EP0003227B1 - Verfahren zum Wenden einer Raumzelle aus Stahlbeton - Google Patents

Verfahren zum Wenden einer Raumzelle aus Stahlbeton Download PDF

Info

Publication number
EP0003227B1
EP0003227B1 EP19780101689 EP78101689A EP0003227B1 EP 0003227 B1 EP0003227 B1 EP 0003227B1 EP 19780101689 EP19780101689 EP 19780101689 EP 78101689 A EP78101689 A EP 78101689A EP 0003227 B1 EP0003227 B1 EP 0003227B1
Authority
EP
European Patent Office
Prior art keywords
dimensional box
shuttering
tilting table
platform
tilting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19780101689
Other languages
English (en)
French (fr)
Other versions
EP0003227A1 (de
Inventor
Illo-Frank Dr.-Ing. Primus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Betonbau GmbH
Original Assignee
Betonbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Betonbau GmbH filed Critical Betonbau GmbH
Publication of EP0003227A1 publication Critical patent/EP0003227A1/de
Application granted granted Critical
Publication of EP0003227B1 publication Critical patent/EP0003227B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/22Moulds for making units for prefabricated buildings, i.e. units each comprising an important section of at least two limiting planes of a room or space, e.g. cells; Moulds for making prefabricated stair units

Definitions

  • the invention relates to a method for turning a cuboid-shaped, one-sided open space cell made of reinforced concrete, according to the preamble of claim 1.
  • a manufacturing process is already known from DT-AS 2.400.390, in which the room cell is concreted on a tilting table, by means of which it is tilted by 90 ° after the concrete has set, so that the core formwork can be pulled out to the side.
  • This known method serves to make high hall constructions or deep concrete pits in the hall for removing the core formwork superfluous and to avoid cracks on the room cell during the first tilting process by 90 ° and the second tilting process by another 90 °, since the core of the room cell supports fresh concrete.
  • the core moves out of the room cell, the unsupported longitudinal wall must be supported.
  • a major disadvantage is that the room cell must be tilted together with the core formwork, so that the tilting table must be designed for the total weight of both.
  • Another disadvantage is that the core formwork has to be transported to the tilting table and locked there with exact dimensions and later transported out of the room cell and tipped back.
  • the tilting stress of the formwork core affects the dimensional accuracy of the room cell.
  • the room cell can be pulled up from the core formwork or the core formwork can be pulled down from the room cell. All that then has to be turned is the empty room cell that has been freed from the weight of the core formwork.
  • this method has the disadvantage that you have to wait until the room cell has fully hardened if you want to avoid damage when stripping and turning.
  • the invention has for its object to develop a method of the type described above, in which the disadvantages of the known methods are avoided, the not fully hardened room cell for further processing without the aid of a tilting device designed for heavy loads and without tipping the formwork core without damage take into the operating position with the open side facing up.
  • this object is achieved by the method steps specified in the main claim.
  • the advantage of the method according to the invention is that the side walls of the room cell are not deformed when the room cell is stripped and turned, the concrete is essentially only subjected to pressure and therefore cannot crack, although the room cell has not yet hardened.
  • the tilting tables only have to be designed for the weight of the room cell. Nevertheless, in a further development of the invention, by means of suitable measures, for example by means of spacer elements, a platform or the possibility of moving up the initially vertical leg of the second tilting table, all the cell heights can be produced as in the already known method.
  • the room cell does not have to be placed on the first tilting table with great precision so that one of its side walls lies directly against the vertical leg of the tilting table.
  • a core formwork 11 and outer formwork walls 12 are used to produce a room cell 10 in a known manner, of which only three outer formwork walls are shown in FIG. 1 for the sake of clarity de are shown.
  • the reinforced core formwork 11 rests on a floor formwork frame which consists of longitudinal boards 13 and transverse boards 14 arranged separately from one another.
  • the concreting process of the room cell 10 takes place in the so-called bell casting process.
  • the only open side of the room cell 10 points downwards, so that the room cell can be concreted in one pour.
  • the room cell 10 which is still made of fresh concrete, is raised by means of a hydraulic device 15 which engages under the longitudinal boards 13 of the floor formwork frame in such a way that the room cell is essentially subjected to pressure.
  • the core formwork 11 and the room cell 10 are separated from each other on the ceiling mirror and the cross boards 14 of the floor formwork frame are released.
  • the space cell 10 can now be lifted off the core formwork 11 by means of a special traverse 16 (FIG.
  • a support beam 23 is leaned against the inner wall of the space cell longitudinal wall facing away from the leg 19, which is articulated to the sliding carriage 21 and takes over the support of the space cell longitudinal wall when the space cell is tilted.
  • the first tilting table 18 is then tilted by 90 °, so that the originally vertical leg 19 engages like a comb in the horizontal leg 24 of a second L-shaped tilting table 25 and the sliding carriage 21 with its rollers 22 rests on the fork carriers of this horizontal leg 24 ( Fig. 5).
  • the room cell 10 is now moved up to the vertical leg 26 of the second tilting table 25 (FIG. 6).
