t e
    • 1 = Brennkammerhülle
    • 2 = Rohrförmiges Element
    • 3 = Flammenhalter
    • 3a = Flammenhalteroberplatte
    • 3b = Flammenhalterunterplatte
    • 4 = Brennstoffleitung
    • 5 = Abschlussmutter
    • 6 = Führungsplatte
    • 7 = Brennraum
    • 8 = Oeffnungen im Flammenhalter
    • 9 = Oeffnungen in Brennkammerhülle
    • 10 = Kanal
    • 11 = Büchse Oberplatte
    • 12 = Büchse Unterplatte
    • 13 = Flammenhalterrand
    • 14 = Lufttrichter
    • 15 = Brennstoffdüse im rohrförmigen Element
    • 16 = Spiel zwischen den Büchsen
    • 17 = Pilotbrenner
    • 18 = Oeffnungen im Flammenhalterrand
    • 19 = Verteilkammer
    • 20 = Polygon
    • 21 = Parallele Löcher
    • 22 = Tragelemente
    • 23 = Tragrippe
    • 24 = Untere Abschlussrippe
    • 25 = Führungsring
    • 26 = Kühllufteinlass
    • 27 = Tragbrücke
    • 28 = Drallkörper
    • 29 Polygonspiel
    • 30 = Schräge Löcher in.Radialebene
    • 31 = Schräge Löcher in Tangentialebene
    • 32 = Zylindrische Bohrung
    • 33 = Zylindrische Bohrung
    • 34 = Bordamündung
    • 35 = Deckel
    • 36 = Winkel
    • 37 = Winkel
    • 38 Flanschrippe
    • 39 = Löcher als Diffusoren
    • 40 = Diffusor
    • 41 = Oeffnungen im Drallkörner

Claims (12)

1. Brennkammer einer Gasturbine, in welcher, innerhalb der Brennkammerhülle, Luftverteilkammer und Brennraum örtlich voneinander getrennt sind, dadurch gekennzeichnet, dass zwischen Verteilkammer (19) und Brennraum (7) mehrere rohrförmige Elemente (2) eingeordnet sind, in denen das Vormischen und das Vorverdampfen des am Verteilkammer-seitigen Ende durch Düsen (15) zugeführten Brennöls und/oder das Vormischen des am Verteilkammerseitigen Ende durch Düsen (15) zugeführten Brenngases mit der Verdichterluft bei grosser Luftüberschusszahl abläuft, wobei jedes rohrförmige Element (2) an seinem Brennraum-seitigen Ende durch einen mit einer oder mehreren Oeffnungen (8) versehenen Flammenhalter (3) verschlossen ist und wobei sich zwischen den rohrförmigen Elementen (2) ein oder mehrere Pilotelemente (17) befinden.
2. Brennkammer nach Patentanspruch 1, dadurch gekennzeichnet, dass bei mehreren Pilotelementen (17) diese unter den rohrförmigen Elementen (2) so geometrisch gleichmässig angeordnet sind, dass bei in Abhängigkeit zur Maschinenlast gestaffelter Inbetriebnahme der einzelnen rohrförmigen Elemente (2) ein Ueberspringen der Flamme zu den jeweils umliegenden stattfindet.
3. Brennkammer nach Patentanspruch 1, dadurch gekennzeichnet, dass die Einspritzung des durch Düsen (15) zugeführten Brennstoffes gegen die Lufteinströmungsrichtung gerichtet ist.
4. Brennkammer nach Patentanspruch 1, dadurch gekennzeichnet, dass die Oeffnungen (8) im Flammenhalter (3) zylindrische und parallel zur Achse des rohrförmigen Elementes (2) verlaufende Löcher (21) sind,-deren Länge ≥ 1,5 Lochdurchmesser ist.
5. Brennkammer nach Patentanspruch 1, dadurch gekennzeichnet, dass die Oeffnungen (8) im Flammenhalter (3) schräg in Radialebenen des Flammenhalters (3) verlaufende Löcher (30) sind, wobei der Winkel (36) von der Mitte zur Peripherie des Flammenhalters (3) hin stetig zunimmt oder gleichbleibt und wobei die Länge der Löcher (30)≥ 1,5 Lochdurchmesser ist.
6. Brennkammer nach Patentanspruch 1, dadurch gekennzeichnet, dass die Oeffnungen (8) im Flammenhalter (3) schräg in Tangentialebenen des Flammenhalters (3) verlaufende Löcher (31) sind, wobei der Winkel (37) von der Mitte zur Peripherie des Flammenhalters (3) hin stetig zunimmt oder gleichbleibt und wobei die Länge der Löcher (31) ≥ 1,5 Lochdurchmesser ist.
7. Brennkammer nach Patentanspruch 1, dadurch gekennzeichnet, dass die Oeffnungen (8) im Flammenhalter (3) mit Drallkörpern (28) versehen sind.
8. Brennkammer nach Patentanspruch 1, dadurch gekennzeichnet, dass der Flammenhalter (3) aus einer Oberplatte (3a) und einer Unterplatte (3b) besteht, zwischen denen ein mit den Oeffnungen (8) in Verbindung stehender Kanal (10) verläuft und dass die Oeffnungen (8) mit je zwei konischen Büchsen (11, 12) ausgekleidet sind, welche sich im Bereich des Kanals (10) teleskopartig und mit Spiel (16) überlappen, wodurch das durch den Kanal (10) herströmende Medium mit dem Gemisch aus dem rohrförmigen Element (2) abströmt.
9. Brennkammer nach Patentanspruch 1, dadurch gekennzeichnet, dass die Oeffnungen (8) im Flammenhalter (3) als Diffusoren (40) mit anschliessend zylindrischen Oeffnungen (33) ausgebildet sind, deren Länge mindestens das 1,5-fache ihres Durchmessers beträgt.
10. Brennkammer nach Patentanspruch l, dadurch gekennzeichnet, dass im Flammenhalterrand (13), um den Aussenmantel des rohrförmigen Elementes (2) herum, mehrere Oeffnungen (18) ausgenommen sind.
11. Brennkammer nach Patentanspruch 1, dadurch gekennzeichnet, dass der Aussenumfang des Flammenhalters (3) als Polygon (20) ausgebildet ist.
12. Brennkammer nach Patentanspruch 1, dadurch gekennzeichnet, dass jedes rohrförmige Element (2) am Verteilkammerseitigen Ende mit einem Lufttrichter (14) und einer anschliessenden Bordamündung (34) versehen ist.
EP80200979A 1979-11-23 1980-10-16 Brennkammer einer Gasturbine mit Vormisch/Vorverdampf-Elementen Expired EP0029619B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1044479 1979-11-23
CH10444/79 1979-11-23

Publications (2)

Publication Number Publication Date
EP0029619A1 true EP0029619A1 (de) 1981-06-03
EP0029619B1 EP0029619B1 (de) 1983-06-01

Family

ID=4363297

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80200979A Expired EP0029619B1 (de) 1979-11-23 1980-10-16 Brennkammer einer Gasturbine mit Vormisch/Vorverdampf-Elementen

Country Status (5)

Country Link
US (1) US4408461A (de)
EP (1) EP0029619B1 (de)
JP (1) JPS5691132A (de)
CA (1) CA1157280A (de)
DE (2) DE2950535A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620402A1 (de) * 1993-04-15 1994-10-19 Westinghouse Electric Corporation Vormischbrennkammer mit konzentrischen Ringkanälen
WO1997040316A1 (en) * 1996-04-19 1997-10-30 Westinghouse Electric Corporation Premixed combustor with flashback arrestors
EP2163819A3 (de) * 2008-09-12 2011-04-20 Hitachi Ltd. Brennkammer, Verfahren zur Versorgung mit Brennstoff dafür und Verfahren zur Veränderung davon
EP3620719A1 (de) * 2018-09-05 2020-03-11 Mitsubishi Hitachi Power Systems, Ltd. Gasturbinenbrennkammer
EP4230909A1 (de) * 2022-02-22 2023-08-23 Honeywell International Inc. Mehrport-brennervorrichtung mit extrem niedrigem nox-gehalt

Families Citing this family (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207711A (en) * 1981-06-15 1982-12-20 Hitachi Ltd Premixture and revolving burner
US4539811A (en) * 1982-01-27 1985-09-10 The United States Of America As Represented By The Secretary Of The Navy Multi-port dump combustor
DE3361535D1 (en) * 1982-05-28 1986-01-30 Bbc Brown Boveri & Cie Gas turbine combustion chamber and method of operating it
DE3241162A1 (de) * 1982-11-08 1984-05-10 Kraftwerk Union AG, 4330 Mülheim Vormischbrenner mit integriertem diffusionsbrenner
DE3318863A1 (de) * 1983-05-25 1984-12-13 Erich 8480 Weiden Bielefeldt Kraftmaschine mit gasturbine
US5165241A (en) * 1991-02-22 1992-11-24 General Electric Company Air fuel mixer for gas turbine combustor
US5805973A (en) * 1991-03-25 1998-09-08 General Electric Company Coated articles and method for the prevention of fuel thermal degradation deposits
US5891584A (en) * 1991-03-25 1999-04-06 General Electric Company Coated article for hot hydrocarbon fluid and method of preventing fuel thermal degradation deposits
JPH05196232A (ja) * 1991-08-01 1993-08-06 General Electric Co <Ge> 耐逆火性燃料ステージング式予混合燃焼器
US5235814A (en) * 1991-08-01 1993-08-17 General Electric Company Flashback resistant fuel staged premixed combustor
US5261226A (en) * 1991-08-23 1993-11-16 Westinghouse Electric Corp. Topping combustor for an indirect fired gas turbine
JPH0579631A (ja) * 1991-09-19 1993-03-30 Hitachi Ltd 燃焼器設備
JPH05203146A (ja) * 1992-01-29 1993-08-10 Hitachi Ltd ガスタービン燃焼器及びガスタービン発電装置
US5274991A (en) * 1992-03-30 1994-01-04 General Electric Company Dry low NOx multi-nozzle combustion liner cap assembly
DE4223828A1 (de) * 1992-05-27 1993-12-02 Asea Brown Boveri Verfahren zum Betrieb einer Brennkammer einer Gasturbine
DE59208831D1 (de) * 1992-06-29 1997-10-02 Abb Research Ltd Brennkammer einer Gasturbine
US5247792A (en) * 1992-07-27 1993-09-28 General Electric Company Reducing thermal deposits in propulsion systems
FR2695460B1 (fr) * 1992-09-09 1994-10-21 Snecma Chambre de combustion de turbomachine à plusieurs injecteurs.
US5251447A (en) * 1992-10-01 1993-10-12 General Electric Company Air fuel mixer for gas turbine combustor
EP0592717B1 (de) * 1992-10-16 1998-02-25 Asea Brown Boveri Ag Gasbetriebener Vormischbrenner
US5444982A (en) * 1994-01-12 1995-08-29 General Electric Company Cyclonic prechamber with a centerbody
DE4408136A1 (de) * 1994-03-10 1995-09-14 Bmw Rolls Royce Gmbh Verfahren und Vorrichtung zur Kraftstoff-Aufbereitung für eine Gasturbinen-Brennkammer
US5636510A (en) * 1994-05-25 1997-06-10 Westinghouse Electric Corporation Gas turbine topping combustor
DE4444125A1 (de) * 1994-12-12 1996-06-13 Abb Research Ltd Verfahren zur schadstoffarmen Verbrennung
US5797268A (en) * 1996-07-05 1998-08-25 Westinghouse Electric Corporation Partially swirled multi-swirl combustor plate and chimneys
JP3448190B2 (ja) * 1997-08-29 2003-09-16 三菱重工業株式会社 ガスタービンの燃焼器
US6298667B1 (en) * 2000-06-22 2001-10-09 General Electric Company Modular combustor dome
US6672073B2 (en) * 2002-05-22 2004-01-06 Siemens Westinghouse Power Corporation System and method for supporting fuel nozzles in a gas turbine combustor utilizing a support plate
US6996991B2 (en) * 2003-08-15 2006-02-14 Siemens Westinghouse Power Corporation Fuel injection system for a turbine engine
US6923002B2 (en) * 2003-08-28 2005-08-02 General Electric Company Combustion liner cap assembly for combustion dynamics reduction
WO2007119115A2 (en) * 2005-12-14 2007-10-25 Rolls-Royce Power Engineering Plc Gas turbine engine premix injectors
JP4854613B2 (ja) * 2007-07-09 2012-01-18 株式会社日立製作所 燃焼装置及びガスタービン燃焼器
JP4922878B2 (ja) * 2007-09-19 2012-04-25 株式会社日立製作所 ガスタービン燃焼器
US7886991B2 (en) * 2008-10-03 2011-02-15 General Electric Company Premixed direct injection nozzle
US9140454B2 (en) 2009-01-23 2015-09-22 General Electric Company Bundled multi-tube nozzle for a turbomachine
US20120031097A1 (en) * 2009-05-07 2012-02-09 General Electric Company Multi-premixer fuel nozzle
US8522555B2 (en) * 2009-05-20 2013-09-03 General Electric Company Multi-premixer fuel nozzle support system
US8402763B2 (en) * 2009-10-26 2013-03-26 General Electric Company Combustor headend guide vanes to reduce flow maldistribution into multi-nozzle arrangement
EP2436983A1 (de) * 2010-10-04 2012-04-04 Siemens Aktiengesellschaft Strahlbrenner
EP2442029A1 (de) * 2010-10-12 2012-04-18 Siemens Aktiengesellschaft Prallgekühlte Kopfplatte mit thermischer Entkopplung für einen Strahlpiloten
EP2442030A1 (de) * 2010-10-13 2012-04-18 Siemens Aktiengesellschaft Axiale Stufe für einen strahlstabilisierten Brenner
US9506654B2 (en) * 2011-08-19 2016-11-29 General Electric Company System and method for reducing combustion dynamics in a combustor
US9243803B2 (en) * 2011-10-06 2016-01-26 General Electric Company System for cooling a multi-tube fuel nozzle
US9033699B2 (en) * 2011-11-11 2015-05-19 General Electric Company Combustor
US9004912B2 (en) * 2011-11-11 2015-04-14 General Electric Company Combustor and method for supplying fuel to a combustor
JP5762558B2 (ja) * 2011-11-16 2015-08-12 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
US9366440B2 (en) * 2012-01-04 2016-06-14 General Electric Company Fuel nozzles with mixing tubes surrounding a liquid fuel cartridge for injecting fuel in a gas turbine combustor
US9134023B2 (en) * 2012-01-06 2015-09-15 General Electric Company Combustor and method for distributing fuel in the combustor
US20130199190A1 (en) * 2012-02-08 2013-08-08 Jong Ho Uhm Fuel injection assembly for use in turbine engines and method of assembling same
US20130199189A1 (en) * 2012-02-08 2013-08-08 Jong Ho Uhm Fuel injection assembly for use in turbine engines and method of assembling same
US20130219899A1 (en) * 2012-02-27 2013-08-29 General Electric Company Annular premixed pilot in fuel nozzle
US9121612B2 (en) * 2012-03-01 2015-09-01 General Electric Company System and method for reducing combustion dynamics in a combustor
US9366445B2 (en) * 2012-04-05 2016-06-14 General Electric Company System and method for supporting fuel nozzles inside a combustor
US20130283802A1 (en) * 2012-04-27 2013-10-31 General Electric Company Combustor
US20130283810A1 (en) * 2012-04-30 2013-10-31 General Electric Company Combustion nozzle and a related method thereof
US20130318976A1 (en) * 2012-05-29 2013-12-05 General Electric Company Turbomachine combustor nozzle and method of forming the same
US9267690B2 (en) * 2012-05-29 2016-02-23 General Electric Company Turbomachine combustor nozzle including a monolithic nozzle component and method of forming the same
US9291103B2 (en) * 2012-12-05 2016-03-22 General Electric Company Fuel nozzle for a combustor of a gas turbine engine
US10125983B2 (en) 2013-02-14 2018-11-13 Clearsign Combustion Corporation High output porous tile burner
US11460188B2 (en) 2013-02-14 2022-10-04 Clearsign Technologies Corporation Ultra low emissions firetube boiler burner
EP2956718A4 (de) 2013-02-14 2016-11-30 Clearsign Comb Corp Perforierter flammenhalter und brenner mit einem perforierten flammenhalter
US10386062B2 (en) 2013-02-14 2019-08-20 Clearsign Combustion Corporation Method for operating a combustion system including a perforated flame holder
WO2015112950A1 (en) 2014-01-24 2015-07-30 Clearsign Combustion Corporation LOW NOx FIRE TUBE BOILER
US10119704B2 (en) 2013-02-14 2018-11-06 Clearsign Combustion Corporation Burner system including a non-planar perforated flame holder
CN104903647B (zh) 2013-02-14 2018-02-02 克利尔赛恩燃烧公司 具有穿孔反应稳定器的燃料燃烧***
US10571124B2 (en) 2013-02-14 2020-02-25 Clearsign Combustion Corporation Selectable dilution low NOx burner
US20140251483A1 (en) * 2013-03-07 2014-09-11 General Electric Company Tube assembly for use in fuel injection assemblies and methods of assembling same
US9650959B2 (en) 2013-03-12 2017-05-16 General Electric Company Fuel-air mixing system with mixing chambers of various lengths for gas turbine system
US9347668B2 (en) * 2013-03-12 2016-05-24 General Electric Company End cover configuration and assembly
US9528444B2 (en) 2013-03-12 2016-12-27 General Electric Company System having multi-tube fuel nozzle with floating arrangement of mixing tubes
US9651259B2 (en) 2013-03-12 2017-05-16 General Electric Company Multi-injector micromixing system
US9534787B2 (en) 2013-03-12 2017-01-03 General Electric Company Micromixing cap assembly
US9765973B2 (en) 2013-03-12 2017-09-19 General Electric Company System and method for tube level air flow conditioning
US9366439B2 (en) 2013-03-12 2016-06-14 General Electric Company Combustor end cover with fuel plenums
US9759425B2 (en) 2013-03-12 2017-09-12 General Electric Company System and method having multi-tube fuel nozzle with multiple fuel injectors
US9671112B2 (en) 2013-03-12 2017-06-06 General Electric Company Air diffuser for a head end of a combustor
DE102013204309A1 (de) * 2013-03-13 2014-09-18 Siemens Aktiengesellschaft Strahlbrenner
US10190767B2 (en) 2013-03-27 2019-01-29 Clearsign Combustion Corporation Electrically controlled combustion fluid flow
CN105026840B (zh) 2013-05-10 2017-06-23 克利尔赛恩燃烧公司 用于电辅助启动的燃烧***和方法
US9322555B2 (en) 2013-07-01 2016-04-26 General Electric Company Cap assembly for a bundled tube fuel injector
US9371997B2 (en) * 2013-07-01 2016-06-21 General Electric Company System for supporting a bundled tube fuel injector within a combustor
US9273868B2 (en) * 2013-08-06 2016-03-01 General Electric Company System for supporting bundled tube segments within a combustor
CN105556210B (zh) 2013-09-23 2018-07-24 克利尔赛恩燃烧公司 用于低nox燃烧的多孔火焰保持器
WO2015042614A1 (en) 2013-09-23 2015-03-26 Clearsign Combustion Corporation Burner system employing multiple perforated flame holders, and method of operation
WO2015057740A1 (en) 2013-10-14 2015-04-23 Clearsign Combustion Corporation Flame visualization control for electrodynamic combustion control
EP3066385A4 (de) 2013-11-08 2017-11-15 Clearsign Combustion Corporation Verbrennungssystem mit flammenpositionsbetätigung
CN106103338B (zh) 2014-02-14 2018-04-20 克利尔赛恩燃烧公司 具有有孔火焰保持器的顶烧式燃烧器
US9885496B2 (en) 2014-07-28 2018-02-06 Clearsign Combustion Corporation Fluid heater with perforated flame holder
US9828288B2 (en) 2014-08-13 2017-11-28 Clearsign Combustion Corporation Perforated burner for a rotary kiln
US20180038589A1 (en) * 2014-12-24 2018-02-08 Clearsign Combustion Corporation Flame holders with fuel and oxidant recirculation, combustion systems including such flame holders, and related methods
US10801723B2 (en) 2015-02-17 2020-10-13 Clearsign Technologies Corporation Prefabricated integrated combustion assemblies and methods of installing the same into a combustion system
WO2016134068A1 (en) * 2015-02-17 2016-08-25 Clearsign Combustion Corporation Burner system with a perforated flame holder and a plurality of fuel sources
US10006715B2 (en) 2015-02-17 2018-06-26 Clearsign Combustion Corporation Tunnel burner including a perforated flame holder
US11473774B2 (en) 2015-02-17 2022-10-18 Clearsign Technologies Corporation Methods of upgrading a conventional combustion system to include a perforated flame holder
WO2016134061A1 (en) 2015-02-17 2016-08-25 Clearsign Combustion Corporation Perforated flame holder with adjustable fuel nozzle
US20180051883A1 (en) * 2015-04-01 2018-02-22 Siemens Energy, Inc. Pre-mixing based fuel nozzle for use in a combustion turbine engine
RU2015156419A (ru) 2015-12-28 2017-07-04 Дженерал Электрик Компани Узел топливной форсунки, выполненный со стабилизатором пламени предварительно перемешанной смеси
US10088153B2 (en) 2015-12-29 2018-10-02 Clearsign Combustion Corporation Radiant wall burner including perforated flame holders
CN108291717B (zh) 2016-01-13 2020-12-11 美一蓝技术公司 瓷砖组之间具有间隙的穿孔火焰保持器
US10551058B2 (en) 2016-03-18 2020-02-04 Clearsign Technologies Corporation Multi-nozzle combustion assemblies including perforated flame holder, combustion systems including the combustion assemblies, and related methods
CN108884993B (zh) 2016-04-29 2020-05-19 美一蓝技术公司 具有离散横向火焰稳定器的燃烧器***
US10408455B2 (en) * 2016-06-14 2019-09-10 General Electric Company Fuel nozzle assembly with fuel inlet slots
US10514165B2 (en) 2016-07-29 2019-12-24 Clearsign Combustion Corporation Perforated flame holder and system including protection from abrasive or corrosive fuel
US10539326B2 (en) 2016-09-07 2020-01-21 Clearsign Combustion Corporation Duplex burner with velocity-compensated mesh and thickness
US10393382B2 (en) 2016-11-04 2019-08-27 General Electric Company Multi-point injection mini mixing fuel nozzle assembly
US10724740B2 (en) 2016-11-04 2020-07-28 General Electric Company Fuel nozzle assembly with impingement purge
US10352569B2 (en) 2016-11-04 2019-07-16 General Electric Company Multi-point centerbody injector mini mixing fuel nozzle assembly
US10465909B2 (en) 2016-11-04 2019-11-05 General Electric Company Mini mixing fuel nozzle assembly with mixing sleeve
US10295190B2 (en) 2016-11-04 2019-05-21 General Electric Company Centerbody injector mini mixer fuel nozzle assembly
US10634353B2 (en) 2017-01-12 2020-04-28 General Electric Company Fuel nozzle assembly with micro channel cooling
US10669942B2 (en) * 2017-02-23 2020-06-02 General Electric Company Endcover assembly for a combustor
US10273913B2 (en) * 2017-05-25 2019-04-30 The United States Of America, As Represented By The Secretary Of The Navy Multi-mode thermoacoustic actuator
US11525578B2 (en) * 2017-08-16 2022-12-13 General Electric Company Dynamics-mitigating adapter for bundled tube fuel nozzle
KR102046455B1 (ko) * 2017-10-30 2019-11-19 두산중공업 주식회사 연료 노즐, 이를 포함하는 연소기 및 가스 터빈
JP2019128125A (ja) * 2018-01-26 2019-08-01 川崎重工業株式会社 バーナ装置
US10890329B2 (en) 2018-03-01 2021-01-12 General Electric Company Fuel injector assembly for gas turbine engine
US10935245B2 (en) 2018-11-20 2021-03-02 General Electric Company Annular concentric fuel nozzle assembly with annular depression and radial inlet ports
US11073114B2 (en) 2018-12-12 2021-07-27 General Electric Company Fuel injector assembly for a heat engine
US11286884B2 (en) 2018-12-12 2022-03-29 General Electric Company Combustion section and fuel injector assembly for a heat engine
US11156360B2 (en) 2019-02-18 2021-10-26 General Electric Company Fuel nozzle assembly
EP4027059A1 (de) * 2021-01-12 2022-07-13 Crosstown Power GmbH Brenner, brennkammer und verfahren zum nachrüsten eines verbrennungsgerätes
US20230135396A1 (en) * 2021-11-03 2023-05-04 Power Systems Mfg., Llc Multitube pilot injector having a split airflow for a gas turbine engine
WO2023122177A1 (en) * 2021-12-21 2023-06-29 Spark Thermionics, Inc. Burner system and method of operation
US20230204213A1 (en) * 2021-12-29 2023-06-29 General Electric Company Engine fuel nozzle and swirler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE806613C (de) * 1947-02-24 1951-06-14 Cem Comp Electro Mec Anordnung der Verbrennungskammern von Gasturbinen
US2565843A (en) * 1949-06-02 1951-08-28 Elliott Co Multiple tubular combustion chamber
US4100733A (en) * 1976-10-04 1978-07-18 United Technologies Corporation Premix combustor
GB2012413A (en) * 1977-12-05 1979-07-25 Secr Defence Fuel injector
GB2012415A (en) * 1978-01-04 1979-07-25 Secr Defence Fuel Mixer
DE2901099A1 (de) * 1978-01-19 1979-07-26 United Technologies Corp Kraftstoffverdampfungsvorrichtung, damit ausgeruestete brennkammer und verfahren zum betreiben derselben

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1020491B (de) * 1941-01-24 1957-12-05 Bayerische Motoren Werke Ag Strahltriebwerk mit aufladbarer Brennkammer und nachgeschalteter Gasturbine oder Treibstrahlduese oder Gasturbine und Treibstrahlduese
DE805463C (de) * 1946-12-04 1951-05-21 Armstrong Siddeley Motors Ltd Brennkammer fuer fluessigen Brennstoff
GB657789A (en) * 1949-01-13 1951-09-26 Rolls Royce Improvements relating to liquid fuel combustion equipment for gas-turbine engines
DE1855295U (de) * 1961-03-06 1962-07-19 David Budworth Ltd Brennstoff-verdampfungsbrenner.
CH577627A5 (de) * 1974-04-03 1976-07-15 Bbc Sulzer Turbomaschinen
GB1559779A (en) * 1975-11-07 1980-01-23 Lucas Industries Ltd Combustion assembly
US4052144A (en) * 1976-03-31 1977-10-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fuel combustor
US4262482A (en) * 1977-11-17 1981-04-21 Roffe Gerald A Apparatus for the premixed gas phase combustion of liquid fuels
US4222232A (en) * 1978-01-19 1980-09-16 United Technologies Corporation Method and apparatus for reducing nitrous oxide emissions from combustors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE806613C (de) * 1947-02-24 1951-06-14 Cem Comp Electro Mec Anordnung der Verbrennungskammern von Gasturbinen
US2565843A (en) * 1949-06-02 1951-08-28 Elliott Co Multiple tubular combustion chamber
US4100733A (en) * 1976-10-04 1978-07-18 United Technologies Corporation Premix combustor
GB2012413A (en) * 1977-12-05 1979-07-25 Secr Defence Fuel injector
GB2012415A (en) * 1978-01-04 1979-07-25 Secr Defence Fuel Mixer
DE2901099A1 (de) * 1978-01-19 1979-07-26 United Technologies Corp Kraftstoffverdampfungsvorrichtung, damit ausgeruestete brennkammer und verfahren zum betreiben derselben
FR2415203A1 (fr) * 1978-01-19 1979-08-17 United Technologies Corp Dispositif de vaporisation de carburant pour chambre de combustion

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620402A1 (de) * 1993-04-15 1994-10-19 Westinghouse Electric Corporation Vormischbrennkammer mit konzentrischen Ringkanälen
EP0766045A1 (de) * 1993-04-15 1997-04-02 Westinghouse Electric Corporation Arbeitsweise einer Vormischbrennkammer
WO1997040316A1 (en) * 1996-04-19 1997-10-30 Westinghouse Electric Corporation Premixed combustor with flashback arrestors
EP2163819A3 (de) * 2008-09-12 2011-04-20 Hitachi Ltd. Brennkammer, Verfahren zur Versorgung mit Brennstoff dafür und Verfahren zur Veränderung davon
US8468832B2 (en) 2008-09-12 2013-06-25 Hitachi, Ltd. Combustor, method of supplying fuel to same, and method of modifying same
EP3620719A1 (de) * 2018-09-05 2020-03-11 Mitsubishi Hitachi Power Systems, Ltd. Gasturbinenbrennkammer
EP4230909A1 (de) * 2022-02-22 2023-08-23 Honeywell International Inc. Mehrport-brennervorrichtung mit extrem niedrigem nox-gehalt

Also Published As

Publication number Publication date
JPS5691132A (en) 1981-07-23
EP0029619B1 (de) 1983-06-01
JPH0130055B2 (de) 1989-06-15
DE2950535A1 (de) 1981-06-11
CA1157280A (en) 1983-11-22
DE3063624D1 (en) 1983-07-07
US4408461A (en) 1983-10-11

Similar Documents

Publication Publication Date Title
EP0029619B1 (de) Brennkammer einer Gasturbine mit Vormisch/Vorverdampf-Elementen
EP0095788B1 (de) Brennkammer einer Gasturbine und Verfahren zu deren Betrieb
DE69828916T2 (de) Emissionsarmes Verbrennungssystem für Gasturbinentriebwerke
EP2156095B1 (de) Drallfreie stabilisierung der flamme eines vormischbrenners
DE3222347C2 (de)
DE69214154T2 (de) Emissionsarme brennerdüse für gasturbinenanlage
DE2731562C2 (de) Brenner für flüssige und/oder gasförmige Brennstoffe
EP0924470B1 (de) Vormischbrennkammer für eine Gasturbine
CH707757A2 (de) Brennstoff-Luft-Vormischsystem für eine Gasturbine.
CH707752A2 (de) Vormischsystem für eine Gasturbine.
DE10050248A1 (de) Brenner
CH698007A2 (de) Gestufte Mehrringdüse mit radialem Einlauf für mageres Vorgemisch und Zweistoff-Ringrohr-Brennkammer.
DE2417147A1 (de) Gasturbinenbrennvorrichtung und verfahren zum betrieb der vorrichtung
DE4223828A1 (de) Verfahren zum Betrieb einer Brennkammer einer Gasturbine
EP0576697A1 (de) Brennkammer einer Gasturbine
EP0481111B1 (de) Brennkammer einer Gasturbine
DE102010038122A1 (de) Brennkammerkopfende-Leitwände zur Verringerung einer Fehlverteilung von Brennstoff in einer Mehrdüsenanordnung
EP0433789A1 (de) Verfahren für eine Vormischverbrennung eines flüssigen Brennstoffes
EP0394800B1 (de) Vormischbrenner für die Heissgaserzeugung
DE60125892T2 (de) Brennkammer
EP0483554B1 (de) Verfahren zur Minimierung der NOx-Emissionen aus einer Verbrennung
DE1198130B (de) Brenner fuer ringfoermige Brennkammern
EP0882932B1 (de) Brennkammer
DE4242003A1 (de) Prozesswärmeerzeuger
DE4422535A1 (de) Verfahren zum Betrieb einer Feuerungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB NL SE

17P Request for examination filed

Effective date: 19810725

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBC AKTIENGESELLSCHAFT BROWN, BOVERI & CIE.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB LI NL SE

REF Corresponds to:

Ref document number: 3063624

Country of ref document: DE

Date of ref document: 19830707

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: KRAFTWERK UNION AKTIENGESELLSCHAFT

Effective date: 19840301

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19850502

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930127

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930915

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19931031

Ref country code: CH

Effective date: 19931031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941017

EAL Se: european patent in force in sweden

Ref document number: 80200979.5

EUG Se: european patent has lapsed

Ref document number: 80200979.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970919

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990913

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990927

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990929

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20001015

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20001015

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO