EP0004911A1 - Gefahrenmeldeanlage - Google Patents

Gefahrenmeldeanlage Download PDF

Info

Publication number
EP0004911A1
EP0004911A1 EP79101030A EP79101030A EP0004911A1 EP 0004911 A1 EP0004911 A1 EP 0004911A1 EP 79101030 A EP79101030 A EP 79101030A EP 79101030 A EP79101030 A EP 79101030A EP 0004911 A1 EP0004911 A1 EP 0004911A1
Authority
EP
European Patent Office
Prior art keywords
memory
detector
individual
detectors
evaluation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP79101030A
Other languages
English (en)
French (fr)
Inventor
Romuald Von Dipl.-Ing. Tomkewitsch
Otto Walter Dipl.-Ing. Moser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0004911A1 publication Critical patent/EP0004911A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/006Alarm systems in which substations are interrogated in succession by a central station with substations connected to an individual line, e.g. star configuration

Definitions

  • the invention relates to a hazard alarm system with a plurality of detectors connected to a central unit via signal lines, the measured values of the individual detectors being able to be queried in the central unit via test devices and evaluated using an evaluation device to form alarm or fault signals.
  • Such alarm systems are known, for example as public fire alarm systems or as private secondary alarm systems.
  • these systems are modular; usually several lines can be connected to the interface modules in the control center, and several fire alarms can be connected to each line.
  • chain synchronization it is also possible to transmit the measured values of the individual detectors in an analog manner on a common line (DE-OS 26 41 489).
  • DE-OS 26 41 489) a common line
  • the detector information was forwarded via special patching lines, which had to be interrupted if necessary.
  • it was also customary to simulate non-existing system parts, i.e. to simulate a functional interface using a special terminating element. Interventions of this type are carried out by hand in the system with a screwdriver or soldering iron. This activity takes up a lot of working time and is always fraught with the risk of cables being mixed up and incorrectly connected.
  • the object of the invention is to provide a hazard alarm system of the type mentioned in the introduction in which such routings are not required in the wiring.
  • the system should ensure constant monitoring of the detector configuration, it should allow the identification of detectors that are connected to a common line and it should enable evaluation of different types of detectors within the same lines as well as any changes in the detector configuration in a simple manner.
  • the central unit is provided with a memory in which the occupancy and various data characteristic of the detector are stored for each detector that can be connected in the system, and a line interrogation device is provided with which the individual signal lines can be queried cyclically and with which the detector measured values arriving from the individual lines can be fed to the evaluation device, that a memory interrogation device is also provided with which the memory locations for all detectors connected to the line in question can be interrogated at each step of the line interrogation device, the memory content for the formation of setpoints, the evaluation device is supplied with comparative devices in which the measured values arriving from the individual signal lines can be compared with the setpoints formed from the stored data and can be processed to form fault or alarm signals.
  • the memory provided in the control center according to the invention thus contains data on the number of connected signal lines and on the number of detectors per line; these memory locations can either be written to via an input element, for example a keyboard, or automatically by a microcomputer.
  • a query at the start of commissioning the system first checks, for example, how many detectors are connected per line or whether a line is connected at all. It is also determined whether the individual detectors are in the idle, alarm or fault state. Furthermore, independent of the actual location on the reporting line, individual detectors can be combined into groups that are, for example, of the same detector type, belong together spatially or should be processed according to the same evaluation criteria.
  • All information that represents the current status of the detector configuration and is stored in the system can be output via a dialog station and compared with the desired status. As soon as the actual status for part of the system or for the entire system has been saved and recognized as error-free, the system can be put into operation using a corresponding switch. The actual state is thereby defined as the target state, and all deviations from this are now recognized as a fault.
  • a microprocessor is expediently used, which is linked to a corresponding memory as well as an input device and an output device.
  • the control center Z essentially contains an evaluation device AW, which is connected to a memory SP.
  • the evaluation device controls a line interrogation device in the form of a multiplexer LX (represented as a rotary selector), which cyclically polls the individual detection lines, represented by lines L1 to Lm.
  • the intermediate signal adaptation SIA converts the measured values arriving on the lines into processable signals.
  • the evaluation device AW controls a memory interrogation device SX, which is also designed as a multiplexer (shown as a rotary selector). This memory interrogation device can process as many steps as detectors can be connected to the system. If a number of n detectors is provided for a detection line, the memory interrogation device SX switches by n steps for each step of the line interrogation device LX, ie a total of m x n steps for m lines.
  • the wiring of the individual detection lines can be done approximately as described in DE-AS 25 33 382 or DE-OS 26 41 489.
  • the detectors connected in series on lines L1 to Lm are each connected to the line with a time delay corresponding to the measured value of the detector concerned.
  • the resulting step-like current characterizes the detector addresses by the number of stages and the measured values by the length of the stages.
  • these current stages are converted into pulses, which are then fed to the evaluation device AW via the line interrogation device LX.
  • the information is collected by the evaluation unit AW when the system is started up fed to the memory SP, simultaneously with other data given by an input device IN.
  • the storage status can be checked via an LED display.
  • the data contained in the memory SP for each detector are fed to the evaluation device AW via an output multiple AUS, used there to form setpoints and compared with the queried actual values of the individual detectors, as will be described in detail later. If this comparison leads to the formation of an alarm signal a, this is used for the alarm display via the multiplex output MXA.
  • This output multiple runs synchronously with the line interrogation device LX and controls a display device which has a light-emitting diode AD1 ... ADm for each detection line. The display is stabilized via flip-flops, not shown. If necessary, the output multiplexer MXA could also run synchronously with the memory interrogation device SX. In this case, a display could be controlled for each individual detector. Similar to an alarm signal, a fault signal s formed in the evaluation device is output via a multiplex output MXS and used to control LEDs SD according to the lines queried.
  • Fig.2 The structure and function of the memory SP are shown in more detail in Fig.2.
  • This memory then consists of a matrix of bistable memory cells, the number of which depends on the one hand on the number of connected detectors and on the other hand on the number of information per detector. If 8 bits per detector are to be stored and m detection lines with h detectors each are to be connected to the system, the memory must therefore have 8 xnxm cells.
  • each detector has a vertical column Spll ... Spnm, while eight different criteria can be saved in the eight rows Z1 ... Z8 for each detector. The occupancy of the detector positions is saved in the first line Z1. If the relevant detector is switched on, a one is saved; if the detector position is not connected, a zero appears in the memory for the relevant detector position.
  • Information about the detector type can be saved in further lines. This is useful because, depending on the physical measuring principle of a detector, different setpoints are required for the evaluation. For example, all smoke detectors are marked with a one in row Z2, all heat detectors in row Z3, all flame detectors in row Z4, etc. Different sensitivities for the detectors could be stored in further rows, for example. In addition, various delays can be specified, etc.
  • the memory input takes place in such a way that when the system is started up, the AND gates AN1 and AN2 are initially blocked via the flip-flop FF, so that alarm and fault messages are suppressed.
  • the evaluation device AW When querying the individual signaling lines, the evaluation device AW generates a signal at its output mv when the detector location just tested is really occupied.
  • a logical one is written into line Z1 of the memory for the relevant detector via the AND gate AN3.
  • Sensitivity and delay can also be stored by closing the corresponding switch TZ with the alarm signal a via the AND gate AN4.
  • the system configuration can be checked using the output multiple OFF.
  • step-by-step control of the individual columns Sp11 etc. all memory locations of each individual detector can be checked via the LEDs LED1 ... LED8. If the configuration is found to be correct, the system can be put into operation by closing the operating button BT.
  • Signal 1 thus appears at the output of the flip-flop FF, the AND gates AN1 and AN2 for the alarm and fault forwarding are enabled and the outputs OUT of the memory are also enabled via the AND gates AN11 to AN18 to the evaluation device.
  • this evaluation circuit is entered into lines Z1 to Z8 of the memory for the respective triggered detector. These signals are fed to a setpoint generator SWA for alarm and a setpoint generator SWS for malfunction. The corresponding setpoints swa or sws are formed in these setpoint transmitters, depending on the stored criteria.
  • the setpoint generators are constructed in the simplest way as counters which, depending on the type of detector displayed and the sensitivity selected for this detector, count up to a more or less large value and then supply this value to the comparators VGA and VGS.
  • the evaluation device AW receives the queried from the signal adaptation SIA Measured values of the individual detectors.
  • these measured values appear as impulses on the line.
  • the number of pulses corresponds to the detector address, while the changing pulse distance is a measure of the measured value.
  • These measured values m are fed to the measuring time counter MZ, which is designed as a time counter. It counts with a constant clock, so that depending on the pulse interval, a smaller or larger counter value is fed to the comparator for alarm VGA or the comparator for fault VGS.
  • the measuring time counter MZ is stopped briefly, its counter reading is transmitted to the comparators VGA and VGS, and then the measuring time counter MZ is reset.
  • a step-up pulse is given to the multiplexer control MST, ie the memory interrogation device SX is advanced by one step. If one assumes in a simplified manner that this interrogation device is a rotary selector, the multiplexer control MST contains the rotary selector drive, which receives a step-up pulse with each reset of the measuring time counter MZ.
  • the line interrogation device must be switched to the next line.
  • the end character EZ is specified in the form of a maximum time which is pending at the comparator VGM. If no further measured value pulse appears up to this predetermined maximum time, the comparator VGM forms a step signal w with the signal of the measuring time counter MZ, with which the line interrogation device LX is advanced one step. As long as the maximum time value of the end character EZ is not reached, the signal mv is present at the output of the comparator VGM, which indicates an existing detector.
  • FIG. 4 shows the circuit diagram for an alarm system according to the invention when using a microprocessor MP, the function of the system is essentially the same as that described with reference to FIGS. 1 to 2.
  • the microprocessor which has data lines and command lines for the individual system parts.
  • the signal adaptation SIA is structured as previously described. From it the respective line number and the measured values are given to the microprocessor.
  • the memory SP is also constructed as in FIG. 2, with rows and columns for the individual detectors.
  • An address bus AB and a data bus DB connect the microprocessor MP to the memory SP.
  • an input field EF is connected to the microprocessor, with which, as in FIG. 2, detector criteria for the individual lines of the memory SP can be entered.
  • An output or display field for example in the form of a data display station DS, is used to control the system.
  • the system therefore performs all functions as in the circuit described in FIGS. 1 to 3.
  • the microprocessor by using the microprocessor, the required logical processes and control functions are fulfilled with a minimum of components; the individual components, such as microprocessor MP, memory SP, etc., are known per se.
  • the use of the microprocessor MP makes operating the system and outputting stored data via the data display station much easier and more convenient than with the conventional design.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Alarm Systems (AREA)
  • Fire Alarms (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Gefahrenmeldeanlage, beispielsweise Brandmeldeanlage, mit einer Mehrzahl von Detektoren (M11 ... Mmn), welche über Meldeleitungen (L1 ... Lm) an eine Zentrale (Z) angeschaltet sind. In der Zentrale (Z) ist ein Speicher (SP) vorgesehen, in welchem für jeden anschaltbaren Detektor charakteristische Daten gespeichert sind. Von den einzelnen Detektoren (M11 ... Mmn) werden zyklisch Meßwerte (m) abgefragt, außerdem werden aus den gespeicherten Daten für jeden Detektor gleichzeitig Sollwerte (swa, sws) gebildet und mit den Meßwerten verglichen; aus dem Vergleich werden gegebenenfalls Störungs- bzw. Alarmsignale abgeleitet.

Description

  • Die Erfindung bezieht sich auf eine Gefahrenmeldeanlage mit einer Mehrzahl von über Meldeleitungen an eine Zentrale angeschalteten Meldern, wobei die Meßwerte der einzelnen Melder in der Zentrale über Prüfeinrichtungen abfragbar und über eine Auswerteeinrichtung zur Bildung von Alarm- bzw. Störungssignalen auswertbar sind.
  • Derartige Meldeanlagen sind bekannt, beispielsweise als öffentliche Feuermeldeanlagen oder als private Nebenmeldeanlagen. Im allgemeinen sind diese Anlagen modular aufgebaut; dabei sind an die Anschaltbaugruppen in der Zentrale meist mehrere Leitungen anschließbar,und an jede Leitung können mehrere Feuermelder angeschaltet werden. Durch eine sogenannte Kettensynchronisation ist es dabei auch möglich, die Meßwerte der einzelnen Melder auf einer gemeinsamen Leitung analog zu übertragen (DE-OS 26 41 489). In solchen Anlagen ergibt sich die Notwendigkeit, die von den tatsächlich angeschalteten Meldern erhaltenen Informationen richtig weiter zu verarbeiten und dafür zu sorgen, daß nicht- beschaltete Anlagenteile keine Störung hervorrufen und daß jede Veränderung der Anlagenkonfiguration erkannt wird.
  • Bei herkömmlichen Anlagen erfolgte die Weiterleitung der Melderinformationen über spezielle Rangierleitungen, welche im Bedarfsfalle unterbrochen werden mußten. Daneben war es auch üblich, nicht vorhandene Anlagenteile zu simulieren, also durch ein spezielles Abschlußglied eine funktionstüchtige Schnittstelle vorzutäuschen. Eingriffe dieser Art werden von Hand in der Anlage mit Schraubenzieher oder Lötkolben vorgenommen. Diese Tätigkeit nimmt viel Arbeitszeit in Anspruch und ist immer mit der Gefahr behaftet, daß Leitungen verwechselt und falsch verbunden werden.
  • Aufgabe der Erfindung ist es, eine Gefahrenmeldeanlage der eingangs erwähnten Art zu schaffen, in welcher derartige Rangierungen in der Verdrahtung nicht erforderlich sind. Die Anlage soll eine ständige Überwachung der Melderkonfiguration gewährleisten, sie soll eine Identifizierung von Meldern gestatten, die an eine gemeinsame Leitung angeschlossen sind und sie soll eine Auswertung unterschiedlicher Melderarten innerhalb derselben Linien scwie beliebige Veränderungen in der Melderkonfiguration in einfacher Weise ermöglichen.
  • Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß i= der Zentrale ein Speicher vorgesehen ist, in welchem für jeden in der Anlage anschaltbaren Melder die Belegung sowie verschiedene für den Melder charakteristische Daten gespeichert sind, daß eine Linienabfrageeinrichtung vorgesehen ist, mit welcher die einzelnen Meldeleitungen zyklisch abfragbar sind und mit der die von den einzelnen Leitungen ankommenden Meldermeßwerte der Auswerteeinrichtung zuführbar sind, daß ferner eine Speicher-AbfrageEinrichtung vorgesehen ist, mit welcher bei jedem Schritt der Linienabfrageeinrichtung die Speicherplätze für alle an die betreffende Leitung angeschalteten Melder abfragbar sind, wobei der Speicherinhalt zur Bildung von Sollwerten der Auswerteeinrichtung zugeführt wird, daß schließlich in der Auswerteeinrichtung Vergleichseinrichtungen vorgesehen sind, in denen die von den einzelnen Meldeleitungen ankommenden Meßwerte mit den aus den gespeicherten Daten gebildeten Sollwerten vergleichbar und zur Bildung von Störungs- bzw. Alarmsignalen verarbeitbar sind.
  • Der erfindungsgemäß vorgesehene Speicher in der Zentrale enthält also Daten über die Anzahl der beschalteten Meldeleitungen sowie über die Anzahl der Melder pro Leitung; diese Speicherplätze können entweder über ein Eingabeelement, beispielsweise eine Tastatur, beschrieben werden, oder aber automatisch durch einen Mikrocomputer. Durch eine Abfrage zu Beginn der Inbetriebnahme der Anlage wird beispielsweise zunächst geprüft, wie viele Melder pro Linie beschaltet sind bzw. ob eine Linie überhaupt beschaltet ist. Dabei wird auch festgestellt, ob sich die einzelnen Melder im Ruhe-, Alarm- oder Störungszustand befinden. Ferner können einzelne Melder unabhängig von der tatsächlichen Lage an der Meldeleitung, zu Gruppen zusammengefaßt werden, die z.B. von der gleichen Melderart sind, räumlich zusammengehören oder aber nach gleichen Auswertekriterien bearbeitet werden sollen. Man kann beispielsweise gezielt alle gleichartigen Melder, etwa Rauchmelder, der Anlage zum Ansprechen bringen und durch Einen Befehl in den Speicher für alle angesprochenen Melder das gemeinsame Kriterium, also "Rauchmelder", einspeichern. Bei der Speicherabfrage wird dann dieses Melderkriterium wieder ausgegeben und entsprechend bei der Sollwertbildung berücksichtigt.
  • Alle Informationen, die den Istzustand der Melderkonfiguration darstellen und in der Anlage gespeichert sind, können über eine Dialogstation ausgegeben und mit dem gewünschten Sollzustand verglichen werden. Sobald der Istzustand für einen Teil der Anlage oder für die gesamte Anlage eingespeichert und als fehlerfrei erkannt wurde, kann über einen entsprechenden Schalter die Anlage in Betrieb genommen werden. Der Istzustand wird dadurch als Sollzustand definiert, und alle Abweichungen davon werden von nun an als Störung erkannt.
  • Für die Steuerung der Linienabfrageeinrichtung, der Speicherabfrageeinrichtung und der Auswerteeinrichtung wird zweckmäßigerweise ein Mikroprozessor verwendet, der mit einem entsprechenden Speicher sowie einer Eingabeeinrichtung und einer Ausgabeeinrichtung verknüpft ist.
  • Die Erfindung wird nachfolgend an Ausführungsbeispielen anhand der Zeichnung näher erläutert.
  • Es zeigt
    • Fig. 1 ein. Blockschaltbild für eine erfindungsgemäße Gefahrenmeldeanlage,
    • Fig. 2 den Aufbau des Speichers und seine Verknüpfung mit der Auswerteeinrichtung gem. Fig.1,
    • Fig. 3 den Aufbau der Auswerteeinrichtung gem. Fig.2,
    • Fig. 4 den Aufbau einer erfindungsgemäßen. Meldeanlage bei Verwendung eines Mikroprozessors.
  • Den allgemeinen Aufbau einer erfindungsgemäßen Gefahrenmeldeanlage zeigt Fig.1. Dabei enthält die Zentrale Z im wesentlichen eine Auswerteeinrichtung AW, die mit einem Speicher SP verbunden ist. Die Auswerteeinrichtung steuert eine Linienabfrageeinrichtung in Form eines Multiplexers LX (dargestellt als Drehwähler), der zyklisch die einzelnen Meldelinien, dargestellt durch die Leitungen L1 bis Lm, abfragt, Die zwischengeschaltete Signalanpassung SIA formt die auf den Leitungen ankommenden Meßwerte in verarbeitbare Signale um. Außerdem steuert die Auswerteeinrichtung AW eine Speicherabfrageeinrichtung SX, die ebenfalls als Multiplexer (dargestellt als Drehwähler) ausgeführt ist. Diese Speicherabfrageeinrichtung kann soviele Schritte verarbeiten wie Melder an die Anlage anschaltbar sind. Ist für eine Meldelinie eine Anzahl von n Meldern vorgesehen, so schaltet die Speicherabfrageeinrichtung SX bei jedem Schritt der Linienabfrageeinrichtung LX um n Schritte weiter, bei m Linien also insgesamt m x n Schritte.
  • Die Beschaltung der einzelnen Meldelinien kann etwa so erfolgen, wie dies in der DE-AS 25 33 382 bzw. der DE-OS 26 41 489 beschrieben ist. Dabei werden die in Serie hintereinander geschalteten Melder auf den Leitungen L1 bis Lm jeweils mit einer dem Meßwert des betreffenden Melders entsprechenden Zeitverzögerung an die Leitung angeschaltet. Der entstehende treppenförmige Strom kennzeichnet dabei jeweils durch die Stufenzahl die Melderadressen und durch die Stufenlänge die Meßwerte. In der Signalanschaltung SIA werden diese Stromstufen in Impulse umgewandelt, welche dann über die Linienabfrageeinrichtung LX der Auswerteeinrichtung AW zugeführt werden. Die Informationen werden bei Inbetriebnahme der Anlage von der Auswerteeinrichtung AW dem Speicher SP zugeführt, gleichzeit mit anderen, durch eine Eingabeeinrichtung EIN gegebenen Daten. Der Speicherzustand kann über eine Leuchtdiodenanzeige LED kontrolliert werden.
  • Bei Betrieb der Anlage werden die für jeden Melder im Speicher SP enthaltenen Daten über ein Ausgabevielfach AUS der Auswerteeinrichtung AW zugeführt, dort zur Bildung von Sollwerten verwendet und mit den abgefragten Istwerten der einzelnen Melder verglichen, wie später im einzelnen beschrieben wird. Führt dieser Vergleich zur Bildung eines Alarmsignals a, so wird dieses über die Multiplexausgabe MXA zur Alarmanzeige verwendet. Dieses Ausgabevielfach läuft synchron mit der Linienabfrageeinrichtung LX und steuert eine Anzeigeeinrichtung an, welche für jede Meldelinie eine Leuchtdiode AD1 ... ADm besitzt. Die Anzeige wird über nicht dargestellte Flip-Flops stabilisiert. Bei Bedarf könnte der Ausgabemultiplexer MXA auch synchron mit der Speicherabfrageeinrichtung SX laufen. In diesem Fall könnte für jeden einzelnen Melder eine Anzeige gesteuert werden. Ähnlich wie ein Alarmsignal wird auch ein in der Auswerteeinrichtung gebildetes Störungssignal s über eine Multiplexausgabe MXS ausgegeben und zur Steuerung von Leuchtdicden SD entsprechend den abgefragten Linien verwendet.
  • Aufbau und Funktion des Speichers SP sind in Fig.2 genauer dargestellt. Danach besteht dieser Speicher aus einer Matrix von bistabilen Speicherzellen, deren Zahl einerseits von der Zahl der angeschalteten Melder und andererseits von der Zahl der Informationen pro Melder abhängt. Wenn pro Melder 8 bit gespeichert werden sollen und an die Anlage m Meldelinien mit jeweils h Meldern angeschaltet werden sollen, so muß der Speicher also 8 x n x m Zellen besitzen. In der dargestellten Matrix besitzt jeder Melder eine senkrechte Spalte Spll ... Spnm, während in den acht Zeilen Z1 ... Z8 für jeden Melder acht unterschiedliche Kriterien gespeichert werden können. In der ersten Zeile Z1 wird jeweils die Belegung der Melderplätze gespeichert. Ist der betreffende Melder angeschaltet, so wird eine Eins gespeichert; ist der Melderplatz nicht beschaltet, so erscheint im Speicher für den betreffenden Melderplatz eine Null.
  • In weiteren Zeilen können Angaben über die Melderart gespeichert werden. Dies ist deshalb zweckmäßig, weil je nach dem physikalischen Meßprinzip eines Melders unterschiedliche Sollwerte für die Auswertung erforderlich sind. So werden beispielsweise in der Zeile Z2 alle Rauchmelder mit einer Eins gekennzeichnet, in der Zeile Z3 alle Wärmemelder, in der Zeile Z4 alle Flammenmelder usw. In weiteren Zeilen könnten beispielsweise unterschiedliche Empfindlichkeiten für die Melder gespeichert werden. Außerdem können verschiedene Verzögerungen vorgegeben werden usw. Die Speichereingabe geht in der Weise vor sich, daß bei Inbetriebnahme der Anlage zunächst über das Flip-Flop FF die UND-Glieder AN1 und AN2 gesperrt werden, so daß Alarm- und Störungsmeldungen unterdrückt werden. Bei der Abfrage der einzelnen Meldeleitungen erzeugt die Auswerteeinrichtung AW an ihrem Ausgang mv ein Signal, wenn der gerade geprüfte Melderplatz wirklich belegt ist. Über das UND-Glied AN3 wird in der Zeile Z1 des Speichers für den betreffenden Melder eine logische Eins eingeschrieben. Zur Speicherung der Melderart kann man beispielsweise den jeweiligen Schalter TZ2, TZ3 usw. schließen und dann die jeweils zugehörigen Melder zum Ansprechen bringen .Wird beispielsweise der Schalter TZ2 geschlossen, so läßt man alle Rauchmelder der gesamten Anlage ansprechen, und im Speicher SP wird für jeden Rauchmelder in Zeile 2 eine logische Eins eingeschrieben. Entsprechend wird mit den übrigen Zeilen verfahren.
  • Auch Empfindlichkeit und Verzögerung kann man durch Schließen des entsprechenden Schalters TZ mit dem Alarmsignal a über das UND-Glied AN4 einspeichern. Nach dem Einschreiben des Speichers SP kann die Anlagenkonfiguration über das Ausgabevielfach AUS kontrolliert werden. Durch schrittweises Ansteuern der einzelnen Spalten Sp11 usw. können alle Speicherplätze jedes einzelnen Melders über die Leuchtdioden LED1 ... LED8 überprüft werden. Wird die Konfiguration für richtig befunden, so kann die Anlage in Betrieb genommen werden, wozu die Betriebstaste BT geschlossen wird. Am Ausgang des Flip-Flops FF erscheint damit das Signal 1, die UND-Glieder AN1 und AN2 für die Alarm- und Störungsweitergabe werden freigegeben und die Ausgänge AUS des Speichers werden über die UND-Glieder AN11 bis AN18 zur Auswerteeinrichtung hin ebenfalls freigegeben.
  • Der Aufbau und die Funktion der Auswerteeinrichtung sind in Fig.3 dargestellt. Dieser Auswerteschaltung werden, wie aus Fig.2 ersichtlich, die Zeilen Z1 bis Z8 des Speichers für den jeweils angesteuerten Melder eingegeben. Diese Signale werden einem Sollwertgeber SWA für Alarm und einem Sollwertgeber SWS für Störung zugeführt. In diesen Sollwertgebern werden jeweils abhängig von den gespeicherten Kriterien die entsprechenden Sollwerte swa bzw. sws gebildet. Die Sollwertgeber sind in einfachster Weise als Zähler aufgebaut, die je nach der angezeigten Melderart und nach der für diesen Melder gewählten Empfindlichkeit bis zu einem mehr oder weniger großen Wert zählen und diesen Wert dann den Vergleichern VGA und VGS zuführen. Gleichzeitig erhält die Auswerteeinrichtung AW aus der Signalanpassung SIA die abgefragten Meßwerte der einzelnen Melder. Wie erwähnt, erscheinen diese Meßwerte als Impulse auf der Leitung. Die Zahl der Impulse entspricht der Melderadresse, während der wechselnde Impulsabstand ein Maß für den Meßwert ist. Diese Meßwerte m werden dem Meßzeitzähler MZ zugeführt, der als Zeitzähler ausgebildet ist. Er zählt mit konstantem Takt, so daß je nach dem Impulsabstand ein kleinerer oder größerer Zählerwert dem Vergleicher für Alarm VGA bzw. dem Vergleicher für Störung VGS zugeführt wird. Beim Erscheinen eines neuen Meßwertimpulses wird der Meßzeitzähler MZ kurz angehalten, sein Zählerstand wird den Vergleichern VGA und VGS übermittelt, und dann wird der Meßzeitzähler MZ zurückgestellt. Gleichzeitig mit der Rückstellung des Meßzeitzählers MZ wird ein Fortschaltimpuls an die Multiplexersteuerung MST gegeben, d.h. die Speicherabfrageeinrichtung SX wird um einen Schritt weitergeschaltet. Nimmt man vereinfacht an, daß diese Abfrageeinrichtung ein Drehwähler ist, so beinhaltet die Multiplexersteuerung MST den Drehwählerantrieb, der mit jeder Rückstellung des Meßzeitzählers MZ einen Fortschaltimpuls erhält.
  • Ist eine Melderleitung vollständig abgefragt, so muß die Linienabfrageeinrichtung auf die nächste Leitung weitergeschaltet werden. Zu diesem Zweck ist das Endezeichen EZ in Form einer Maximalzeit vorgegeben, welche an dem Vergleicher VGM ansteht. Erscheint also bis zu dieser vorgegebenen Maximalzeit kein weiterer Meßwertimpuls, so bildet der Vergleicher VGM mit dem Signal des Meßzeitzählers MZ ein Fortschaltsignal w, mit dem die Linienabfrageeinrichtung LX einen Schritt weitergeschaltet wird. Solange der Maximalzeitwert des Endezeichens EZ nicht erreicht wird, steht am Ausgang des Vergleichers VGM das Signal mv an, welches einen vorhandenen Melder anzeigt.
  • Die Fig.4 zeigt das Schaltbild für eine erfindungsgemäße Gefahrenmeldeanlage beim Einsatz eines Mikroprozessors MP, die Funktion der Anlage ist im wesentlichen genauso, wie sie anhand der Fig.1 bis 2 beschrieben wurde. Lediglich die Ausführung wird hier durch den Mikroprozessor gesteuert, der zu den einzelnen Anlagenteilen jeweils Datenleitungen und Befehlsleitungen besitzt. Die Signalanpassung SIA ist wie vordem beschrieben aufgebaut. Von ihr werden die jeweilige Leitungsnummer und die Meßwerte an den Mikroprozessor gegeben. Der Speicher SP ist ebenfalls wie in Fig.2 aufgebaut, mit Zeilen und Spalten für die einzelnen Melder. Ein Adressbus AB und ein Datenbus DB verbinden den Mikroprozessor MP mit dem Speicher SP. Weiterhin ist an den Mikroprozessor ein Eingabefeld EF angeschlossen, mit welchem wie bei Fig.2 Melderkriterien für die einzelnen Zeilen des Speichers SP eingegeben werden können. Ein Ausgabe- bzw. Anzeigefeld, etwa in Form einer Datensichtstation DS, dient zur Eontrolle der Anlage. Bei diesem Aufbau gemäß Fig.4 führt die Anlage also alle Funktionen wie bei der in den Fig.1 bis 3 beschriebenen Schaltung aus. Allerdings werden durch den Einsatz des Mikroprozessors die geforderten logischen Abläufe und Steuerfunktionen mit einem Minimum an Bauteilen erfüllt; die einzelnen Bauelemente, wie Mikroprozessor MP, Speicher SP usw. sind für sich ohne-hin bekannt. Außerdem wird durch die Verwendung von Mikroprozessors MP die Bedienung der Anlage sowie die Ausgabe von Speicherdaten über die Datensichtstation wesentlich einfacher und komfortabler als beim herkömmlichen Aufbau.

Claims (9)

1. Gefahrenmeldeanlage mit einer Mehrzahl von über Meldeleitungen an eine Zentrale angeschalteten Meldern, wobei die Meßwerte der einzelnen Melder in der Zentrale über Prüfeinrichtungen abfragbar und über eine Auswerteeinrichtung zur Bildung von Alarm- bzw. Störungssignalen auswertbar sind, dadurch gekennzeichnet, daß in der Zentrale (Z) ein Speicher (SP) vorgesehen ist, in welchem für jeden in der Anlage anschaltbaren Melder (M11 ... Mmn) die Belegung sowie verschiedene für den Melder charakteristische Daten gespeichert sind, daß eine Linienabfrageeinrichtung (LX) vorgesehen ist, mit welcher die einzelnen Meldeleitungen (L1 ... Ln) zyklisch abfragbar sind und mit der die von den einzelnen Leitungen ankommenden Meldermeßwerte der Auswerteeinrichtung (AW) zuführbar sind, daß ferner eine Speicherabfrageeinrichtung (SX) vorgesehen ist, mit welcher bei jedem Schritt der Linienabfrageeinrichtung (LX) die Speicherplätze (Sp11 ... Spmn; Z1 ... Z8) für alle an die betreffende Leitung angeschalteten Melder abfragbar sind, wobei der Speicherinhalt zur Bildung von Sollwerten der Auswerteeinrichtung zugeführt wird, daß schließlich in der Auswerteeinrichtung Vergleichseinrichtungen (VGA,VGS) vorgesehen sind, in denen die von den einzelnen Meldeleitungen ankommenden Meßwerte (m) mit den aus den gespeicherten Daten gebildeten Sollwerten (swa, sws) vergleichbar und zur Bildung von Störungs- bzw. Alarmsignalen verarbeitbar sind.
2. Meldeanlage nach Anspruch 1, dadurch gekennzeichnet, daß eine Eingabevorrichtung (EIN) zum Beschreiben der einzelnen Speicherplätze vorgesehen ist.
3. Meldeanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Speicherinhalt über eine Anzeigeeinrichtung (LED) kontrollierbar ist.
4. Meldeanlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß bei Inbetriebnabme der Anlage die Belegung der einzelnen Meldeleitungen (L1 ... Lm) über die Linienabfrageeinrichtung (LX) ieststellbar und in den Speicher (SP) einschreibbar ist.
5. Meldeanlage nach Anspruch 4, dadurch gekennzeichnet, daß die Auswerteeinrichtung (AW) während des Einschreibens in den Speicher (SP) durch eine Umschalteeinrichtung (FF) abschaltbar und erst nack Kontrolle des Speicherinhalts einschaltbar
6, Meldeanlage nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die einzelnen Melder (M11 ... Mmn) im Speicher (SP) nach ihrer Melderart gruppenweise kennzeichenbar sind.
7. Meldeanlage nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die einzelnen Melder (M11 ... Mmn) im Speicher (SP) nach ihrer Empfindlichkeit gruppenweise kennzeichenbar sind.
8. Meldeanlage nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die einzelnen Melder (M11 ... Mmn) im Speicher (SP) nach ihrer Ansprechverzögerung gruppenweise kennzeichenbar sind.
9. Meldeanlage nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß als Auswerteeinrichtung (AW) ein Mikroprozessor vorgesehen ist.
EP79101030A 1978-04-19 1979-04-04 Gefahrenmeldeanlage Withdrawn EP0004911A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2817089 1978-04-19
DE2817089A DE2817089B2 (de) 1978-04-19 1978-04-19 Gefahrenmeldeanlage

Publications (1)

Publication Number Publication Date
EP0004911A1 true EP0004911A1 (de) 1979-10-31

Family

ID=6037465

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79101030A Withdrawn EP0004911A1 (de) 1978-04-19 1979-04-04 Gefahrenmeldeanlage

Country Status (5)

Country Link
US (1) US4222041A (de)
EP (1) EP0004911A1 (de)
JP (1) JPS54142095A (de)
AT (1) AT373407B (de)
DE (1) DE2817089B2 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0066200A1 (de) * 1981-05-26 1982-12-08 Siemens Aktiengesellschaft Verfahren und Anordnung zur Revision in einem Gefahren-, insbesondere Brandmeldesystem
EP0067339A2 (de) * 1981-06-12 1982-12-22 Siemens Aktiengesellschaft Verfahren und Anordnung zur Störungserkennung in Gefahren-, insbesondere Brandmeldeanlagen
EP0070449A1 (de) * 1981-07-10 1983-01-26 Siemens Aktiengesellschaft Verfahren und Anordnung zur Erhöhung der Ansprechempfindlichkeit und der Störsicherheit in einer Gefahren-, insbesondere Brandmeldeanlage
EP0091143A2 (de) * 1982-04-07 1983-10-12 Motorola Israel Limited Signalverarbeitende Einrichtung
EP0098760A2 (de) * 1982-06-09 1984-01-18 Roger Amar Überwachungsdurchführungsverfahren und Überwachungsanlage zum Schützen einer Gegend
EP0101182A2 (de) * 1982-07-16 1984-02-22 Kabushiki Kaisha Toshiba Überwachungsvorrichtung für Röhrenleitungssystem
FR2535090A1 (fr) * 1982-10-22 1984-04-27 Nittan Co Ltd Terminal de detecteur photo-electrique de fumee
EP0121048A1 (de) * 1983-03-04 1984-10-10 Cerberus Ag Schaltungsanordnung zur Störpegel-Überwachung von Meldern, die in einer Gefahrenmeldeanlage angeordnet sind
GB2193590A (en) * 1986-07-17 1988-02-10 Nittan Co Ltd Environmental abnormality alarm apparatus
WO1991020065A2 (de) * 1990-06-19 1991-12-26 Dylec Ltd. Zustandsmeldevorrichtung
EP0521180A1 (de) * 1991-07-02 1993-01-07 Siemens Aktiengesellschaft Gefahrenmeldeanlage für Schleifenbetrieb
AT397731B (de) * 1984-06-29 1994-06-27 Hochiki Co Feueralarmsystem

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3037693C2 (de) * 1980-10-06 1986-03-13 Friedrich Merk-Telefonbau GmbH, 8000 München Gefahrenmeldezentrale mit mehreren sternförmig angeordneten Meldelinien
US4394655A (en) * 1981-03-13 1983-07-19 Baker Industries, Inc. Bidirectional, interactive fire detection system
FR2509495B1 (fr) * 1981-07-10 1985-08-09 Icb France Ind Composants Bati Procede de surveillance et d'alarme et le dispositif pour la mise en oeuvre du procede
DE3128811A1 (de) * 1981-07-21 1983-02-10 Esser Sicherheitstechnik GmbH & Co KG, 4040 Neuss Multiplex-gefahrenmeldeanlage
DE3225106C2 (de) * 1982-07-05 1985-04-11 Siemens AG, 1000 Berlin und 8000 München Verfahren und Einrichtung zur automatischen Abfrage des Meldermeßwerts und der Melderkennung in einer Gefahrenmeldeanlage
JPS5977594A (ja) * 1982-10-27 1984-05-04 ニツタン株式会社 火災警報システム
US4543567A (en) * 1983-04-14 1985-09-24 Tokyo Shibaura Denki Kabushiki Kaisha Method for controlling output of alarm information
JPS59201193A (ja) * 1983-04-30 1984-11-14 松下電工株式会社 火報システム
US4549168A (en) * 1983-10-06 1985-10-22 Ryszard Sieradzki Remote station monitoring system
US4622538A (en) * 1984-07-18 1986-11-11 Otis Elevator Company Remote monitoring system state machine and method
DE3622800A1 (de) * 1985-07-26 1987-01-29 Mitec Moderne Ind Gmbh Messanordnung mit einer vielzahl von messeinheiten
WO1987003988A1 (en) * 1985-12-24 1987-07-02 Monitronix Limited Electronic sequential fault finding system
JPS62269293A (ja) * 1986-05-19 1987-11-21 石井 弘允 火災報知装置
US4710750A (en) * 1986-08-05 1987-12-01 C & K Systems, Inc. Fault detecting intrusion detection device
US4933668A (en) * 1986-09-29 1990-06-12 Shepherd Intelligence Systems, Inc. Aircraft security system
US5063371A (en) * 1986-09-29 1991-11-05 Oyer Michael W Aircraft security system
US4916432A (en) * 1987-10-21 1990-04-10 Pittway Corporation Smoke and fire detection system communication
CA2113026A1 (en) * 1993-01-28 1994-07-29 Paul Michael Hoseit Methods and apparatus for intrusion detection having improved immunity to false alarms
DE19651172C2 (de) * 1996-12-10 2003-08-28 Dag Auerbach Überwachungsanlage
WO2000068906A1 (en) 1999-05-07 2000-11-16 C & K Systems, Inc. Glass-break detector and method of alarm discrimination
US7680283B2 (en) * 2005-02-07 2010-03-16 Honeywell International Inc. Method and system for detecting a predetermined sound event such as the sound of breaking glass
CN102698398A (zh) * 2012-05-18 2012-10-03 苏州万图明电子软件有限公司 智能化灭火控制***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2262823A1 (de) * 1972-12-22 1974-10-10 Controlmatic Ges F Ind Automat Alarm- und meldesystem
DE2341087A1 (de) * 1973-08-14 1975-02-27 Siemens Ag Automatische brandmeldeanlage
DE2641489A1 (de) * 1976-09-15 1978-03-16 Siemens Ag Verfahren zur uebertragung unterschiedlicher analoger messwerte an eine zentrale von mehreren kettenfoermig an einer meldelinie liegenden brandmeldern

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1284470C2 (de) * 1967-01-25 1978-08-31 Standard Elektrik Lorenz Ag, 7000 Stuttgart-Zuffenhausen Abtasteinrichtung fuer zentral gesteuerte fernmelde-, insbesondere fernsprechvermittlungsanlagen
DE1964699B2 (de) * 1969-12-23 1972-04-13 Siemens AG, 1000 Berlin u. 8000 München Anordnung zum auswerten von periodisch abgefragten meldezustaenden
IT980651B (it) * 1973-03-21 1974-10-10 Cselt Centro Studi Lab Telecom Sistema elettronico centralizzato di commutazione di segnali tele fonici e dati ad alta velocita
SE391250B (sv) * 1974-11-26 1977-02-07 Saab Scania Ab Bevakningsanleggning, innefattande en centralenhet, somŸvia en kommunikationskanal er forbunden med ett flertal lokala terminalenheter
GB1556062A (en) * 1975-08-28 1979-11-21 Sumitomo Chemical Co Centralised monitoring system for gas leakage
US4067008A (en) * 1975-12-29 1978-01-03 Denver Fire Reporter & Protective Co., Inc. Multiplex interrogation system using pulses

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2262823A1 (de) * 1972-12-22 1974-10-10 Controlmatic Ges F Ind Automat Alarm- und meldesystem
DE2341087A1 (de) * 1973-08-14 1975-02-27 Siemens Ag Automatische brandmeldeanlage
DE2641489A1 (de) * 1976-09-15 1978-03-16 Siemens Ag Verfahren zur uebertragung unterschiedlicher analoger messwerte an eine zentrale von mehreren kettenfoermig an einer meldelinie liegenden brandmeldern

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CONTROL AND INSTRUMENTATION, Band 10, Nr. 1, Januar 1978, London "Alarms with TDC 2000" Seiten 28, 29, 31. * Seite 28 * *
FUNKSCHAU, Heft 26, 1976, Munchen H. KLUTH, "Wachsame Elektronik" Seiten 1153 bis 1156. * Seite 1155, mittlere Spalte * *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0066200A1 (de) * 1981-05-26 1982-12-08 Siemens Aktiengesellschaft Verfahren und Anordnung zur Revision in einem Gefahren-, insbesondere Brandmeldesystem
EP0067339A2 (de) * 1981-06-12 1982-12-22 Siemens Aktiengesellschaft Verfahren und Anordnung zur Störungserkennung in Gefahren-, insbesondere Brandmeldeanlagen
EP0067339A3 (en) * 1981-06-12 1983-09-28 Siemens Aktiengesellschaft Method and arrangement for disturbance detection in hazard signalling systems, especially fire signalling systems
EP0070449A1 (de) * 1981-07-10 1983-01-26 Siemens Aktiengesellschaft Verfahren und Anordnung zur Erhöhung der Ansprechempfindlichkeit und der Störsicherheit in einer Gefahren-, insbesondere Brandmeldeanlage
EP0091143A2 (de) * 1982-04-07 1983-10-12 Motorola Israel Limited Signalverarbeitende Einrichtung
EP0091143A3 (de) * 1982-04-07 1984-03-28 Motorola Israel Limited Signalverarbeitende Einrichtung
EP0098760A2 (de) * 1982-06-09 1984-01-18 Roger Amar Überwachungsdurchführungsverfahren und Überwachungsanlage zum Schützen einer Gegend
EP0098760A3 (de) * 1982-06-09 1987-05-27 Roger Amar Überwachungsdurchführungsverfahren und Überwachungsanlage zum Schützen einer Gegend
EP0101182A3 (en) * 1982-07-16 1987-01-07 Kabushiki Kaisha Toshiba Piping system surveillance apparatus
EP0101182A2 (de) * 1982-07-16 1984-02-22 Kabushiki Kaisha Toshiba Überwachungsvorrichtung für Röhrenleitungssystem
FR2535090A1 (fr) * 1982-10-22 1984-04-27 Nittan Co Ltd Terminal de detecteur photo-electrique de fumee
US4598271A (en) * 1983-03-04 1986-07-01 Cerberus Ag Circuit arrangement for monitoring noise levels of detectors arranged in an alarm installation
EP0121048A1 (de) * 1983-03-04 1984-10-10 Cerberus Ag Schaltungsanordnung zur Störpegel-Überwachung von Meldern, die in einer Gefahrenmeldeanlage angeordnet sind
AT397731B (de) * 1984-06-29 1994-06-27 Hochiki Co Feueralarmsystem
GB2193590A (en) * 1986-07-17 1988-02-10 Nittan Co Ltd Environmental abnormality alarm apparatus
GB2193590B (en) * 1986-07-17 1990-07-18 Nittan Co Ltd Environmental abnormality alarm apparatus
WO1991020065A2 (de) * 1990-06-19 1991-12-26 Dylec Ltd. Zustandsmeldevorrichtung
WO1991020065A3 (de) * 1990-06-19 1992-03-05 Dylec Ltd Zustandsmeldevorrichtung
US5463375A (en) * 1990-06-19 1995-10-31 Dylec Ltd. Status-reporting device for reporting a predetermined temperature state, temperature sensor suitable for such a status-reporting device, and process for the production of such a temperature sensor
EP0521180A1 (de) * 1991-07-02 1993-01-07 Siemens Aktiengesellschaft Gefahrenmeldeanlage für Schleifenbetrieb

Also Published As

Publication number Publication date
DE2817089B2 (de) 1980-12-18
ATA283679A (de) 1983-05-15
AT373407B (de) 1984-01-25
DE2817089A1 (de) 1979-10-25
US4222041A (en) 1980-09-09
JPS6239476B2 (de) 1987-08-24
JPS54142095A (en) 1979-11-05

Similar Documents

Publication Publication Date Title
EP0004911A1 (de) Gefahrenmeldeanlage
EP3961318B1 (de) Verfahren zur konfiguration einer modularen sicherheitsschaltvorrichtung
EP0067339A2 (de) Verfahren und Anordnung zur Störungserkennung in Gefahren-, insbesondere Brandmeldeanlagen
DE19960422C1 (de) Verfahren und Vorrichtung zur Bestimmung von als Stromsenken wirkenden gestörten Meldern in einer Gefahrenmeldeanlage
CH664637A5 (de) Verfahren zur uebertragung von messwerten in einem ueberwachungssystem.
DE102004042550A1 (de) Zustandsautomat-Funktionsblock mit durch den Nutzer veränderlicher Konfigurationsdatenbank für Zustandsübergänge
EP0004909B1 (de) Gefahrenmeldeanlage
DE4216242C2 (de) Identifizierung von Sensoren / Aktuatoren in Bussystemen
DE69305383T2 (de) Sensorverbindungssystem
EP2413554B1 (de) Vorrichtung zur Manipulation von Schnittstellensignalen
EP0658831B1 (de) Rechnergestütztes Entwurfsverfahren für ein programmierbares Automatisierungssystem
EP0267528A2 (de) Digitales Nachrichtenübertragungssystem mit Adressen aufweisenden Zwischenregeneratoren und Einrichtungen zur Fehlerortung
CH660927A5 (de) Ueberwachungsanlage.
EP3557598A1 (de) Sicherheitsschalter
EP0295593B1 (de) Einzelidentifikation
DE10296915T5 (de) Sicherheitsnetzwerksystem
EP0809361B1 (de) Elektronisches Schaltgerät und Schaltungsanordnung zur Überwachung einer Anlage
DE3614692C2 (de)
DE2817053C2 (de) Gefahrenmeldeanlage
DE19533787A1 (de) Verfahren zur Anzeige des Betriebszustands und/oder von Informationen über Schritte zur Inbetriebsetzung oder Wiederinbetriebsetzung einer technischen Anlage
EP0098554A1 (de) Verfahren und Einrichtung zur automatischen Abfrage des Meldermesswerts und der Melderkennung in einer Gefahrenmeldeanlage
EP0212106B1 (de) Verfahren zur Uebertragung von Messwerten
EP0450119B1 (de) Einrichtung zum Anschliessen weiterer Elemente an eine bereits bestehende Meldeprimärleitung
DE3225032C2 (de) Verfahren und Einrichtung zur wahlweisen automatischen Abfrage der Melderkennung oder des Meldermeßwerts in einer Gefahrenmeldeanlage
DE2903383C2 (de) Separates Testgerät für adressierbare Schaltungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH FR GB IT NL SE

17P Request for examination filed
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19820428

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MOSER, OTTO WALTER, DIPL.-ING.

Inventor name: TOMKEWITSCH, ROMUALD VON, DIPL.-ING.