  • the room cell 10 on the second tilting table 25 can also be tilted by 90 °, so that the bottom of the room cell points downward.
  • the support beam 23 has been pivoted out of the room cell 10, it can be lifted from the second tilting table 25 by means of a cross member 27 and transported for further processing (FIG. 7).
  • the distance between the room cell 10 and the vertical legs 19 or 26 of the first or second tilting table 18 or 25 can also be bridged by spacer elements which are expediently installed in the vertical legs and which preferably each have a platform, the plane of which is parallel runs to the leg plane and which can be moved hydraulically in the direction of their normal up to contact with the room cell 10.
  • spacer elements made of inflatable, tear-resistant rubber or plastic pillows, which are inserted between the relevant cell wall and the vertical leg.
  • the platform 20 can also be attached directly to the vertical leg 19 or 26 without the interposition of a transfer carriage 21.
  • the fork supports of the horizontal leg 24 of the second tilting table 25, on which the platform 20 then sits when tilting have sliding rollers or runners on which the platform together with the room cell 10 until it rests against the vertical leg 26 of the second tilting table 25 can be moved.
  • a further possibility of bridging a possible distance between the room cell 10 and the vertical legs 19 or 26 is that the vertical legs themselves are moved in the direction of their normal up to contact with the room cell 10.
  • An arrangement in which the vertical leg 26 of the second tilting table 25 can be moved in this way is shown in FIG. 8.
  • the support beam 23 for supporting the longitudinal wall of the room cell during tilting represents only one possibility of the many conceivable support devices.
  • the support beam 23 has a limit switch, not shown in the drawing, which contacts the system on the inner wall displays.
  • Another possibility of support is shown in Fig. 9.
  • the support device consists of a support frame 28 which is pushed over part of the length or the entire length between the two longitudinal walls of the room cells. This expediently takes place when the room cell 10 is lifted off the core formwork 11 with the aid of the special traverse 16, but is not yet set down on the first tilting table 18.
  • the lifting device divided into the hydraulic device 15 and the special traverse 16 in the exemplary embodiment can be combined in a uniform lifting device, as long as it is guaranteed that the finished part is stressed by the lifting device in all working phases essentially under pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Moulds, Cores, Or Mandrels (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zum Wenden einer quaderförmigen, einseitig offenen Raumzelle aus Stahlbeton, nach dem Oberbegriff des Patentanspruches 1.
  • Die Herstellung derartiger Raumzellen im sogenannten Glockengussverfahren, bei welchem die einzige offene Seite der Raumzelle nach unten weist, ist bekannt. Ein derartiges Herstellungsverfahren ist besonders zweckmässig, weil die Raumzelle in einem Guss betoniert werden kann. Die Weiterbehandlung der gegossenen Raumzelle bereitet jedoch insbesondere dann Schwierigkeiten, wenn die Raumzelle anschliessend an den Betoniervorgang in eine Betriebslage gewendet werden soll, in der die offene Seite nach oben weist. Würde man mit dem Entschalen und Wenden der Raumzelle bis zur vollständigen Aushärtung warten, so benötigte man zu lange Durchlaufzeiten für die einzelne Raumzelle auf dem teuren Betonier- bzw. Hallenplatz. Ein Entschalen und Wenden der noch aus frischem Beton bestehenden, nicht voll ausgehärteten Raumzelle bringt aber die Gefahr mit sich, dass die Raumzelle Risse erhält und Verformungen erleidet.
  • Aus der DT-AS 2.400.390 ist bereits ein Herstellungsverfahren bekannt, bei welchem die Raumzelle auf einem Kipptisch betoniert wird, mittels dessen sie nach dem Abbinden des Betons um 90° gekippt wird, damit die Kernschalung seitlich herausgezogen werden kann. Dieses bekannte Verfahren dient dazu, hohe Hallenkonstruktionen oder tiefe Betoniergruben in der Halle zum Abziehen der Kernschalung überflüssig zu machen und Rissbildungen an der Raumzelle während des ersten Kippvorganges um 90° und des zweiten Kippvorganges um weitere 90° zu vermeiden, da der Kern die Raumzelle aus frischem Beton stützt. Wenn der Kern aus der Raumzelle herausfährt, muss die freitragende Längswand abgestützt werden. Ein wesentlicher Nachteil besteht aber darin, dass die Raumzelle zusammen mit der Kernschalung gekippt werden muss, so dass der Kipptisch für das Gesamtgewicht beider ausgelegt werden muss. Ferner besteht ein Nachteil darin, dass die Kernschalung auf den Kipptisch transportiert und dort massgenau arretiert und später wieder aus der Raumzelle heraustransportiert und zurückgekippt werden muss. Die Kippbeanspruchung des Schalungskerns beeinträchtigt aber die Massgenauigkeit der Raumzelle. Stehen hohe Fertigungshallen oder tiefe Betoniergruben in der Halle jedoch sowieso zur Verfügung, so kann entweder die Raumzelle von der Kernschalung nach oben oder die Kernschalung aus der Raumzelle nach unten weggezogen werden. Gewendet werden muss dann nur noch die von dem Gewicht der Kernschalung befreite leere Raumzelle. Dieses Verfahren hat aber den Nachteil, dass man bis zur vollständigen Aushärtung der Raumzelle warten müsste, wenn man Schäden beim Entschalen und Wenden vermeiden will.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs beschriebenen Art zu entwickeln, bei dem die Nachteile der bekannten Verfahren vermieden werden, die nicht voll ausgehärtete Raumzelle zur Weiterverarbeitung also ohne Zuhilfenahme einer für überschwere Belastungen ausgelegten Kippvorrichtung und ohne Kippbeanspruchung des Schalungskernes ohne Schaden zu nehmen in die Betriebslage gewendet werden kann, in der die offene Seite nach oben weist.
  • Diese Aufgabe wird erfindungsgemäss durch die im Hauptanspruch angegebenen Verfahrensschritte gelöst. Der Vorteil des erfindungsgemässen Verfahrens liegt darin, dass die Seitenwände der Raumzelle beim Entschalen und Wenden der Raumzelle nicht verformt werden, der Beton im wesentlichen nur auf Druck beansprucht wird und somit keine Risse erhalten kann, obwohl die Raumzelle noch nicht ausgehärtet ist. Die Kipptische müssen lediglich für das Gewicht der Raumzelle ausgelegt werden. Dennoch können in Weiterbildung der Erfindung mittels geeigneter Massnahmen, beispielsweise mittels Distanzelementen, einer Plattform oder der Heranfahrmöglichkeit des zunächst senkrechten Schenkels des zweiten Kipptisches, sämtliche Raumzellenhöhen wie auch bei dem bereits bekanntn Verfahren hergestellt werden.
  • Auch hat es sich als vorteilhaft erwiesen, dass die Raumzelle nicht mit grosser Präzision so auf dem ersten Kipptisch abgesetzt werden muss, dass die eine seiner Seitenwände unmittelbar an dem senkrechten Schenkel des Kipptisches anliegt. Durch die Zwischenschaltung der verfahrbaren Plattform ist es möglich, einen eventuell verbleibenden Spalt durch Beifahren der Plattform auszugleichen.
  • Die Erfindung wird nachfolgend anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher beschrieben und erläutert.
  • Es zeigen:
    • Fig. 1 Kernschalung, Bodenschalrahmen und Aussenschalung zur Herstellung einer Raumzelle in perspektivischer Ansicht;
    • Fig. 2 die mit Hilfe der Schalungen gem. Fig. 1 hergestellte Raumzelle, teilweise vom Bodenschalrahmen abgehoben;
    • Fig. 3 die Raumzelle gern. Fig. 2 an einer Spezialtraverse zum Abheben von der Kernschalung;
    • Fig. 4 die auf einem ersten Kipptisch abgesetzte Raumzelle in der Seitenansicht;
    • Fig. 5 die mittels des ersten Kipptisches auf einen zweiten Kipptisch gekippte Raumzelle;
    • Fig. 6 die an den senkrechten Schenkel des zweiten Kipptisches herangefahrene Raumzelle;
    • Fig. 7 die mittels des zweiten Kipptisches in ihre Betriebslage gekippte Raumzelle;
    • Fig. 8 eine zweite Ausführungsform des zweiten Kipptisches, bei der der senkrechte Schenkel verfahrbar ist und;
    • Fig. 9 die zu wendende Raumzelle mit einem Stützrahmen zwischen den Längswänden als Stützvorrichtung.
  • Zur Herstellung einer Raumzelle 10 dienen in bekannter Weise eine Kernschalung 11 und Aussenschalungswände 12, von denen der Übersichtlichkeit halber in Fig. 1 nur drei Aussenschalwände dargestellt sind. Die bewehrte Kernschalung 11 ruht auf einem Bodenschalrahmen, der aus getrennt voneinander angeordneten Längsbrettern 13 und Querbrettern 14 besteht.
  • Der Betoniervorgang der Raumzelle 10 erfolgt im sogenannten Glockengussverfahren. Die einzige offene Seite der Raumzelle 10 weist dabei nach unten, so dass die Raumzelle in einem Guss betoniert werden kann. Die aus noch frischem Beton bestehende Raumzelle 10 wird nach Entfernen der Aussenschalungswände 12 und Lösen der vier senkrechten Wände der Kernschalung 11 mittels einer hydraulischen Vorrichtung 15, die die Längsbretter 13 des Bodenschalrahmens untergreift, so angehoben, dass die Raumzelle im wesentlichen auf Druck beansprucht wird. Dabei werden die Kernschalung 11 und die Raumzelle 10 am Dekkenspiegel voneinander getrennt und die Querbretter 14 des Bodenschalrahmens gelöst. Nunmehr kann die Raumzelle 10 mittels einer Speziattraverse 16 (Fig. 3) von der Kernschalung 11 abgehoben und auf den waagerechten Schenkel 17 eines L-förmigen, um seine Längsachse kippbaren ersten Kipptisches 18 abgesetzt werden. Ein eventuell verbleibender Spalt zwischen der dem senkrechten Schenkel 19 des ersten Kipptisches 18 und der diesem Schenkel zugewandten Raumzellenlängswand wird durch eine parallel zu dem Schenkel 19 angeordnete Plattform 20 überbrückt, die hydraulisch an die Raumzellenlängswand herangefahren wird. Im Ausführungsbeispiel gem. Fig. 4 bis 7 ist diese Plattform 20 an einem Verschiebewagen 21 montiert, der seinerseits mittels Rollen 22 an dem Schenkel 19 befestigt ist und an diesem abrollen kann.
  • Bevor die Raumzelle 10 mittels des ersten Kipptisches 18 gekippt wird, wird gegen die Innenwand der dem Schenkel 19 abgewandten Raumzellenlängswand ein Stützträger 23 angelehnt, der gelenkig an dem Verschiebewagen 21 befestigt ist und beim Kippen der Raumzelle die Abstützung der Raumzellenlängswand übernimmt.
  • Der erste Kipptisch 18 wird sodann um 90° gekippt, so dass der ursprünglich senkrecht stehende Schenkel 19 kammförmig in den waagerechten Schenkel 24 eines zweiten L-förmigen Kipptisches 25 eingreift und der Verschiebewagen 21 mit seinen Rollen 22 auf den Gabelträgern dieses waagerechten Schenkels 24 aufsetzt (Fig. 5). Mit Hilfe des Verschiebewagens 21 wird die Raumzelle 10 nunmehr an den senkrechten Schenkel 26 des zweiten Kipptisches 25 herangefahren (Fig. 6). Nunmehr kann die Raumzelle 10 auf dem zweiten Kipptisch 25 ebenfalls um 90° gekippt werden, so dass der Boden der Raumzelle nach unten weist. Nach Herausschwenken des Stützträgers 23 aus der Raumzelle 10 kann diese mittels einer Traverse 27 vom zweiten Kipptisch 25 abgehoben und zur weiteren Verarbeitung transportiert werden (Fig. 7).
  • Der Abstand zwischen der Raumzelle 10 und den senkrechten Schenkeln 19 bzw. 26 des ersten bzw. zweiten Kipptisches 18 bzw. 25 kann auch durch Distanzelemente überbrückt werden, die zweckmässigerweise in die senkrechten Schenkel eingebaut sind und die vorzugsweise je eine Plattform aufweisen, deren Ebene parallel zur Schenkelebene verläuft und die in Richtung ihrer Normale bis zu Anlage an die Raumzelle 10 hydraulisch verfahren werden können. Eine weniger elegante, dafür aber billigere Lösung besteht in der Verwendung von Distanzelementen aus aufblasbaren, zerreissfesten Gummi- oder Kunststoffkissen, die zwischen die betreffende Raumzellenwand und den senkrechten Schenkel gesteckt werden.
  • Die Plattform 20 kann auch ohne Zwischenschaltung eines Verschiebewagens 21 direkt an dem senkrechten Schenkel 19 bzw. 26 befestigt werden. In diesem Fall ist es zweckmässig, wenn die Gabelträger des waagerechten Schenkels 24 des zweiten Kipptisches 25, auf denen die Plattform 20 dann beim Kippen aufsetzt, Gleitrollen oder -kufen aufweisen, auf denen die Plattform mitsamt der Raumzelle 10 bis zur Anlage an den senkrechten Schenkel 26 des zweiten Kipptisches 25 verschoben werden kann.
  • Eine weitere Möglichkeit, einen eventuellen Abstand zwischen der Raumzelle 10 und den senkrechten Schenkeln 19 bzw. 26 zu überbrücken besteht darin, dass die senkrechten Schenkel selbst in Richtung ihrer Normale bis zu Anlage an der Raumzelle 10 verfahren werden. Eine Anordnung, bei der der senkrechte Schenkel 26 des zweiten Kipptisches 25 auf diese Weise verfahrbar ist, zeigt Fig. 8.
  • Der Stützträger 23 zur Abstützung der Raumzellenlängswand während des Kippens stellt nur eine Möglichkeit der vielen denkbaren Stützvorrichtungen dar. Um ihn ohne Beschädigungsgefahr an die Raumzellenlängswand heranfahren zu können, weist der Stützträger 23 einen in der Zeichnung nicht dargestellten Grenztaster auf, der die Anlage an der Innenwand anzeigt. Eine weitere Möglichkeit der Abstützung ist in Fig. 9 dargestellt. Hier besteht die Stützvorrichtung aus einem Stützrahmen 28, der auf einem Teil der Länge oder der Gesamtlänge zwischen die beiden Raumzellenlängswände geschoben wird. Dies erfolgt zweckmässigerweise dann, wenn die Raumzelle 10 mit Hilfe der Spezialtraverse 16 von der Kernschalung 11 abgehoben, aber noch nicht auf dem ersten Kipptisch 18 abgesetzt ist.
  • Obwohl die Erfindung anhand der Herstellung einer Raumzelle erklärt ist, kann sie bei der Herstellung beliebiger einseitig offener Fertigteile aus Stahlbeton mit einem Boden und vier im wesentlichen lotrechten Seitenwänden erfolgreich eingesetzt werden. Die im Ausführungsbeispiel in die hydraulische Vorrichtung 15 und die Spezialtraverse 16 aufgeteilte Hubvorrichtung kann in einer einheitlichen Hubvorrichtung zusammengefasst werden, solange garantiert bleibt, dass das Fertigteil beim Anheben durch die Hubvorrichtung in allen Arbeitsphasen im wesentlichen auf Druck beansprucht wird. Um die Angriffsmöglichkeiten für die Hubvorrichtung zu erleichtern, ist es zweckmässig, in den Ecken der Fertigteile Transportanker 29 vorzusehen. Dies ermöglicht, die Druckkräfte beim Anheben des Fertigteiles optimal in den noch frischen Beton einzuleiten und in ihm zu verteilen.

Claims (6)

1. Verfahren zum Wenden einer quaderförmigen, einseitig offenen Raumzelle aus Stahlbeton mit einem Boden und vier im wesentlichen lotrechten Seitenwänden, die unter Verwendung einer Aussenschalung, eines Bodenschalrahmens und einer quaderförmigen Kernschalung mit fünf Schalungswänden mit dem Boden nach oben in einem Guss betoniert ist und anschliessend mittels zweier L-förmiger Kipptische, an deren senkrechten Schenkel die Raumzelle lückenlos zur Anlage gebracht werden kann, in diejenige Lage gekippt wird, in der der Boden der Raumzelle nach unten weist, dadurch gekennzeichnet, dass die aus noch frischem Beton bestehende Raumzelle (10) nach Entfernen der Aussenschalung (12) und Lösen der vier senkrechten Wände der Kernschalung (11) mittels einer Traverse (16), die an Ankern (29) angreift, welche in den Ecken der Raumzellen einbetoniert sind, angehoben wird, bis sich die Deckenschalung und der Bodenschalrahmen (13, 14) der Kernschalung (11) und die Raumzelle (10) voneinander lösen und die Raumzelle auf den ersten Kipptisch (18) abgesetzt werden kann, an dessen senkrechten Schenkel (19) parallel zu diesem eine Plattform (20) angeordnet ist, die zur Überbrückung des Spaltes in Richtung ihrer Normale an die Raumzellenlängswand vorzugsweise hydraulisch verfahren wird, und dass gegen die Innenfläche der dem senkrechten Schenkel abgewandten Raumzellenlängswand eine Stützvorrichtung (23, 28) angelehnt wird, die nach dem Kippen der Raumzelle entfernt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Plattform (20) nach Kippen des ersten Kipptisches (18) auf dem waagrechten Schenkel (24) des zweiten Kipptisches (25) bis zur Anlage der Raumzelle (10) an dessen senkrechten Schenkel (26) verschoben wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Plattform (20) Rollen (22) oder Gleitkufen aufweist, die nach Absenken der Plattform auf den Gabelträgern des waagrechten Schenkels (24) des zweiten Kipptisches (25) aufsetzen.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Gabelträger des waagrechten Schenkels (24) des zweiten Kipptisches (25) Rollen aufweisen, auf denen die Raumzelle (10) verschoben wird.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass an dem senkrechten Schenkel (26) des zweiten Kipptisches (25) ebenfalls parallel zu diesem eine Plattform angeordnet ist, die in Richtung ihrer Normale bis zur Anlage an der Raumzelle (10) vorzugsweise hydraulisch verfahren wird.
6. Verfahren nach Anspruch 1 oder 5, dadurch gekennzeichnet, dass der senkrechte Schenkel (19 bzw. 26) des ersten und/oder zweiten Kipptisches (18 bzw. 25) in Richtung seiner Normale bis zur Anlage an der Raumzelle (10) vorzugsweise hydraulisch verfahren wird.
EP19780101689 1977-12-19 1978-12-15 Verfahren zum Wenden einer Raumzelle aus Stahlbeton Expired EP0003227B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19772756596 DE2756596C2 (de) 1977-12-19 1977-12-19 Verfahren zur Herstellung eines Fertigteiles aus Stahlbeton, insbesondere einer Raumzelle, und Vorrichtung zur Durchführung des Verfahrens
DE2756596 1977-12-19

Publications (2)

Publication Number Publication Date
EP0003227A1 EP0003227A1 (de) 1979-08-08
EP0003227B1 true EP0003227B1 (de) 1984-05-30

Family

ID=6026564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19780101689 Expired EP0003227B1 (de) 1977-12-19 1978-12-15 Verfahren zum Wenden einer Raumzelle aus Stahlbeton

Country Status (3)

Country Link
EP (1) EP0003227B1 (de)
AT (1) AT358453B (de)
DE (1) DE2756596C2 (de)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1976152U (de) * 1967-08-31 1967-12-28 Josef Burkhart Wendevorrichtung fuer spannbetonerzeugnisse.
DE2111650B2 (de) * 1971-03-11 1974-09-12 Allgemeine Strassenbaubedarfs-Gesellschaft Mbh, 2820 Bremen Vorrichtung zur serienmäßigen Herstellung von einseitig offenen Raumzellen aus Beton, insbesondere von Fertiggaragen
DE2400390B2 (de) * 1974-01-05 1977-02-24 B28B "7-08 Verfahren zur herstellung einer raumzelle aus stahlbeton und vorrichtung zur durchfuehrung des verfahrens

Also Published As

Publication number Publication date
EP0003227A1 (de) 1979-08-08
DE2756596A1 (de) 1979-06-21
AT358453B (de) 1980-09-10
ATA900478A (de) 1980-01-15
DE2756596C2 (de) 1983-04-07

Similar Documents

Publication Publication Date Title
DE2229264C2 (de) Verfahren zur fabrikmäßigen Herstellung der Geschosse eines Gebäudes und Vorrichtung zur Ausführung des Verfahrens
DE1948985A1 (de) Vorgefertigter Gebaeudeteil und Verfahren zu dessen Herstellung
EP3572198A1 (de) Schalungskern für ein schalungssystem zum betonieren eines glockenkörpers
DE3501125A1 (de) Verfahren zur herstellung einer mehrseitigen senkrechten betonwand und anordnung zur durchfuehrung des verfahrens
DE1808989C3 (de) Vorrichtung zum Herstellen von monolithischen, mit einer offenen Seite nach unten weisenden Stahlbetonraumzellen, insbesondere Fertiggaragen, unter Flur
DE2106937B2 (de) Einrichtung zur herstellung grossflaechiger betonplatten
DE2845106C2 (de) Verfahren und Vorrichtung zum Herstellen von monolithischen Stahlbetonraumzellen, z.B. Fertiggaragen
EP0003227B1 (de) Verfahren zum Wenden einer Raumzelle aus Stahlbeton
DE2935726A1 (de) Vorrichtung zum giessen von betonwaenden
DE19602981C2 (de) Vorrichtung zum Einbauen und Ausbauen von Deckenschalungen
AT389842B (de) Schalungsvorrichtung zur herstellung fertiggaragen
DE1683876C2 (de) Vorrichtung zum Herstellen von zumindest einseitig offenen, raumgroßen Baukörpern aus Stahlbeton, insbesondere von Fertiggaragen
DE1584637C3 (de) Vorrichtung zum Herstellen einer großformatigen Bauplatte und Verwendung der Vorrichtung
DE3343808C2 (de)
DE19548504A1 (de) Verfahren und Vorrichtung zur Herstellung eines Betonbodens
DE2322139C3 (de) Batterieform und Verfahren zum Herstellen von Betonplatten
AT387930B (de) Anlage zur herstellung grossformatiger stahlbeton-fertigteile
DE2400390A1 (de) Verfahren zur herstellung einer raumzelle aus stahlbeton und vorrichtung zur durchfuehrung des verfahrens
DE3125492A1 (de) Verfahren und arbeitsgeraet zum formen und entformen von betonelementen
DE1584510B2 (de) Verfahren zum Herstellen von plattenförmigen Fertigteilen aus Beton unter Verwendung eines Kipptisches und Einrichtung zum Durchführen dieses Verfahrens
EP4190991A1 (de) Verfahren zur montage und demontage wenigstens eines deckentischs zur wenigstens teilweisen schalung einer betondecke
DE3025172C2 (de) Verfahren und Einrichtung zum Herstellen von plattenförmigen Betonbauelementen
AT334809B (de) Verfahren zur herstellung einer raumzelle aus stahlbeton und vorrichtung zur durchfuhrung des verfahrens
CH615616A5 (en) Shuttering for producing concrete floor beams
DE2808644A1 (de) Maschine zum giessen von betonbauelementen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH FR NL

17P Request for examination filed

Effective date: 19800208

RBV Designated contracting states (corrected)

Designated state(s): BE CH FR NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH FR NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19840530

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941231

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970324

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971215

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL