DE19700182A1 - Luftfahrzeug mit einem im wesentlichen als aerostatischem Auftriebskörper ausgebildeten Rumpf - Google Patents

Luftfahrzeug mit einem im wesentlichen als aerostatischem Auftriebskörper ausgebildeten Rumpf

Info

Publication number
DE19700182A1
DE19700182A1 DE19700182A DE19700182A DE19700182A1 DE 19700182 A1 DE19700182 A1 DE 19700182A1 DE 19700182 A DE19700182 A DE 19700182A DE 19700182 A DE19700182 A DE 19700182A DE 19700182 A1 DE19700182 A1 DE 19700182A1
Authority
DE
Germany
Prior art keywords
propeller
drive
aircraft according
fuselage
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19700182A
Other languages
English (en)
Inventor
Hermann Dr Kuenkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUENKLER, HERMANN, DR., 85521 OTTOBRUNN, DE
Original Assignee
IABG Industrieanlagen Betriebs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IABG Industrieanlagen Betriebs GmbH filed Critical IABG Industrieanlagen Betriebs GmbH
Priority to DE19700182A priority Critical patent/DE19700182A1/de
Priority to UA99073784A priority patent/UA49050C2/uk
Priority to IL13065598A priority patent/IL130655A/xx
Priority to CA002276876A priority patent/CA2276876A1/en
Priority to IDW990626A priority patent/ID21900A/id
Priority to PCT/EP1998/000015 priority patent/WO1998029303A2/de
Priority to US09/341,162 priority patent/US6286783B1/en
Priority to EP98904030A priority patent/EP0948441B1/de
Priority to DK98904030T priority patent/DK0948441T3/da
Priority to ES98904030T priority patent/ES2185145T3/es
Priority to AT01122153T priority patent/ATE328787T1/de
Priority to CN98803061A priority patent/CN1085973C/zh
Priority to BR9806838-5A priority patent/BR9806838A/pt
Priority to JP52963998A priority patent/JP2001507306A/ja
Priority to AT98904030T priority patent/ATE225279T1/de
Priority to EP01122153A priority patent/EP1160156B1/de
Priority to IL14691598A priority patent/IL146915A/en
Priority to PT98904030T priority patent/PT948441E/pt
Priority to RU99114030/28A priority patent/RU2196703C2/ru
Priority to DE59805790T priority patent/DE59805790D1/de
Priority to DE59813586T priority patent/DE59813586D1/de
Priority to CZ992332A priority patent/CZ233299A3/cs
Priority to SI9830294T priority patent/SI0948441T1/xx
Priority to PL98334353A priority patent/PL334353A1/xx
Priority to AU62069/98A priority patent/AU717125B2/en
Publication of DE19700182A1 publication Critical patent/DE19700182A1/de
Priority to US09/903,782 priority patent/US6467724B2/en
Priority to CN01135990A priority patent/CN1123486C/zh
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/06Rigid airships; Semi-rigid airships
    • B64B1/24Arrangement of propulsion plant
    • B64B1/30Arrangement of propellers
    • B64B1/32Arrangement of propellers surrounding hull
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/02Hub construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/28Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with forward-propulsion propellers pivotable to act as lifting rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/52Tilting of rotor bodily relative to fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D35/00Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B2201/00Hybrid airships, i.e. airships where lift is generated aerodynamically and statically

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Tires In General (AREA)
  • Toys (AREA)
  • Elimination Of Static Electricity (AREA)
  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Walking Sticks, Umbrellas, And Fans (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Transmission Devices (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Fuses (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Motor Power Transmission Devices (AREA)
  • Handcart (AREA)

Description

Die Erfindung betrifft ein Luftfahrzeug mit einem im wesentlichen als aerostatischem Auftriebskörper ausgebildeten Rumpf sowie am Rumpf angelenkten, mit Propellern versehenen, Antriebseinheiten bildenden kombinierten Auftriebs- und Vortriebseinrichtungen, die jeweils zwischen einer Auftriebsposition, in der die jeweilige Propellerrotationsebene im wesentlichen horizontal und die die jeweilige Propellerwelle beaufschlagende Abtriebswelle des zugeordneten Antriebs im wesentlichen vertikal gelegen sind, und einer Vortriebsposition, in der die jeweilige Propellerrotationsebene im wesentlichen vertikal und die die jeweilige Propellerwelle beaufschlagende Abtriebswelle des zugeordneten Antriebs im wesentlichen horizontal gelegen sind, kippbar sind.
Mit Translationsantrieben versehene aerostatische Luftfahrzeuge sind beispielsweise als Zeppeline seit langem bekannt. Diese Luftschiffe können aufgrund ihres aerostatischen Auftriebsverhaltens im wesentlichen vertikal starten und landen, müssen jedoch, da sie überwiegend leichter als Luft sind, bei jedem Halt am Boden gefesselt werden. Außerdem sind diese Luftfahrzeuge verhältnismäßig träge steuerbar, da sie aufgrund ihrer langsamen Geschwindigkeit und ihrer kleinen aerodynamischen Steuerflächen eine geringe Steuerautorität, das heißt eine große Reaktionsträgheit auf Steuerbewegungen, aufweisen. Zwar sind in jüngster Zeit Luftschiffe mit um eine Querachse vergleichsweise langsam kippbaren Hauptantrieben und lateral wirkenden Hilfsantrieben zur Unterstützung der aerodynamischen Steuerung bekannt geworden, die den Wendekreis eines Luftschiffs zwar verringern, aber keine "punktgenaue" Manövrierbarkeit des Luftschiffs gestatten. Ein weiterer Nachteil von Luftschiffe mit gestreckter Stromlinienkörperform ist ihre extrem hohe Seitenwindempfindlichkeit und das damit verbundene Erfordernis, das Luftschiff am Boden so zu fesseln, daß es sich wie ein Boot an einer Boje in den Wind drehen kann, wozu im allgemeinen Ankermasten erforderlich sind.
Weiterhin sind senkrecht startende Flugzeuge bekannt, deren Triebwerke aus einer vertikalen Auftriebsstellung mit horizontaler Propellerrotationsebene und einer horizontalen Vortriebstellung mit vertikaler Propellerrotationsebene kippbar sind. Ein Problem bei diesen senkrecht startenden Flugzeugen mit kippbaren Triebwerken ist die Beherrschung der beim Kippen der Triebwerke entstehenden Kreiselkräfte, die über stabile Stützstrukturen an den Flugzeugtragflächen und am Rumpf abgestützt werden müssen. Wegen dieser Kreiselkräfte kann das Kippen der Triebwerke nur verhältnismäßig langsam erfolgen. Gesteuert werden diese senkrecht startenden Flugzeuge im wesentlichen ebenfalls über aerodynamische Steuereinrichtungen. Da beim senkrechten Start dieser Flugzeuge die Triebwerke allein den Auftrieb des gesamten Luftfahrzeugs bewirken müssen, ist die zusätzlich zum Eigengewicht des Luftfahrzeugs transportierbare Last sehr begrenzt.
Es ist daher die Aufgabe der vorliegenden Erfindung, ein gattungsgemäßes Luftfahrzeug zu schaffen, das die Vorteile eines aerostatischen Luftfahrzeugs und die Vorteile eines senkrecht startenden Flugzeugs in sich vereint und das somit in der Lage ist, große Lasten auch über größere Reichweiten zu transportieren, und das gleichzeitig schnell und zielgenau landen kann, ohne daß es hierfür einer besonderen Infrastruktur am Boden bedarf.
Diese Aufgabe wird gemäß dem kennzeichnenden Teil des Anspruchs 1 dadurch gelöst, daß die jeweilige Propellerrotationsebene relativ zur die Propellerwelle beaufschlagenden Abtriebswelle des zugeordneten Antriebs rundum neigbar ist.
Diese Neigbarkeit der Propellerrotationsebene zusätzlich zur grundsätzlich vorgesehenen Kippbarkeit des Antriebs um eine Querachse ermöglicht eine Schubvektorsteuerung des Luftfahrzeugs, die reaktionsschnell wirkt und die dem Luftfahrzeug auch bei Start und Landung ein sehr agiles Steuerverhalten verschafft. Durch diese Schubvektorsteuerung ist es möglich (ausreichende Antriebsleistung vorausgesetzt), das mit einem als aerostatischem Auftriebskörper versehene Luftfahrzeug im wesentlichen punktgenau zu landen. Hierdurch wird der Vorteil erzielt, daß das Luftfahrzeug unmittelbar auf verhältnismäßig kleinen Außenlandeplätzen niedergehen kann und so beispielsweise eine Last auf einem Fabrikhof aufnehmen und direkt beim Empfänger wieder absetzen kann.
Die Neigung der Rotorebene erfolgt aufgrund von an den Propellerblättern angreifenden aerodynamischen Kräften als Folge einer individuellen Verstellung des jeweiligen Anstellwinkels der einzelnen Propellerblätter. Dabei wird nur der Schubvektor für Vortrieb, Hub und Steuerung als Kraft in den Rumpf eingeleitet. Reaktionsmomente, die bei einem schnellen Aufbau des Schubvektors auftreten, zum Beispiel Kreiselmomente einer zugeordneten Antriebsmaschine, stützen sich auf der umgebenden Luft und nicht auf der Struktur des Luftfahrzeugs ab. Auf diese Weise ist die Propellerebene gegenüber der Abtriebswelle auch über einen großen Winkelbereich in jede Richtung sehr schnell neigbar, ohne daß dabei von Kreiselmomenten herrührende Reaktionskräfte auf den Rumpf übertragen werden müssen. Der Neigungswinkel der Propellerrotationsebene bezüglich der die Propellerwelle beaufschlagenden Abtriebswelle des zugeordneten Antriebs kann zwischen ± 20° und ± 50°, vorzugsweise zwischen ± 25° und ±35° und weiter bevorzugt ± 30° betragen. Da die Schubvektorsteuerung des erfindungsgemäßen Luftfahrzeugs sowohl in der Vortriebsposition als auch in der Auftriebsposition der Antriebseinheiten arbeitet, ist für kurze Landestops mit laufenden Antrieben keine aufwendige Fesselung des Luftfahrzeugs am Boden erforderlich, da die schnell reagierende Schubvektorsteuerung eine Lagestabilisierung des Luftfahrzeugs am Landeplatz auch bei Seitenwind oder Windböen gestattet. Hierdurch wird das erfindungsgemäße Luftfahrzeug unabhängig von Landeplattformen oder sonstigen am Boden vorgesehenen Landevorrichtungen wie beispielsweise Ankern für die Befestigung von Fesselleinen für das Luftfahrzeug. Trotzdem kann es insbesondere bei längeren Aufenthalten des Luftfahrzeugs, bei denen die Triebwerke abgeschaltet werden, erforderlich sein, das Luftfahrzeug in bekannter Weise am Boden zu fesseln. Dies kann durch die Verankerung eines vorzugsweise an der Unterseite des Luftfahrzeugs integrierten Landefußes oder mittels eines in den Rumpf integrierten Seilwindensystems, das bevorzugt zentral ansteuerbar ist, erfolgen. Die reaktionsschnelle Schubvektorsteuerung des erfindungsgemäßen Luftfahrzeugs erlaubt auch die Aufnahme und das punktgenaue Absetzen einer Last aus dem Schwebezustand des Luftfahrzeugs heraus, ohne daß es selbst landen muß.
In einer besonders bevorzugten Ausgestaltung des erfindungsgemäßen Luftfahrzeugs ist der Rumpf zugleich als aerodynamischer Auftriebskörper gestaltet. Hierdurch kann der Rumpf im Reiseflug zusätzlich zum aerostatischen Auftrieb auch eine aerodynamische Auftriebskraft erzeugen.
Beim erfindungsgemäßen Luftfahrzeug können aktiv betätigbare aerodynamische Steuervorrichtungen entfallen, so daß keine Höhen- oder Seitenleitwerke vorgesehen sein müssen, die die Seitenwindempfindlichkeit und die Böenempfindlichkeit des Luftfahrzeugs erhöhen würden, obwohl sie im Flug mit niedriger Geschwindigkeit in der Startphase und in der Landephase keine wesentliche Mitwirkung an der Steuerung des Luftfahrzeugs haben, da diese ausschließlich von der Schubvektorsteuerung übernommen wird. Das Luftfahrzeug kann hierdurch in konsequent einfacher Formgebung ausgeführt werden.
Weist der Rumpf einen im wesentlichen kreisförmigen Grundriß auf, so wird einerseits bei gleicher Länge aufgrund des größeren Volumens gegenüber der zigarrenartigen Gestalt eines Luftschiffs herkömmlicher Bauart ein wesentlich erhöhter Auftrieb erzielt, was mittelbar zu einer höheren Nutzlast führt, und andererseits wird bei gleichem Volumen die benetzte Oberfläche der Außenhaut herabgesetzt, was zu einer Gewichtsreduzierung führt und den Reibungswiderstand verringert. Außerdem wird dadurch die Seitenwindempfindlichkeit wesentlich reduziert.
Vorteilhaft ist dabei, wenn der Rumpf einen im wesentlichen elliptischen Querschnitt aufweist, wodurch der Strömungswiderstand im Horizontalflug deutlich herabgesetzt ist.
Besitzt der Rumpfquerschnitt die Gestalt einer asymmetrischen, im wesentlichen elliptischen Form besitzt, wobei der obere Teil eine Oberschale bildet, die stärker gewölbt ist als der flachere, eine Unterschale bildende untere Teil, so trägt der Rumpf im Reiseflug auch in horizontaler Lage zusätzlich zum aerostatischen Auftrieb mit einem aerodynamischen Auftrieb bei, der den bei Start und Landung genutzten Rotorauftrieb ersetzt. Außerdem führt die unterschiedliche Wölbung zu einer ausgeglicheneren Strukturbelastung in der Oberschale und in der Unterschale des asymmetrischen diskusartigen Rumpfes.
Vorzugsweise weist der Rumpf zumindest einen felgenartigen Versteifungsring im Äquatorialbereich auf, der eine horizontale Aussteifung des Rumpfes bildet, indem er die Radialkräfte der Oberschale und der Unterschale aufnimmt und zusätzlich beispielsweise an der Anströmseite auf den Rumpf auftreffende Staudruckkräfte abstützt.
Dabei ist es insbesondere vorteilhaft, wenn der Versteifungsring im Querschnitt an seinem Außenumfang eine teilelliptische Gestalt aufweist. Hierdurch wird der Versteifungsring im Querschnitt an die Gestalt des Rumpfquerschnitts im Äquatorialbereich angepaßt.
Weiter vorteilhaft ist die Ausgestaltung, bei der der Versteifungsring einen Faserverbundwerkstoff, vorzugsweise in Sandwichbauweise, aufweist. Hierdurch wird bei hoher Festigkeit und niedrigem Gewicht eine gewünschte Elastizität erreicht, die eine Verformung des Versteifungsrings in vorgegebenen Grenzen gestattet. Durch diese elastische Verformung können zum Beispiel von einer Antriebstragstruktur in den Versteifungsring eingeleitete Kräfte und Momente von der Rumpfhüllenstruktur übernommen und weitergeleitet werden, die wegen der größtmöglichen Hebelarme und der natürlichen Formsteifigkeit des unter Druck gesetzten elliptischen diskusartigen Rumpfes hierzu bevorzugt geeignet ist. Die Hauptaufgabe des felgenartigen Versteifungsrings ist die Aufnahme der Radialkräfte aus der Hüllenstruktur zur horizontalen Aussteifung des diskusartigen Rumpfes.
Es ist vorteilhaft, die hieraus resultierenden Druckkräfte von zwei in den Versteifungsring integrierten druckfesten Stützprofilen mit hoher spezifischer Druckfestigkeit aufzunehmen, an denen vorzugsweise auch die Tragstruktur der Oberschale und der Unterschale des Rumpfes verankert ist.
Zur Begrenzung der gewünschten Radialelastizität kann der Versteifungsring zumindest ein vorteilhafterweise als Fachwerkverbund ausgebildetes Stützgerüst aufweisen, das im Querschnitt bevorzugt im wesentlichen dreieckig ausgebildet ist, wobei zwei der Ecken von den in den Versteifungsring integrierten Stützprofilen gebildet sind und die Spitze des Dreiecks zur Rumpfinnenseite weist.
Es ist vorteilhaft, wenn das Stützgerüst zumindest teilweise in den Versteifungsring integriert ist.
Sind gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung jeweils zwei Antriebseinheiten gemeinsam in einer vorzugsweise unstarr am Rumpf angebrachten Stützstruktur gehaltert, so können Biegemomente, die während der Start- und Landephase aus dem Hubschub des einzelnen Antriebs und der auskragenden Anbringung der Propellerachse resultieren, unmittelbar von einem Triebwerk zum anderen geleitet werden, ohne daß diese Kräfte durch die gesamte Rumpfstruktur übertragen werden müßten. Die beiden Triebwerke stützen sich somit gegenseitig über ihre Stützstruktur ab.
Die jeweiligen Antriebseinheiten und/oder deren Stützstrukturen mit den ihnen zugeordneten Antriebseinheiten sind vorzugsweise über Schubstreben zu einem Antriebstragrahmen unstarr miteinander verkoppelt, der infolge seiner unstarren Verbindungen verschränkbar und verwindbar ist.
Vorzugsweise sind die Antriebseinheiten und/oder deren Stützstrukturen am felgenartigen Versteifungsring unstarr angebracht. Die Antriebseinheiten sind auf diese Weise in den Antriebstragrahmen integriert, der unstarr an dem felgenartigen Versteifungsring angebracht ist. Durch diese Ausgestaltung wird erreicht, daß die von den einzelnen Antriebseinheiten ausgehenden Kräfte zum großen Teil über den Antriebstragrahmen weitergeleitet werden und somit der Versteifungsring und die Rumpfhüllenstruktur von der Weiterleitung dieser Kräfte entlastet werden. Zusätzlich wird hierdurch eine schwingungstechnische Entkoppelung unterstützt.
Sind die vorderen Antriebseinheiten und die hinteren Antriebseinheiten jeweils unterschiedlich weit von der Längsmittelebene beabstandet, so wird gewährleistet, daß die hinteren Antriebseinheiten nicht in der Wirbelschleppe der vorderen Antriebseinheiten liegen.
Zusätzlich oder alternativ dazu können die vorderen und die hinteren Antriebseinheiten auch unterschiedlich hoch am Luftfahrzeug angeordnet sein, um dieselbe oder eine noch verbesserte diesbezügliche Wirkung zu erzielen.
Bei einer besonders bevorzugten Ausbildung der Erfindung ist das Luftfahrzeug mit vier Antriebseinheiten versehen, die weiter bevorzugt jeweils paarweise an einer Stützstruktur vorgesehen sind. Vorteilhafterweise ist jeweils eine Antriebseinheit im Bereich einer Ecke eines gedachten, den kreisförmigen Grundriß des Luftfahrzeugs umschließenden oder teilweise durchdringenden Vierecks (oder entsprechend der Anzahl der Antriebseinheiten anderen Vielecks) vorgesehen.
Vorzugsweise sind in jeder Antriebseinheit zwei parallel zueinander betreibbare Antriebsmaschinen vorgesehen.
Hierdurch wird innerhalb jeder einzelnen Antriebseinheit eine Redundanz erzielt, die auch bei Ausfall einer Antriebsmaschine einer Antriebseinheit noch einen zuverlässigen Betrieb der gesamten Antriebseinheit bei nur geringem Gesamtschubverlust gestattet. Hierdurch wird die Betriebssicherheit des Luftfahrzeugs erhöht, da das Risiko eines vollständigen Ausfalls einer gesamten Antriebseinheit wegen der Doppelung der Antriebsmaschinen stark verringert ist. Die Anordnung von vier derartigen Doppel-Antriebseinheiten liefert eine vollständige Antriebsredundanz selbst für den Fall, daß beim Start mit maximaler Abflugmasse, also im Vertikalflug, eine Antriebsmaschine ausfallen sollte. Fällt während des Starts eine vollständige Antriebseinheit aus, so liefern nur zwei diagonal gegenübergelegene Antriebseinheiten Auftrieb und ermöglichen bei maximaler Abflugmasse die Einhaltung einer nur geringen Sinkgeschwindigkeit, wobei die dritte betriebsfähige Antriebseinheit zur Stabilisierung des Luftfahrzeugs um die Rollachse und um die Nickachse eingesetzt wird. Ist bei einem derartigen Antriebsverlust eine ausreichende Flughöhe bereits erreicht worden, kann eine Transition in den Reiseflug durchgeführt werden. Auch im Reiseflug bleibt das in der beanspruchten Weise mit vier Antriebseinheiten versehene Luftfahrzeug bei vollständigem Ausfall einer Antriebseinheit voll flugfähig und manövrierfähig, da gewährleistet ist, daß in diesem Fall auf jeder Seite des Luftfahrzeugs bezüglich der Längsmittelebene noch eine Antriebseinheit funktionsfähig ist, wobei die dritte funktionsfähige Antriebseinheit zur Fluglageregelung mitverwendet wird.
Im unteren Bereich des Rumpfes ist bevorzugt ein Frachtraum für den Transport von Frachtgütern ausgebildet, unter dem ein vorzugsweise plateauartig ausgebildeter Landefuß ausgefahren werden kann.
In einer vorteilhaften Ausführungsform ist der Frachtraum mit zumindest einer Rampe versehen, wobei bevorzugt zwei Rampen an zwei voneinander abgewandten Seiten vorgesehen sein können. Das Vorsehen einer Rampe erleichtert das Beladen und Entladen des Luftfahrzeugs und das Vorsehen von zwei an voneinander abgewandten Seiten gelegenen Rampen gestattet ein schnelleres Be- und Entladen im sogenannten RORO-Betrieb (Roll-On-Roll-Off).
Ist unter dem Frachtraum im Bereich seines Umfangs nach unten gerichtet ein pneumatisch ausfahrbarer, balgartigen Ringwulst als Landefuß vorgesehen, so können durch den von diesem Ringwulst gebildeten Landefuß einerseits Landestöße abgefedert werden und andererseits kann wegen der geringen spezifischen Flächenpressung auch eine Landung auf einem unbefestigten Untergrund erfolgen. Zur Einstellung einer definierten Höhe besitzt der pneumatisch ausfahrbare Ringwulst eine integrierte Höhenbegrenzung.
In einer anderen Ausgestaltung des erfindungsgemäßen Luftfahrzeugs ist im vorderen Teil des Äquatorialbereichs des Rumpfes eine bevorzugt abschnittsweise zweistöckig ausgebildete Passagierkabine vorgesehen, damit das Luftfahrzeug als Passagiertransportmittel eingesetzt werden kann.
Bevorzugt ist dabei die Passagierkabine in den felgenartigen Versteifungsring und vorzugsweise auch in die vordere Stützstruktur des Antriebstragrahmens eingehängt.
Bei einer bevorzugten Ausgestaltung ist im hinteren Teil des Äquatorialbereichs des Rumpfes ein Gepäck- und Frachtraum vorgesehen. Diese Anordnung des Gepäck- und Frachtraums im hinteren Teil des Luftfahrzeugs sorgt zusammen mit der im vorderen Teil des Luftfahrzeugs vorgesehenen Passagierkabine für eine möglichst ausgeglichene Grundtrimmung des Luftfahrzeugs.
Bevorzugt ist der Gepäck- und Frachtraum in den felgenartigen Versteifungsring und vorzugsweise auch in die hintere Stützstruktur des Antriebstragrahmens eingehängt.
Bei einer vorteilhaften Weiterbildung ist in der Unterschale ein in diese integrierter Zentralkörper vorgesehen, an dessen Unterseite bevorzugt ein balgartiger, pneumatisch ausfahrbarer Ringwulst als Landefuß ausgebildet ist.
Ist der Zentralkörper in der von der Oberschale und von der Unterschale gebildeten Hüllenstruktur des Rumpfes derart aufgehängt, daß er bei einer harten Landung nach oben einfedern kann und so ein Durchfedern von Passagierkabine, Gepäck- und Frachtraum und Antriebstragrahmen gestattet, werden Landestöße von der Passagierkabine und damit von den Passagieren sowie auch vom Gepäck- und Frachtraum und vom Antriebstragrahmen ferngehalten.
Vorzugsweise ist der Zentralkörper mit zumindest einer Rampe für den Zugang von außen versehen.
Sind die Passagierkabine und der Gepäck- und Frachtraum über ummantelte Transportstege mit dem Zentralkörper verbunden, so werden gegenüber dem umgebenden Rumpfinnenraum abgeschirmte Verbindungswege zwischen dem Zentralkörper und der Passagierkabine sowie dem Gepäck- und Frachtraum geschaffen. Ist die Verbindung zwischen den Transportstegen und dem Zentralkörper unstarr ausgebildet, so wird das Einfedern des Zentralkörpers ermöglicht. Dabei können zumindest zwei, vorzugsweise drei Transportstege vorgesehen sein.
In einer weiteren bevorzugten Ausführungsform weist der Rumpf eine Tragstruktur und eine Rumpfhülle auf, wobei die Rumpfhülle zumindest abschnittsweise im Bereich der Oberschale beheizbar ist. Diese Beheizung, insbesondere auf der zur Rumpfinnenseite gewandten Seite der Oberschale, bewirkt eine Enteisung der Rumpfhülle, wodurch sich die Betriebssicherheit des Luftfahrzeugs bei Schlecht-Wetter-Einsatz wesentlich erhöht.
Vorteilhafterweise können die beheizbaren Abschnitte der Rumpfhülle doppelwandig ausgebildet sein und von Warmluft oder einem anderen bezüglich der Rumpfumgebung wärmeren Gas bedarfsweise durchströmt werden. Hierzu kann entweder die Abwärme der Triebwerke eingesetzt werden oder es können zusätzliche, unabhängige Heizeinrichtungen vorgesehen sein. Vorteilhaft ist auch, wenn der Druck innerhalb der Rumpfhülle modulierbar ist. Diese Ausgestaltung unterstützt eine wirkungsvolle Enteisung der Rumpfhülle und damit einen sicheren Schlecht-Wetter-Betrieb des Luftfahrzeugs.
Bei einer weiteren besonders bevorzugten Ausbildungsform des erfindungsgemäßen Luftfahrzeugs ist eine zentrale, vorzugsweise digitale Regelung für die individuelle oder kollektive Ansteuerung der Anstellwinkel der Propellerblätter aller Antriebseinheiten zur Fluglageregelung und zur Flugsteuerung im vertikalen Start- und Landebetrieb, im horizontalen Reiseflugbetrieb und im Übergangsbetrieb zwischen diesen beiden Betriebszuständen vorgesehen. Diese zentrale Regelung sorgt für ein unter allen Betriebszuständen des Luftfahrzeugs gewährleistetes stabiles Flugverhalten und entlastet somit die Piloten von dieser Aufgabe.
Als Redundanz zu dieser zentralen Regelung kann eine zusätzliche manuelle Flugsteuerung vorgesehen sein, die im Falle eines Ausfalls der zentralen Regelung den Piloten in die Lage versetzt, das Flugverhalten des Luftfahrzeugs zu stabilisieren.
Die die Schubvektorsteuerung beim erfindungsgemäßen Luftfahrzeug wird durch eine Antriebseinheit mit zumindest einem Propeller geschaffen, bei der die Propellerrotationsebene relativ zur die Propellerwelle beaufschlagenden Abtriebswelle des Antriebs neigbar ausgebildet ist, wobei eine Gleichförmigkeit der Rotationsbewegung des Propellers dadurch erzielt wird, daß die Propellerwelle und die die Propellerwelle beaufschlagende Abtriebswelle des Antriebs, vorzugsweise über ein Doppelkardangelenk oder ein Gleichlaufgelenk, gelenkig miteinander verbunden sind. Durch diese erfindungsgemäße Ausgestaltung einer Antriebseinheit wird unabhängig vom Kippzustand der Propellerrotationsebene zwischen der Auftriebsposition und der Vortriebsposition zusätzlich eine Neigbarkeit der Propellerrotationsebene erzielt, die eine schnelle und sofort wirksame Änderung des Schubvektors ermöglicht. Diese besondere Ausgestaltung einer Antriebseinheit mit gegenüber der Abtriebswelle des Antriebs neigbarer Propellerrotationsebene ist nicht nur bei dem in dieser Anmeldung beschriebenen Luftfahrzeug, sondern allgemein für Luftfahrzeuge oder beispielsweise auch für Schiffe einsetzbar, wenn ein von einer rotierenden Antriebseinheit ausgehender Schubvektor schnell in seiner Wirkrichtung verändert werden soll.
Vorteilhaft ist dabei, wenn die Nabe des Propellers über einen Kardanring kardanisch gelagert ist, wodurch die die Schubvektorsteuerung ermöglichende Neigbarkeit der Propellerrotationsebene erzielt wird.
In einer bevorzugten Weiterbildung dieser Antriebseinheit sind die Propellerblätter ohne Schlaggelenke und ohne Schwenkgelenke oder andere dazu äquivalent wirkende elastische Teile an einer zugeordneten Propellernabe angeordnet.
Dabei ist der Anstellwinkel der einzelnen Propellerblätter vorzugsweise mittels einer Taumelscheibe kollektiv sowie zur Neigung der Propellerrotationsebene individuell variabel verstellbar. Diese Anordnung der Propellerblätter und die Ansteuerung ihrer Anstellwinkel über eine Taumelscheibe bewirkt eine der Änderung des Anstellwinkels der Propellerblätter (Pitch-Änderung) unmittelbar folgende Neigung der Propellerrotationsebene, wodurch die gewünschte Schubvektoränderung zum Steuern des Luftfahrzeugs erzielt wird.
Grundsätzlich kann zwar der Neigungswinkel der Propellerrotationsebene bezüglich der die Propellerwelle beaufschlagenden Abtriebswelle des zugeordneten Antriebs zwischen ± 20° und ± 50°, vorzugsweise zwischen ± 25° und ± 35° und weiter bevorzugt ± 30° betragen, wie bereits ausgeführt worden ist. Beträgt der Neigungswinkel der Propellerrotationsebene bezüglich der die Propellerwelle beaufschlagenden Abtriebswelle des zugeordneten Antriebs jedoch um bis zu mehr als ± 45°, so kann bei geeigneter schräger Anbringung des Antriebs an einem Fahrzeug allein durch Neigen der Propellerrotationsebene sowohl eine Auftriebsstellung als auch eine Vortriebsstellung eingestellt werden.
Bevorzugt ist jedoch ein Kippmechanismus zur Halterung der Antriebseinheit an einem Fahrzeug vorgesehen, der ein Kippen der Antriebseinheit um eine Kippachse zwischen einer Auftriebsposition, in der die Abtriebswelle im wesentlichen vertikal ausgerichtet ist, und einer Vortriebsposition, in der die Abtriebswelle im wesentlichen horizontal ausgerichtet ist, gestattet. Dieses Kippen der Propellerrotationsebene aus der horizontalen Lage (Auftriebsposition) in die vertikale Lage (Vortriebsposition) und umgekehrt während der Transitionsphasen, das sind zum Beispiel beim Luftfahrzeug die jeweiligen Übergangsphasen zwischen Vertikalflug und Horizontalflug, wird ebenfalls durch die individuelle Anstellwinkelansteuerung der Propellerblätter über fluiddynamische Kräfte induziert und bewirkt das Kippen der Abtriebsachse des Antriebs um die Kippachse, beispielsweise eine Achse parallel zur Querachse des Luftfahrzeugs.
Vorzugsweise ist eine Nachführeinrichtung vorgesehen, welche einer sich aufgrund am Propeller angreifender fluiddynamischer Kräfte und daraus resultierender Kreiselkräfte ergebenden Kippbewegung der Antriebseinheit folgt und welche diese Kippbewegung vorzugsweise reaktionskraftfrei unterstützt. Die Nachführeinrichtung folgt dabei mit deutlich verlangsamter Stellgeschwindigkeit (ca. Faktor 5) der Kippbewegung der Antriebseinheit, die sich aufgrund der am Propeller angreifenden fluiddynamischen Kräfte (beim Einsatz an einem Luftfahrzeug sind dies aerodynamische Kräfte) und aufgrund der daraus resultierenden Kreiselkräfte einstellt.
In einer alternativen Ausgestaltung ist die Propellernabe in einem einachsigen Neigungsgelenk gelagert, dessen Neigungsachse zur Kippachse der Antriebseinheit senkrecht verläuft, so daß die Neigbarkeit der Propellernabe um die Neigungsachse gemeinsam mit der Kippbarkeit der Antriebseinheit um die Kippachse der Antriebseinheit eine Neigung der Propellerrotationsebene in alle Richtungen gestattet, wobei die Stellgeschwindigkeit der Nachführeinrichtung für die Kippbewegung um die Kippachse der Antriebseinheit der Stellgeschwindigkeit der fluiddynamisch induzierten Neigungsbewegung der Propellerrotationsebene im wesentlichen entspricht. Bei dieser Bauform kann die weiter oben angegebene kardanische Lagerung der Propellernabe entfallen.
In einer bevorzugten Weiterbildung ist in die Propellernabe ein bevorzugt in Planetengetriebebauweise ausgeführtes Untersetzungsgetriebe integriert, das von der Abtriebswelle des Antriebs, vorzugsweise über das Doppelkardangelenk oder das Gleichlaufgelenk, rotationsbeaufschlagt ist und das die Drehzahl der Abtriebswelle reduziert an die Propellernabe abgibt. Hierdurch wird das Doppelkardangelenk bzw. das Gleichlaufgelenk für den Propellerantrieb von sehr hohen Momenten entlastet, die insbesondere beim Betrieb mit einem Propeller großen Durchmessers auftreten können.
Diese Ausgestaltung der erfindungsgemäßen Antriebseinheit sorgt aufgrund ihrer von der Variable-Pitch-Einstellung des Anstellwinkels der Rotorblätter verursachten Neigung der Propellerrotationsebene für eine reaktionskraftfreie Auslenkung der Propellerrotationsebene aus ihrer aktuellen Lage und damit für eine reaktionskraftfreie Veränderung des Schubvektors. Es müssen bei dieser Ausgestaltung folglich keine Kreiselmomente am Rumpf abgestützt werden, so daß aufwendige und schwere Stützkonstruktionen und entsprechende Verstärkungen im Rumpf auch dann entfallen können, wenn schnelle Schubvektoränderungen für eine agile Flugsteuerung und Fluglageregelung gefordert sind.
Weiterhin betrifft die Erfindung ein Verfahren zur Steuerung eines Luftfahrzeugs mit Propellerantrieb, wobei der Anstellwinkel der einzelnen Propellerblätter eines jeden Propellers individuell eingestellt wird und wobei daraufhin die Propellerrotationsebene induziert durch aerodynamische Kräfte und durch aus diesen resultierende Kreiselkräfte reaktionskraftfrei geneigt wird. Dieses Verfahren ermöglicht das reaktionsschnelle Steuern eines Propeller-Luftfahrzeugs, das hierdurch insbesondere im Bereich niedriger Fluggeschwindigkeit schnellere Richtungsänderungen ermöglicht als mit der herkömmlichen aerodynamischen Steuerung über Höhenruder, Seitenruder und Querruder.
Die Erfindung wird nachfolgend anhand eines Beispiels unter Bezugnahme auf die Zeichnung näher erläutert; in dieser zeigt:
Fig. 1 ein erfindungsgemäßes Luftfahrzeug in einer Passa­ giertransportversion im Reiseflugzustand,
Fig. 2 eine isometrische, geschnittene Ansicht eines erfin­ dungsgemäßen Luftfahrzeugs in einer Passagiertrans­ portversion,
Fig. 3 ein erfindungsgemäßes Luftfahrzeug in einer Passa­ giertransportversion im Landezustand auf unpräpa­ riertem Untergrund,
Fig. 4 ein erfindungsgemäßes Luftfahrzeug in einer Fracht­ transportversion im Landezustand auf unpräpariertem Untergrund,
Fig. 5 eine isometrische, geschnittene Ansicht eines erfin­ dungsgemäßen Luftfahrzeugs in einer Frachttransport­ version,
Fig. 6 eine geschnittene Draufsicht auf ein erfindungsgemä­ ßes Luftfahrzeug in einer Frachttransportversion mit einem Antriebstragrahmen für die vorderen und die hinteren Antriebseinheiten,
Fig. 7 einen Ausschnitt einer teilweise geschnittenen Sei­ tenansicht eines erfindungsgemäßen Luftfahrzeugs mit einem Versteifungsring und einer Stützstruktur,
Fig. 8 eine teilweise geschnittene Seitenansicht eines neigbaren Antriebs in einer ersten Ausführungsform,
Fig. 9 eine teilweise geschnittene Seitenansicht eines neigbaren Antriebs in einer zweiten Ausführungsform,
Fig. 1 zeigt eine Passagiertransportversion eines erfindungsgemäßen Luftfahrzeugs im Reiseflugzustand in einer Seitenansicht. Das Luftfahrzeug besitzt einen im wesentlichen als aerostatischen Auftriebskörper ausgebildeten Rumpf 1, der überwiegend mit einem Gas, das leichter ist als Luft, vorzugsweise Helium, gefüllt ist.
Der Rumpf 1 ist als Rotationsellipsoid gestaltet und besitzt somit einen im wesentlichen kreisförmigen Grundriß und einen elliptischen Querschnitt. Der bezüglich der Äquatorialebene des Rumpfes 1 obere Teil des Rumpfes T, der als Oberschale 2 bezeichnet wird, ist stärker gewölbt als der unterhalb der Äquatorialebene gelegene und als Unterschale 3 bezeichnete untere Teil des Rumpfes 1, der wesentlich flacher ausgebildet ist und somit eine geringere Höhe aufweist als die Oberschale 2.
Obwohl der Rumpf 1 im Grundriß kreisförmig ausgebildet ist, besitzt er eine definierte Vorderseite, in Flugrichtung gesehen, die durch einen Cockpitansatz 4 bestimmt ist, der nasenartig an einem Ort des Äquatorialumfangs des Rumpfes 1 angebracht ist. Die vordere Hälfte des Äquatorialumfangs des Rumpfes 1 ist mit in der Rumpfwandung ausgebildeten Fenstern 5 des Obergeschosses einer zweigeschossigen Passagierkabine 38 (Fig. 2) versehen. Eine weitere Reihe als Panoramafenster 6 ausgebildeter Fenster des Untergeschosses ist im vordersten Bereich des Rumpfes 1 unterhalb des Cockpitansatzes 4 und seitlich davon angeordnet. Seitlich vom Rumpf 1 sind zwei vordere Antriebseinheiten 7, 8 sowie zwei hintere Antriebseinheiten 9, 10 angeordnet.
Die vorderen Antriebseinheiten 7, 8 sind jeweils mit einem in Flugrichtung nach vorne gerichteten Propeller 11, 12 versehen, der als Zugpropeller ausgebildet ist und dessen Propellerblätter 11', 12' wie Propellerblätter einer herkömmlichen Flugzeugluftschraube ausgebildet sind. Der Propellerdurchmesser liegt im Bereich des Durchmessers von Hubschrauberrotoren.
Die hinteren Antriebseinheiten 9, 10 besitzen einen bezüglich der Flugrichtung nach hinten weisenden Propeller 13, 14, der als Druckpropeller ausgebildet ist. Die Propellerblätter 13', 14' der hinteren Antriebseinheiten 9, 10 sind ebenfalls luftschraubenartig ausgebildet und der Durchmesser der hinteren Propeller 13, 14 entspricht in etwa dem Durchmesser der vorderen Propeller 11, 12.
Die vorderen Antriebseinheiten 7, 8 sind über jeweilige Querlenker 15, 16 bzw. 18, 19 sowie Längslenker 17 bzw. 20 am Rumpf angebracht.
Die hinteren Antriebseinheiten 9, 10 sind über jeweilige Querlenker 21, 22 bzw. 24, 25 sowie jeweilige Längslenker 23 bzw. 26 am Rumpf angebracht.
Die vorderen Antriebseinheiten 7, 8 sind oberhalb der Äquatorialebene gelegen und die hinteren Antriebseinheiten 9, 10 sind unterhalb der Äquatorialebene des Rumpfes 1 gelegen.
Fig. 2 ist eine isometrische, geschnittene Ansicht eines erfindungsgemäßen Luftfahrzeugs in einer Passagiertransportversion, wobei die Rumpfhülle 2' der Oberschale 2 größtenteils weggeschnitten ist und die Rumpfhülle 3' der Unterschale 3 im Bereich der hinteren linken Antriebseinheit 9 weggeschnitten ist.
Im Äquatorialbereich des Rumpfes 1 ist ein felgenartiger Versteifungsring 27 vorgesehen, der an seinem oberen Rand und an seinem unteren Rand jeweils ein umlaufendes, druckfestes Stützprofil 28, 29 aufweist. Zwischen den umlaufenden Stützprofilen 28, 29 ist eine ringförmige Wandung 30 vorgesehen, die das obere Stützprofil 28 und das untere Stützprofil 29 miteinander verbindet. Der Aufbau des Versteifungsrings 27 wird weiter unten anhand der Fig. 7 detailliert beschrieben.
Die vorderen Antriebseinheiten 7, 8 sind über eine fachwerkartige vordere Stützstruktur 31 miteinander verbunden, wobei die vorderen oberen Querlenker 15, 18 und die vorderen unteren Querlenker 16, 19 Elemente der vorderen Stützstruktur 31 bilden.
Die hinteren Antriebseinheiten 9, 10 sind über eine hintere Stützstruktur 32 miteinander verbunden, wobei die hinteren Querlenker 21, 22, 24, 25 Elemente der hinteren Stützstruktur 32 bilden.
Die vorderen Längslenker 17, 20 einer jeden Seite sind mit den hinteren Längslenkern 23, 26 derselben Seite des Luftfahrzeugs verbunden, wobei im Bereich der jeweiligen Verbindungsstelle eine fachwerkartige Struktur 33, 34 vorgesehen ist, um die unterschiedlichen Höhenlagen der Triebwerke und damit von deren Längslenkern auszugleichen.
Die Längslenker 17, 23 bzw. 20, 26 mit ihren zugehörigen fachwerkartigen Verbindungsstrukturen 33 bzw. 34 bilden jeweils eine linke Schubstrebe 36 bzw. eine rechte Schubstrebe 37.
Die vordere Stützstruktur 31, die hintere Stützstruktur 32, der linke vordere Längslenker 17, der linke hintere Längslenker 23, deren linke fachwerkartige Verbindungsstruktur 33, der rechte vordere Längslenker 20 der rechte hintere Längslenker 26 und deren rechte fachwerkartige Verbindungsstruktur 34 bilden gemeinsam einen Antriebstragrahmen 35, der die vier Antriebseinheiten 7, 8, 9 und 10 miteinander verbindet, wobei die jeweiligen Längslenker 17, 23, 20, 26 mit den zugeordneten Stützstrukturen 31, 32 unstarr verbunden sind, um eine Verwindbarkeit und Verschränkbarkeit des Antriebstragrahmens 35 zuzulassen.
Der Antriebstragrahmen 35 ist am felgenartigen Versteifungsring 27 im Bereich der vorderen und der hinteren Stützstruktur 31, 32 sowie der linken und der rechten Schubstrebe 36, 37 unstarr aufgehängt, um auch hier eine Verwindbarkeit zwischen dem Antriebstragrahmen 35 und dem felgenartigen Versteifungsring 27 zuzulassen.
Im vorderen Teil des Rumpfes 1 ist eine halbringförmige Passagierkabine 38 vorgesehen, die am felgenartigen Versteifungsring 27 und am Antriebstragrahmen 35, insbesondere an dessen vorderer Stützstruktur 31, aufgehängt ist. Die Fenster 5 der Passagierkabine 38 sind im vorderen Teil des Versteifungsrings 27 in dessen ringförmiger Wandung ausgebildet.
Im hinteren Teil des Rumpfes 1 ist ein Gepäck- und Frachtraum 39 für Fracht und Reisegepäck der Passagiere vorgesehen. Der Gepäck- und Frachtraum 39 ist am Versteifungsring 27 und an der hinteren Stützstruktur 32 aufgehängt. An seiner Unterseite ist der Gepäck- und Frachtraum 39 mit einem Schacht 40 versehen, der vom Boden des Gepäck- und Frachtraums 39 zur Wandung der Unterschale 3 führt. Der Schacht 40 ist an seiner Unterseite von einer in der Wandung der Unterschale 3 angebrachten Klappe 41 verschließbar. Ein in der Fig. 2 nicht dargestellter Seilzug oder Lift ist im Gepäck- und Frachtraum 39 im Bereich des Schachts 40 vorgesehen, um Fracht vom Gepäck- und Frachtraum 39 zur Oberfläche eines Landeplatzes herabzulassen bzw. Fracht von dort in das Luftfahrzeug zu transportieren.
In der Mitte des Rumpfes ist ein zylindrischer Zentralkörper 42 vorgesehen, der auf einem an der Unterseite der Unterschale 3 ausgebildeten Landefuß 43 steht und der über ummantelte Transportstege 44, 45, 46 mit der Passagierkabine 38 sowie mit dem Gepäck- und Frachtraum 39 verbunden ist. Der Zentralkörper 42 reicht zumindest bis in den Bereich der Äquatorialebene oder geringfügig darüber hinaus, wobei jedoch ein deutlicher Vertikalabstand zwischen der Oberseite des Zentralkörpers 42 und der Wandung der Oberschale 2 vorgesehen ist. Der Zentralkörper 42 ist in der von der Oberschale 2, der Unterschale 3 und dem Versteifungsring 27 gebildeten Hüllenstruktur des Rumpfes 1 so aufgehängt, daß er bei einer harten Landung des Luftfahrzeugs nach oben einfedern kann und so ein Durchfedern von Passagierkabine 38, Gepäck- und Frachtraum 39 und Antriebstragrahmen 35 gestattet, wobei auch die Transportstege 44, 45, 46 mit dem Zentralkörper 42 unstarr verbunden sind, um dessen Einfedern zu ermöglichen.
Im unteren Bereich der Unterschale 3 ist eine vom Zentralkörper 42 radial nach außen zur Wandung bzw. Hülle 3' der Unterschale 3 führender ummantelter Korridor 47 vorgesehen, der von einer in der Wandung der Unterschale 3 ausgebildeten Zugangsrampe 48 verschließbar ist. Innerhalb des Zentralkörpers 42 sind Treppen und/oder Aufzüge vorgesehen, die den unteren Einstiegsbereich des Zentralkörpers 42 in Höhe des Korridors 47 mit dem oberen Zugangsbereich zu den Transportstegen 44, 45, 46 verbinden.
Weiterhin ist in Fig. 2 zu erkennen, daß die Antriebseinheiten 7, 8, 9, 10 abgewinkelt ausgebildet sind, wobei jeweils eine Antriebsmaschine 49, 50, 51, 52 quer zur durch den Zentralkörper und den Cockpitansatz verlaufenden Längsmittelebene des Luftfahrzeugs angeordnet ist und vorzugsweise horizontal liegt. Die vorderen Antriebsmaschinen 49, 50 sind dabei koaxial zum jeweiligen vorderen oberen Querlenker 15 bzw. 18 ausgerichtet, während die hinteren Antriebsmaschinen 51, 52 koaxial mit dem jeweils zugeordneten hinteren unteren Querlenker 22 bzw. 25 ausgerichtet sind. Die Achsen der Antriebsmaschinen 49, 50, 51, 52 liegen somit in einer Ebene parallel zur Äquatorialebene des Luftfahrzeugs.
Jede der Antriebsmaschinen 49, 50, 51, 52 ist über ein in den Figuren nicht dargestelltes Winkelgetriebe, dessen jeweilige Eingangswelle mit der Ausgangswelle der zugeordneten Antriebsmaschine verbunden ist und dessen den jeweiligen Propeller beaufschlagende Abtriebswelle in einer rechtwinklig zur Rotationsachse des jeweiligen Antriebs verlaufenden Ebene gelegen ist. In der Darstellung in Fig. 2 liegen die Abtriebswellen zudem in der Waagerechten. Das Vorhandensein der Winkelgetriebe in jeder Antriebseinheit 7, 8, 9, 10 ist durch die in Fig. 2 dargestellte abgewinkelte Gestalt der Antriebseinheiten 7, 8, 9, 10 zu erkennen.
Jede Antriebseinheit 7, 8, 9, 10 ist um die Rotationsachse ihrer zugeordneten Antriebsmaschine 49, 50, 51, 52 derart drehbar gelagert, daß der jeweilige in Fig. 2 waagerecht liegende vordere Abschnitt 53, 54 der vorderen Antriebseinheiten 7, 8 bzw. der in Fig. 2 waagerecht liegende hintere Abschnitt 55, 56 der jeweiligen hinteren Antriebseinheit 9, 10, in dem jeweils die zugeordnete Abtriebswelle des Antriebs liegt, zwischen der in Fig. 2 dargestellten waagerechten Ausrichtung und einer senkrechten Ausrichtung kippbar ist.
In Fig. 3 ist das Luftfahrzeug in einer Seitenansicht im gelandeten Zustand dargestellt, in dem die Abschnitte 53, 54, 55, 56 der Antriebseinheiten 7, 8, 9, 10, in denen die jeweilige Abtriebswelle gelegen ist, in die Vertikale gekippt ist. Die jeweilige Propellerrotationsebene der Antriebseinheiten 7, 8, 9, 10 verläuft daher in Fig. 3 waagerecht, weshalb Fig. 3 auch gleichzeitig die Start- und Landeposition der Antriebseinheiten zeigt.
In Fig. 3 sind weiterhin die geöffnete Klappe 41 des Gepäck- und Frachtraums 39 sowie die herabgelassene Zugangsrampe 48 des Korridors 47 zum Zentralkörper 42 zu erkennen. Unterhalb der Unterschale 3 des Rumpfes 1 ist ein balgartiger Ringwulst 57 zu sehen, der von der unteren Wandung der Unterschale 3 nach unten ausgefahren ist und auf dem das gelandete Luftfahrzeug ruht, wobei der Ringwulst 57 als Landefuß dient.
In Fig. 3 ist außerdem erkennbar, daß die vordere Antriebseinheit 7 und auch die nicht dargestellte vordere Antriebseinheit 8 gegenüber der in Fig. 1 dargestellten Position im Reiseflug nach oben gekippt ist, so daß sich die Ebene des Propellers 11 oberhalb der zugeordneten Antriebsmaschine 49 befindet und daß sich die Ebene des Propellers 13 der hinteren Antriebseinheit 9 - ebenso wie der nicht zu erkennenden hinteren Antriebseinheit 10 - unterhalb der zugeordneten Antriebsmaschine 51 liegt. Diese unterschiedliche Lage der jeweiligen Propellerebene ist dadurch bedingt, daß es sich bei den vorderen Propellern um Zugpropeller und bei den hinteren Propellern um Druckpropeller handelt, so daß mit der in Fig. 3 gezeigten Anordnung sowohl die vorderen Antriebseinheiten als auch die hinteren Antriebseinheiten eine nach oben gerichtete Schubkraft erzeugen können.
Fig. 4 zeigt eine Ausführungsform des erfindungsgemäßen Luftfahrzeugs, das als Frachttransportversion ausgebildet ist, im gleichen Betriebszustand wie die Fig. 3 für die Passagiertransportversion. Bei dieser Frachttransportversion fehlen die bei der Passagiertransportversion vorgesehenen Fenster 5 und 7 im Rumpf 1. In der Unterschale 3 ist dafür ein in Fig. 5 dargestellter, im Grundriß im wesentlichen achteckiger Frachtraum 58 (Fig. 5) ausgebildet, der unterhalb seines Bodens mit einem dem Grundriß angepaßten nach unten gerichteten balgartigen Ringwulst 59 versehen ist, der die gleiche Funktion als Landefuß besitzt wie der Ringwulst 57 bei der Passagiertransportversion, der jedoch eine dem Grundriß des Frachtraums angepaßte größere Grundfläche umgrenzt als der Ringwulst 57 der Passagiertransportversion.
Weiterhin sind bei der in Fig. 4 gezeigten Frachttransportversion eine vordere Rampe 60 und eine hintere Rampe 61 in der Wandung der Unterschale 3 vorgesehen, die von vorne bzw. von hinten durch einen vorderen Korridor 62 bzw. einen hinteren Korridor 63 zum Frachtraum 58 führen (Fig. 5) und die das gleichzeitige Beladen und Entladen des Frachtraums 58 erleichtern.
Fig. 5 gibt eine isometrische Ansicht der teilweise geschnittenen Frachttransportversion des erfindungsgemäßen Luftfahrzeugs wieder, wobei die Ansicht der Fig. 5 prinzipiell der Ansicht der Passagiertransportversion aus Fig. 2 entspricht. Auch der Aufbau des Antriebstragrahmens 64 entspricht bei dieser Version grundsätzlich dem Antriebstragrahmen 35 der Passagiertransportversion. Auch der Rumpf 1 mit der Oberschale 2 und der Unterschale 3 sowie dem felgenartigen Versteifungsring 27 entspricht grundsätzlich der Version der in Fig. 2 dargestellten Passagiertransportversion. Zur Vermeidung von Wiederholungen wird daher bezüglich der Beschreibung dieser im wesentlichen baugleich ausgebildeten Strukturelemente sowie der im wesentlichen baugleich ausgebildeten Antriebseinheiten auf die Beschreibung der Fig. 2 verwiesen. Der Frachtraum 58 befindet sich im wesentlichen im Bereich der Unterschale 3 des Rumpfes 1 und die obere Wandung des Frachtraums 58 ist von der oberen Wandung der Oberschale 2 deutlich beabstandet, um auch hier ein Einfedern des Frachtraums 58 zu ermöglichen und somit ein Durchfedern des Antriebstragrahmens 64 zu gestatten. Die Höhe des Frachtraums 58 beträgt maximal etwa ein Viertel der Gesamthöhe des Luftfahrzeugs.
In Fig. 6 ist die Frachttransportversion aus den Fig. 4 und 5 nochmals in einer geschnittenen Grundrißansicht dargestellt, wobei auf der in Flugrichtung X gesehen rechten Seite die vordere rechte Antriebseinheit 8 und die hintere rechte Antriebseinheit 10 in ihrer Vertikalflugposition (mit waagerechter Propellerebene) gezeigt sind und wobei die in Flugrichtung gesehen linken Antriebseinheiten, die linke vordere Antriebseinheit 7 und die linke hintere Antriebseinheit 9, in Reiseflugstellung (mit vertikaler Propellerebene) dargestellt sind. Diese Darstellung mit unterschiedlich gekippten Antriebseinheiten dient lediglich dem besseren Verständnis; sie stellt keinen realen Flugzustand dar.
Deutlich erkennbar ist in der Darstellung der Fig. 6, daß die jeweiligen Querlenker 15, 16; 18, 19; 21, 22; 24, 25, von denen jeweils nur der obere Querlenker zu sehen ist, gegenüber der Luftfahrzeugquerachse y, vom innerhalb des Rumpfes gelegenen Mittelabschnitt der vorderen Stützstruktur 31 bzw. dem innerhalb des Rumpfes gelegenen Mittelabschnitt der hinteren Stützstruktur 32 ausgehend geringfügig nach außen gerichtet, also von der vorderen Stützstruktur 31 nach vorne und von der hinteren Stützstruktur 32 nach hinten, abgewinkelt ausgebildet sind. Die hierdurch erhaltene Schrägstellung der Propellerebenen im Reiseflug bezüglich einer Vertikalebene durch die Querachse des Luftfahrzeugs ist auch in der Seitenansicht der Fig. 1 zu erkennen. Diese Schrägstellung bewirkt, daß der Propeller in seiner Normalstellung im Reiseflugzustand (Fig. 1) von der das Luftfahrzeug umströmenden Luftströmung im wesentlichen axial angeströmt wird.
Fig. 7 zeigt einen Ausschnitt einer teilweise geschnittenen Seitenansicht eines erfindungsgemäßen Luftfahrzeugs im Äquatorialbereich. Der Versteifungsring 27 weist ein rohrförmiges oberes Stützprofil 28 sowie ein rohrförmiges unteres Stützprofil 29 auf, die in eine sandwichartig aufgebaute ringförmige Wandung 30 an deren oberem Umfang bzw. an deren unterem Umfang einlaminiert sind. Die Wandung 30 ist in ihrer Kontur teilelliptisch konvex nach außen gewölbt. Die Rumpfhülle 2' der Oberschale 2 sowie die Rumpfhülle 3' der Unterschale 3 sind über geeignete Befestigungsvorrichtungen am oberen Stützprofil 28 bzw. am unteren Stützprofil 29 befestigt. Hierzu kann das jeweilige Stützprofil 28, 29 eine geeignete profilierte Querschnittsform abweichend von der in Fig. 7 dargestellten Kreisform aufweisen, die ein Anbringen entsprechender Befestigungsteile der jeweiligen Rumpfhülle 2', 3' am zugeordneten oberen Stützprofil 28 bzw. am unteren Stützprofil 29 ermöglicht.
Die Rumpfhülle wird von einem geeigneten flexiblen Material gebildet, wie dies beispielsweise bereits im Luftschiffbau Verwendung findet. Die in der vorliegenden Anmeldung gewählten Bezeichnungen Oberschale und Unterschale bedeuten nicht, daß es sich hierbei um starre Gebilde handelt, sondern bezeichnet nur die geometrische Gestalt im unter Druck gesetzten Zustand des Rumpfes.
Die Oberschale 2 ist doppelwandig ausgebildet, wobei eine innere Hülle 2'' von der äußeren Hülle 2' beabstandet ist und einen Kanal bildet, in den im oberen Stützprofil 28 ausgebildete Ausströmöffnungen 65 einmünden. Der zwischen der äußeren Hülle 2' und der inneren Hülle 2'' gebildete Raum kann auch meridianartig in eine Vielzahl von Kanälen unterteilt sein. Am obersten Punkt der Oberschale 2 ist in der äußeren Hülle 2' eine nicht gezeigte zentrale obere Ausströmöffnung vorgesehen. Auf diese Weise kann durch das obere Stützprofil 28 zugeführte Warmluft aus den Öffnungen 65 in die zwischen der inneren Hülle 2'' und der äußeren Hülle 2' gebildeten Kanäle einströmen und aus der zentralen oberen Ausströmöffnung wieder entweichen, wobei die Warmluft die äußere Hülle 2' erwärmt und damit ein Enteisen der äußeren Hülle ermöglicht.
In Fig. 7 ist weiterhin ein fachwerkartiges Stützgerüst 66 gezeigt, das auf der radial inneren Seite des Versteifungsrings 27 gelegen ist und das das obere Stützprofil 28 und das untere Stützprofil 29 unter Einbeziehung eines inneren ringförmigen Stützprofils 67 verbindet. Das Stützgerüst 66 dient zur Verstärkung des Versteifungsrings 27.
Zur Steuerung weist das ohne herkömmliche aerodynamische Steuervorrichtungen ausgebildete Luftfahrzeug spezielle Antriebseinheiten 7, 8, 9, 10 auf, die aufgrund eines besonders gestalteten Rotorkopfes 110 mit neigbarer Propellerrotationsebene 113 eine Schubvektorsteuerung mittels des Propellers ermöglichen.
Ein Rotorkopf 110 einer derartigen Antriebseinheit sowie eine Abwandlung davon werden nachfolgend unter Bezugnahme auf die Fig. 8 und 9 beschrieben.
In Fig. 8 ist eine erste Ausführungsform eines erfindungsgemäßen Rotorkopfes einer der Antriebseinheiten 7, 8, 9, 10 dargestellt. Der Rotorkopf weist in seinem in Fig. 8 unteren Teil einen hohlzylindrisch ausgebildeten vorderen Abschnitt 101 eines Antriebsgehäuses auf, der den vorderen Abschnitten 53, 54 der vorderen Antriebseinheiten 7, 8 bzw. den hinteren Abschnitten 55, 56 der hinteren Antriebseinheiten 9, 10 des erfindungsgemäßen Luftfahrzeugs entspricht.
Im Inneren des vorderen Abschnitts 101 ist koaxial dazu ein inneres zylindrisches Hilfstragrohr 102 angeordnet, das über ringförmige Abstandhalter 103 mit dem zylindrischen vorderen Abschnitt 101 verbunden ist.
Innerhalb des inneren zylindrischen Hilfstragrohrs 102 ist koaxial zu diesem eine Welle 104 über Lager 105 drehbar gelagert. Die Welle 104 ist die Abtriebswelle einer der in Fig. 2 schematisch dargestellten Antriebsmaschinen 49, 50, 51, 52. Sie kann koaxial zur Rotationswelle der zugeordneten Antriebsmaschine angeordnet sein oder wie im Beispiel der Fig. 1 bis 7 über ein Winkelgetriebe mit der Rotationswelle der Antriebsmaschine verbunden sein. Außerdem kann die Welle 104 die Abtriebswelle eines der Antriebsmaschine nachgeordneten Untersetzungs- oder Sammelgetriebes sein.
Am freien Ende des zylindrischen vorderen Abschnitts 101 des Antriebsgehäuses ist ein Kardanring 106 innerhalb des hohlzylindrischen Mantels des vorderen Abschnitts 101 an diesem schwenkbar gelagert. Die Schwenkachse 106' des Kardanrings 106 steht dabei im rechten Winkel zur Längsachse 101' des zylindrischen vorderen Abschnitts 101. Die Lagerung des Kardanrings 106 am hohlzylindrischen vorderen Abschnitt 101 erfolgt in bekannter Weise über Lagerbolzen 107, 108.
Innerhalb des Kardanrings 106 ist ein zylindrisches Tragrohr 109 der Propellernabe 110 mittels zweier an zwei radial gegenübergelegenen Seiten am unteren Ende des hohlzylindrischen Tragrohrs 109 axial hervorstehenden Lagerlaschen 111 im Kardanring 106 schwenkbar gelagert. Die Neigungsachse 111', um die die Lagerlaschen 111 und damit das hohlzylindrische Tragrohr 109 schwenken, ist senkrecht zur Längsachse 109' des hohlzylindrischen Tragrohrs 109 und senkrecht zur Schwenkachse 106' des Kardanrings 106 gelegen. Auf diese Weise ist ein äußeres Kardangelenk 112 gebildet, dessen Mittelpunkt durch den Schnittpunkt der Achsen 101', 106' und 111' gebildet ist und das eine Neigbarkeit der Propellerebene 113 bezüglich der Längsachse 101' des vorderen Abschnitts 101 des Antriebsgehäuses, die gleichzeitig die Rotationsachse 104' der Abtriebswelle 104 bildet, in beliebige Richtungen gestattet.
Im Bereich des freien Endes der Abtriebswelle 104 sind zwei diametral gegenübergelegene untere innere Schwenklager 114, 114' vorgesehen, in denen eine die Abtriebswelle 104 diametral durchdringende Achse 115 gelagert ist, deren Schwenkachse 115' im rechten Winkel zur Rotationsachse 104' der Abtriebswelle 104 liegt, welche ihrerseits koaxial zur Längsachse 101' des vorderen Abschnitts 101 verläuft. Die Achse 115 ist zur Ausbildung eines unteren Kardankreuzes in ihrer Mitte (in Längsrichtung gesehen) mit zwei seitlich angebrachten Schwenkzapfen 116 versehen, deren Schwenkachse 116' im rechten Winkel zur Schwenkachse 115' liegt.
An den Schwenkzapfen 116 ist jeweils eine sich vom freien Ende der hohl ausgebildeten Antriebswelle 104 wegerstreckende Verbindungswelle 118 schwenkbar gelagert, die an ihrem von den Schwenkzapfen 116 abgewandten Ende auf Schwenkzapfen 117 gelagert ist, deren Schwenkachse 117' parallel zur Schwenkachse 116' verläuft. Die Schwenkzapfen 117 sind zur Ausbildung eines oberen Kardankreuzes in der Mitte (in Längsrichtung gesehen) einer Achse 119 seitlich an dieser angebracht, deren Schwenkachse 119' rechtwinklig zur Schwenkachse 117' verläuft.
Die Achse 119 ist in zwei oberen inneren Schwenklagern 120, 120' schwenkbar gelagert, die im Bereich des freien Endes einer Propellerwelle 121, diese diametral durchdringend, vorgesehen sind. Die Rotationsachse 121' der Propellerwelle 121 steht senkrecht auf der Propellerrotationsebene 113 sowie auf der Schwenkachse 119'. Auf diese Weise ist ein inneres Doppelkardangelenk 122 gebildet, das die Rotation der Abtriebswelle 104 auf die Propellerwelle 121 in jeder beliebigen Neigungsposition der Propellerrotationsebene 113 gleichförmig überträgt.
Die Rotationsachse 121' der Propellerwelle 121 und die Rotationsachse 104' der Abtriebswelle 104 schneiden sich in der Mitte des äußeren Kardangelenks 112, das heißt im Schnittpunkt der Schwenkachse 106' des Kardanrings 106 und der Neigungsachse 111' der Lagerlaschen 111.
In der Propellernabe 110 ist ein Planetengetriebe 123 vorgesehen, dessen Sonnenrad mit der Propellerwelle 121 verbunden ist und an dessen Hohlrad 124 die Propellerblätter 125 gelagert sind. Die Planetenräder des Planetengetriebes 123 sind an einem mit dem zylindrischen Tragrohr 109 drehfest verbundenen Planetenradträger gelagert.
Die Lagerung der Propellerblätter 125, 125' am Hohlrad 124 ist derart ausgebildet, daß die Anstellwinkel der Propellerblätter 125, 125' verstellbar sind. Hierzu ist jedes Propellerblatt 125, 125' über eine zugeordnete obere Stellstange 126, 126' mit einer Taumelscheibe 127 mittels eines jeweiligen oberen Kugelgelenks 128, 128' gelenkig verbunden. Die Taumelscheibe 127 besteht aus einem inneren Lagerring 129 und einem äußeren Lagerring 130, wobei die oberen Kugelgelenke 128, 128' am inneren Lagerring 129 angeordnet sind. Die Ebene der ringförmigen Taumelscheibe 127 verläuft durch den Mittelpunkt des äußeren Kardangelenks 112, sie kann aber auch zur Propellernabe hin versetzt sein.
Am äußeren Lagerring 130 der Taumelscheibe 127 sind untere Kugelgelenke 131, 131' vorgesehen, an denen untere Stellstangen 132, 132' gelagert sind, die entlang dem vorderen Abschnitt 101 des Antriebsgehäuses verlaufen und die über zugeordnete Kolben-Zylinder-Einheiten 133, 133' axial verstellbar sind. Die Kolben-Zylinder-Einheiten 133, 133' sind außerhalb des vorderen Abschnitts 101 angeordnet, sie können aber auch innerhalb des rohrförmigen vorderen Abschnitts 101 zwischen diesem und dem inneren zylindrischen Hilfstragrohr 102 angeordnet sein.
Mittels der Kolben-Zylinder-Einheiten 133, 133', der unteren Stellstangen 132, 132', der Taumelscheibe 127, und der oberen Stellstangen 126, 126' kann nicht nur der Anstellwinkel eines jeden Propellerblatts 125, 125' individuell verstellt werden, sondern es kann über diese Verstellmechanik ebenso eine kollektive Verstellung der Anstellwinkel der Propellerblätter um eine allen Propellerblättern gemeinsame Anstellwinkeldifferenz erfolgen.
Fig. 9 zeigt eine Abwandlung des Rotorkopfes aus Fig. 8, bei dem das äußere Kardangelenk 112 durch ein einfaches um eine Achse schwenkbares Gelenk ersetzt worden ist, wie nachfolgend anhand der Unterschiede zum Rotorkopf der Fig. 8 erläutert wird.
Am in Fig. 9 oberen freien Ende des vorderen Abschnitts 101 des Antriebsgehäuses sind untere Lagerlaschen 134 vorgesehen, die von der Stirnseite des freien Endes des zylindrischen vorderen Abschnitts 101 in Längsrichtung des vorderen Abschnitts 101 hervorstehen und an zwei diagonal gegenübergelegenen Seiten des vorderen Abschnitts 101 angeordnet sind. An den unteren Lagerlaschen 134 sind die Lagerlaschen 111 des zylindrischen Tragrohrs 109 der Propellernabe schwenkbar gelagert, wobei die Neigungsachse 111' senkrecht zur Längsachse 101' des vorderen Abschnitts 101 steht. Auf diese Weise ist ein Neigungsgelenk 134' gebildet. Die Achsen 101' und 111' verlaufen zudem jeweils rechtwinklig zu einer Kippachse 135' einer Befestigungsanordnung 135 für die Befestigung der Antriebseinrichtung am Luftfahrzeug.
Bei diesem Rotorkopf kann die Propellerrotationsebene 113 ebenfalls in jede beliebige Richtung geneigt werden, da die Kippachse 135' den Freiheitsgrad liefert, der bei der Ausführung nach Fig. 8 von der Schwenkachse 106' des Kardanrings 106 geliefert wird.
Auch bei der in Fig. 8 gezeigten Ausführungsform mit dem äußeren Kardangelenk 112 kann die um die Kippachse 135' kippbare Befestigungseinrichtung 135 vorgesehen sein.
Bezugszeichenliste
1
Rumpf
2
Oberschale
2'
Äußere Hülle
2''
Innere Hülle
3
Unterschale
3'
Hülle
4
Cockpitansatz
5
Fenster
6
Panoramafenster
7
Linke vordere Antriebseinheit
8
Rechte vordere Antriebseinheit
9
Linke hintere Antriebseinheit
10
Rechte hintere Antriebseinheit
11
Linker vorderer Propeller
11'
Propellerblätter
12
Rechter vorderer Propeller
12'
Propellerblätter
13
Linker hinterer Propeller
13'
Propellerblätter
14
Rechter vorderer Propeller
14'
Propellerblätter
15
Linker vorderer oberer Querlenker
16
Linker vorderer unterer Querlenker
17
Linker vorderer Längslenker
18
Rechter vorderer oberer Querlenker
19
Rechter vorderer unterer Querlenker
20
Rechter vorderer Längslenker
21
Linker hinterer oberer Querlenker
22
Linker hinterer unterer Querlenker
23
Linker hinterer Längslenker
24
Rechter hinterer oberer Querlenker
25
Rechter hinterer unterer Querlenker
26
Rechter hinterer Längslenker
27
Versteifungsring
28
Oberes Stützprofil
29
Unteres Stützprofil
30
Ringförmige Wandung
31
Vordere Stützstruktur
32
Hintere Stützstruktur
33
Linke fachwerkartige Struktur
34
Rechte fachwerkartige Struktur
35
Antriebstragrahmen
36
Linke Schubstrebe
37
Rechte Schubstrebe
38
Passagierkabine
39
Gepäck- und Frachtraum
40
Schacht
41
Klappe
42
Zentralkörper
43
Ringwulst
44
Transportsteg
45
Transportsteg
46
Transportsteg
47
Korridor
48
Zugangsrampe
49
Linke vordere Antriebsmaschine
50
Rechte vordere Antriebsmaschine
51
Linke hintere Antriebsmaschine
52
Rechte hintere Antriebsmaschine
53
Vorderer Abschnitt
54
Vorderer Abschnitt
55
Hinterer Abschnitt
56
Hinterer Abschnitt
57
Balgartiger Ringwulst
58
Frachtraum
59
Ringwulst
60
Vordere Rampe
61
Hintere Rampe
62
Vorderer Korridor
63
Hinterer Korridor
64
Antriebstragrahmen
65
Öffnungen
66
Stützgerüst
67
Inneres Stützprofil
101
Vorderer Abschnitt
101'
Längsachse von
101
102
Inneres zylindrisches Hilfstragrohr
103
Ringförmiger Abstandhalter
104
Abtriebswelle
104'
Rotationsachse von
104
105
Lager
106
Kardanring
106'
Schwenkachse von
106
107
Lagerbolzen
108
Lagerbolzen
109
Zylindrisches Tragrohr
109'
Längsachse von
109
110
Propellernabe
111
Lagerlaschen
111'
Neigungsachse von
111
112
Äußeres Kardangelenk
113
Propellerrotationsebene
114
Erstes unteres inneres Schwenklager
114'
Zweites unteres inneres Schwenklager
115
Achse
115'
Schwenkachse von
115
116
Schwenkzapfen
116'
Schwenkachse von
116
117
Schwenkzapfen
117'
Schwenkachse von
117
118
Verbindungswelle
119
Achse
119'
Schwenkachse von
119
120
Erstes oberes inneres Schwenklager
120'
Zweites oberes inneres Schwenklager
121
Propellerwelle
121'
Rotationsachse von
121
122
Doppelkardangelenk
123
Planetengetriebe
124
Hohlrad
125
Propellerblatt
125'
Propellerblatt
126
Obere Stellstange
126'
Obere Stellstange
127
Taumelscheibe
128
Oberes Kugelgelenk
128''
Oberes Kugelgelenk
129
Innerer Lagerring
130
Äußerer Lagerring
131
Unteres Kugelgelenk
131'
Unteres Kugelgelenk
132
Untere Stellstange
132'
Untere Stellstange
133
Kolben-Zylinder-Einheit
133'
Kolben-Zylinder-Einheit
134
Untere Lagerlasche
134'
Neigungsgelenk
135
Befestigungsanordnung
135'
Kippachse von
135

Claims (44)

1. Luftfahrzeug mit einem im wesentlichen als aerostatischem Auftriebskörper ausgebildeten Rumpf (1) sowie am Rumpf (1) angelenkten, mit Propellern (11, 12, 13, 14) versehenen, Antriebseinheiten (7, 8, 9, 10) bildenden kombinierten Auftriebs- und Vortriebseinrichtungen, die jeweils zwischen einer Auftriebsposition, in der die jeweilige Propellerrotationsebene im wesentlichen horizontal und die die jeweilige Propellerwelle (121) beaufschlagende Abtriebswelle (104) des zugeordneten Antriebs (49, 50, 51, 52) im wesentlichen vertikal gelegen sind, und einer Vortriebsposition, in der die jeweilige Propellerrotationsebene im wesentlichen vertikal und die die jeweilige Propellerwelle (121) beaufschlagende Abtriebswelle (104) des zugeordneten Antriebs (49, 50, 51, 52) im wesentlichen horizontal gelegen sind, kippbar sind, dadurch gekennzeichnet, daß die jeweilige Propellerrotationsebene (113) relativ zur die Propellerwelle (121) beaufschlagenden Abtriebswelle (104) des zugeordneten Antriebs (49, 50, 51, 52) rundum neigbar ist.
2. Luftfahrzeug nach Anspruch 1, dadurch gekennzeichnet, daß der Rumpf (1) zugleich als aerodynamischer Auftriebskörper gestaltet ist.
3. Luftfahrzeug nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß keine aktiv betätigbaren aerodynamischen Steuervorrichtungen vorgesehen sind.
4. Luftfahrzeug nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß der Rumpf (1) einen im wesentlichen kreisförmigen Grundriß aufweist.
5. Luftfahrzeug nach Anspruch 4, dadurch gekennzeichnet, daß der Rumpf (1) einen im wesentlichen elliptischen Querschnitt aufweist.
6. Luftfahrzeug nach Anspruch 5, dadurch gekennzeichnet, daß der Rumpfquerschnitt die Gestalt einer asymmetrischen, im wesentlichen elliptischen Form besitzt, wobei der obere Teil eine Oberschale (2) bildet, die stärker gewölbt ist als der flachere, eine Unterschale (3) bildende untere Teil.
7. Luftfahrzeug nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß der Rumpf (1) zumindest einen felgenartigen Versteifungsring (27) im Äquatorialbereich aufweist.
8. Luftfahrzeug nach Anspruch 7, dadurch gekennzeichnet, daß der Versteifungsring (27) im Querschnitt an seinem Außenumfang eine teilelliptische Gestalt aufweist.
9. Luftfahrzeug nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß der Versteifungsring (27) einen Faserverbundwerkstoff, vorzugsweise in Sandwichbauweise, aufweist.
10. Luftfahrzeug nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß druckfeste Stützprofile (28, 29) in den Versteifungsring (27) integriert sind.
11. Luftfahrzeug nach Anspruch 7, 8, 9 oder 10, dadurch gekennzeichnet, daß der Versteifungsring (27) zumindest ein Stützgerüst (66) aufweist, das im Querschnitt bevorzugt im wesentlichen dreieckig ausgebildet ist.
12. Luftfahrzeug nach Anspruch 11, dadurch gekennzeichnet, daß das Stützgerüst (66) zumindest teilweise in den Versteifungsring (27) integriert ist.
13. Luftfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß jeweils zwei Antriebseinheiten (7, 8; 9, 10) gemeinsam an einer vorzugsweise unstarr am Rumpf (1) angebrachten Stützstruktur (31; 32) gehaltert sind.
14. Luftfahrzeug nach Anspruch 13, dadurch gekennzeichnet, daß die Antriebseinheiten (7, 8, 9, 10) und/oder deren Stützstrukturen (31, 32) über Schubstreben (36, 37) zu einem Antriebstragrahmen (35; 64) unstarr miteinander verkoppelt sind.
15. Luftfahrzeug nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß die Antriebseinheiten (7, 8, 9, 10) und/oder deren Stützstrukturen (31, 32) über den Antriebstragrahmen (35; 64) am felgenartigen Versteifungsring (27) unstarr angebracht sind.
16. Luftfahrzeug nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, daß die vorderen Antriebseinheiten (7, 8) und die hinteren Antriebseinheiten (9, 10) jeweils unterschiedlich weit von der Längsmittelebene des Luftfahrzeugs beabstandet sind.
17. Luftfahrzeug nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, daß die vorderen Antriebseinheiten (7, 8) und die hinteren Antriebseinheiten (9, 10) jeweils unterschiedlich hoch am Luftfahrzeug angeordnet sind.
18. Luftfahrzeug nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, daß zumindest vier Antriebseinheiten (7, 8, 9, 10) vorgesehen sind.
19. Luftfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in jeder Antriebseinheit (7, 8, 9, 10) zwei parallel zueinander betreibbare Antriebsmaschinen vorgesehen sind.
20. Luftfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im unteren Bereich des Rumpfes (1) ein Frachtraum (58) ausgebildet ist.
21. Luftfahrzeug nach Anspruch 20, dadurch gekennzeichnet, daß der Frachtraum (58) mit zumindest einer Rampe versehen ist und daß vorzugsweise zwei Rampen (60, 61) an zwei voneinander abgewandten Seiten vorgesehen sind.
22. Luftfahrzeug nach Anspruch 20 oder 21, dadurch gekennzeichnet, daß unter dem Frachtraum (58) im Bereich seines Umfangs ein nach unten gerichteter balgartiger Ringwulst (57) als Landefuß vorgesehen ist, der pneumatisch ausfahrbar ausgebildet ist.
23. Luftfahrzeug nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß im vorderen Teil des Äquatorialbereichs des Rumpfes (1) eine bevorzugt abschnittsweise zweistöckig ausgebildete Passagierkabine (38) vorgesehen ist.
24. Luftfahrzeug nach Anspruch 23, dadurch gekennzeichnet, daß die Passagierkabine (38) in den felgenartigen Versteifungsring (27) und vorzugsweise auch in die vordere Stützstruktur (31) eines Antriebstragrahmens (35) eingehängt ist.
25. Luftfahrzeug nach Anspruch 23 oder 24, dadurch gekennzeichnet, daß im hinteren Teil des Äquatorialbereichs des Rumpfes (1) ein Gepäck- und Frachtraum (39) vorgesehen ist.
26. Luftfahrzeug nach Anspruch 25, dadurch gekennzeichnet, daß der Gepäck- und Frachtraum (39) in den felgenartigen Versteifungsring (27) und vorzugsweise auch in die hintere Stützstruktur (32) des Antriebstragrahmens (35) eingehängt ist.
27. Luftfahrzeug nach einem der Ansprüche 23 bis 26, dadurch gekennzeichnet, daß in der Unterschale (3) ein in diese integrierter Zentralkörper (42) vorgesehen ist, an dessen Unterseite bevorzugt ein balgartiger, pneumatisch ausfahrbarer Ringwulst (43) als Landefuß ausgebildet ist.
28. Luftfahrzeug nach Anspruch 27, dadurch gekennzeichnet, daß der Zentralkörper (42) in der von der Oberschale (2) und von der Unterschale (3) gebildeten Hüllenstruktur des Rumpfes (1) derart aufgehängt ist, daß er bei einer harten Landung nach oben einfedern kann und so ein Durchfedern von Passagierkabine (38), Gepäck- und Frachtraum (39) und Antriebstragrahmen (35) gestattet.
29. Luftfahrzeug nach Anspruch 27 oder 28, dadurch gekennzeichnet, daß der Zentralkörper (42) mit zumindest einer Rampe (48) für den Zugang von außen versehen ist.
30. Luftfahrzeug nach einem der Ansprüche 23 bis 29, dadurch gekennzeichnet, daß die Passagierkabine (38) und der Gepäck- und Frachtraum (39) über ummantelte Transportstege (44, 45, 46) mit dem Zentralkörper (42) unstarr verbunden sind, um dessen Einfedern zu ermöglichen.
31. Luftfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Rumpf (1) eine Tragstruktur und eine Rumpfhülle (2', 3') aufweist und daß die Rumpfhülle (2') zumindest abschnittsweise im Bereich der Oberschale (2) beheizbar ist.
32. Luftfahrzeug nach Anspruch 31, dadurch gekennzeichnet, daß die beheizbaren Abschnitte der Rumpfhülle (2') doppelwandig (2', 2'') ausgebildet sind und von Warmluft oder einem anderen bezüglich der Rumpfumgebung wärmeren Gas bedarfsweise durchströmt werden.
33. Luftfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine zentrale, vorzugsweise digitale Regelung für die individuelle und für die kollektive Ansteuerung der Anstellwinkel der Propellerblätter ((11', 12', 13', 14') aller Antriebseinheiten (7, 8, 9, 10) zur Fluglageregelung und zur Flugsteuerung im vertikalen Start- und Landebetrieb, im horizontalen Reiseflugbetrieb und im Übergangsbetrieb zwischen diesen beiden Betriebszuständen vorgesehen ist.
34. Luftfahrzeug nach Anspruch 33, dadurch gekennzeichnet, daß zusätzlich eine manuelle Flugsteuerung vorgesehen ist.
35. Antriebseinheit mit zumindest einem Propeller, insbesondere für ein Luftfahrzeug nach einem der Ansprüche 1 bis 34, dadurch gekennzeichnet,
daß die Propellerrotationsebene (113) relativ zur die Propellerwelle (121) beaufschlagenden Abtriebswelle (104) des Antriebs neigbar ausgebildet ist und
daß die Propellerwelle (121) und die die Propellerwelle (121) beaufschlagende Abtriebswelle (104) des Antriebs, vorzugsweise über ein Doppelkardangelenk (121) oder ein Gleichlaufgelenk, gelenkig miteinander verbunden sind.
36. Antriebseinheit nach Anspruch 35, dadurch gekennzeichnet, daß die Nabe (110) des Propellers über einen Kardanring (106) kardanisch gelagert ist.
37. Antriebseinheit nach Anspruch 35 oder 36, dadurch gekennzeichnet, daß die Propellerblätter (125, 125') ohne Schlaggelenke und ohne Schwenkgelenke oder andere dazu äquivalent wirkende elastische Teile an der zugeordneten Propellernabe (110) angeordnet sind.
38. Antriebseinheit nach Anspruch 37, dadurch gekennzeichnet, daß der Anstellwinkel der einzelnen Propellerblätter (125, 125') mittels einer Taumelscheibe (127) kollektiv sowie zur Neigung der Propellerrotationsebene (113) individuell variabel verstellbar ist.
39. Antriebseinheit nach einem der Ansprüche 35 bis 38, dadurch gekennzeichnet, daß der Neigungswinkel der Propellerrotationsebene (113) bezüglich der die Propellerwelle (121) beaufschlagenden Abtriebswelle (104) des zugeordneten Antriebs um bis zu mehr als ± 45° beträgt.
40. Antriebseinheit nach einem der Ansprüche 35 bis 38, dadurch gekennzeichnet, daß ein Kippmechanismus (135) zur Halterung der Antriebseinheit an einem Fahrzeug vorgesehen ist, der ein Kippen der Antriebseinheit um eine Kippachse (135') zwischen einer Auftriebsposition, in der die Abtriebswelle (104) im wesentlichen vertikal ausgerichtet ist, und einer Vortriebsposition, in der die Abtriebswelle (104) im wesentlichen horizontal ausgerichtet ist, gestattet.
41. Antriebseinheit nach Anspruch 40, dadurch gekennzeichnet, daß eine Nachführeinrichtung vorgesehen ist, welche einer sich aufgrund am Propeller angreifender fluiddynamischer Kräfte und daraus resultierender Kreiselkräfte ergebenden Kippbewegung der Antriebseinheit folgt und welche diese Kippbewegung vorzugsweise reaktionskraftfrei unterstützt.
42. Antriebseinheit nach einem der Ansprüche 40 oder 41, dadurch gekennzeichnet, daß die Propellernabe (110) in einem einachsigen Neigungsgelenk (134') gelagert ist, dessen Neigungsachse (111') zur Kippachse (135') der Antriebseinheit senkrecht verläuft, so daß die Neigbarkeit der Propellernabe (110) um die Neigungsachse (111') gemeinsam mit der Kippbarkeit der Antriebseinheit um die Kippachse (135') der Antriebseinheit eine Neigung der Propellerrotationsebene (113) in alle Richtungen gestattet, wobei die Stellgeschwindigkeit der Nachführeinrichtung für die Kippbewegung um die Kippachse (135') der Antriebseinheit der Stellgeschwindigkeit der fluiddynamisch induzierten Neigungsbewegung der Propellerrotationsebene (113) im wesentlichen entspricht.
43. Antriebseinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in die Propellernabe (110) ein bevorzugt in Planetengetriebebauweise ausgeführtes Untersetzungsgetriebe (123) integriert ist, das von der Abtriebswelle (104) des Antriebs, vorzugsweise über das Doppelkardangelenk (122) oder das Gleichlaufgelenk, rotationsbeaufschlagt ist und das die Drehzahl der Abtriebswelle (104) reduziert an die Propellernabe (110) abgibt.
44. Verfahren zur Steuerung eines Luftfahrzeugs mit Propellerantrieb, dadurch gekennzeichnet, daß der Anstellwinkel der einzelnen Propellerblätter (125, 125') eines jeden Propellers individuell eingestellt wird und daß daraufhin die Propellerrotationsebene (113) induziert durch aerodynamische Kräfte und durch aus diesen resultierende Kreiselkräfte reaktionskraftfrei geneigt wird.
DE19700182A 1997-01-04 1997-01-04 Luftfahrzeug mit einem im wesentlichen als aerostatischem Auftriebskörper ausgebildeten Rumpf Ceased DE19700182A1 (de)

Priority Applications (27)

Application Number Priority Date Filing Date Title
DE19700182A DE19700182A1 (de) 1997-01-04 1997-01-04 Luftfahrzeug mit einem im wesentlichen als aerostatischem Auftriebskörper ausgebildeten Rumpf
JP52963998A JP2001507306A (ja) 1997-01-04 1998-01-02 基本的に空気静力学式上昇体として設計された胴体を有する航空機
DE59813586T DE59813586D1 (de) 1997-01-04 1998-01-02 Antriebseinheit mit zumindest einem eine Propellernabe aufweisenden Propeller
CA002276876A CA2276876A1 (en) 1997-01-04 1998-01-02 Aircraft with a fuselage substantially designed as an aerostatic liftin g body
IDW990626A ID21900A (id) 1997-01-04 1998-01-02 Pesawat terbang dengan badan pesawat yang secara khusus dirancang sebagai pengangkat aerodinamik
PCT/EP1998/000015 WO1998029303A2 (de) 1997-01-04 1998-01-02 Luftfahrzeug mit einem sowohl aerostatischen als auch aerodynamischen auftrieb erzeugenden rumpf und orientierbaren propellern
US09/341,162 US6286783B1 (en) 1997-01-04 1998-01-02 Aircraft with a fuselage substantially designed as an aerodynamic lifting body
EP98904030A EP0948441B1 (de) 1997-01-04 1998-01-02 Luftfahrzeug mit einem im wesentlichen als aerostatischem auftriebskörper ausgebildeten rumpf
DK98904030T DK0948441T3 (da) 1997-01-04 1998-01-02 Luftfartøj med en i det væsentlige som aerostatisk opdriftslegeme udformet fuselage
ES98904030T ES2185145T3 (es) 1997-01-04 1998-01-02 Aeronave con un fuselaje construido en lo esencial como cuerpo ascensional aerostatico.
AT01122153T ATE328787T1 (de) 1997-01-04 1998-01-02 Antriebseinheit mit zumindest einem eine propellernabe aufweisenden propeller
CN98803061A CN1085973C (zh) 1997-01-04 1998-01-02 具有大体设计为空气静力浮力体的机身的飞机
BR9806838-5A BR9806838A (pt) 1997-01-04 1998-01-02 Aeronave com uma fuselagem desenvolvida essencialmente como corpo de sustentação aerostático, unidade de acionamento com pelo menos uma hélice, em especial, para uma aeronave e procedimento para a condução de uma aeronave com acionamento por hélices.
UA99073784A UA49050C2 (uk) 1997-01-04 1998-01-02 Літальний апарат з фюзеляжем, по суті, сконструйованим як аеростатичне підйомне тіло
AT98904030T ATE225279T1 (de) 1997-01-04 1998-01-02 Luftfahrzeug mit einem im wesentlichen als aerostatischem auftriebskörper ausgebildeten rumpf
DE59805790T DE59805790D1 (de) 1997-01-04 1998-01-02 Luftfahrzeug mit einem im wesentlichen als aerostatischem auftriebskörper ausgebildeten rumpf
IL14691598A IL146915A (en) 1997-01-04 1998-01-02 Drive unit for an aircraft
PT98904030T PT948441E (pt) 1997-01-04 1998-01-02 Aeronave com uma fuselagem que no essencial tem a configuracao de um corpo de substituicao aerostatico
RU99114030/28A RU2196703C2 (ru) 1997-01-04 1998-01-02 Летательный аппарат с фюзеляжем, выполненным по существу в виде аэростатического подъемного тела, двигательная установка и способ управления летательным аппаратом
EP01122153A EP1160156B1 (de) 1997-01-04 1998-01-02 Antriebseinheit mit zumindest einem eine Propellernabe aufweisenden Propeller
IL13065598A IL130655A (en) 1997-01-04 1998-01-02 Aircraft with a fuselage substantially designed as an aerostatic lifting body
CZ992332A CZ233299A3 (cs) 1997-01-04 1998-01-02 Letadlo s trupem provedeným v podstatě jako aerostatické vztlakové těleso
SI9830294T SI0948441T1 (en) 1997-01-04 1998-01-02 Aircraft with a fuselage substantially designed as an aerostatic lifting body
PL98334353A PL334353A1 (en) 1997-01-04 1998-01-02 Aircraft with its fuselge shaped essentially so as to fromm an aerostatics lift body
AU62069/98A AU717125B2 (en) 1997-01-04 1998-01-02 Aircraft with a fuselage designed essentially as an aerostatic lift body
US09/903,782 US6467724B2 (en) 1997-01-04 2001-07-11 Articulated drive
CN01135990A CN1123486C (zh) 1997-01-04 2001-10-23 具有大体设计为空气静力浮力体的机身的飞机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19700182A DE19700182A1 (de) 1997-01-04 1997-01-04 Luftfahrzeug mit einem im wesentlichen als aerostatischem Auftriebskörper ausgebildeten Rumpf

Publications (1)

Publication Number Publication Date
DE19700182A1 true DE19700182A1 (de) 1998-07-09

Family

ID=7816849

Family Applications (3)

Application Number Title Priority Date Filing Date
DE19700182A Ceased DE19700182A1 (de) 1997-01-04 1997-01-04 Luftfahrzeug mit einem im wesentlichen als aerostatischem Auftriebskörper ausgebildeten Rumpf
DE59805790T Expired - Lifetime DE59805790D1 (de) 1997-01-04 1998-01-02 Luftfahrzeug mit einem im wesentlichen als aerostatischem auftriebskörper ausgebildeten rumpf
DE59813586T Expired - Lifetime DE59813586D1 (de) 1997-01-04 1998-01-02 Antriebseinheit mit zumindest einem eine Propellernabe aufweisenden Propeller

Family Applications After (2)

Application Number Title Priority Date Filing Date
DE59805790T Expired - Lifetime DE59805790D1 (de) 1997-01-04 1998-01-02 Luftfahrzeug mit einem im wesentlichen als aerostatischem auftriebskörper ausgebildeten rumpf
DE59813586T Expired - Lifetime DE59813586D1 (de) 1997-01-04 1998-01-02 Antriebseinheit mit zumindest einem eine Propellernabe aufweisenden Propeller

Country Status (19)

Country Link
US (2) US6286783B1 (de)
EP (2) EP0948441B1 (de)
JP (1) JP2001507306A (de)
CN (2) CN1085973C (de)
AT (2) ATE225279T1 (de)
AU (1) AU717125B2 (de)
BR (1) BR9806838A (de)
CA (1) CA2276876A1 (de)
CZ (1) CZ233299A3 (de)
DE (3) DE19700182A1 (de)
DK (1) DK0948441T3 (de)
ES (1) ES2185145T3 (de)
ID (1) ID21900A (de)
IL (1) IL130655A (de)
PL (1) PL334353A1 (de)
PT (1) PT948441E (de)
RU (1) RU2196703C2 (de)
UA (1) UA49050C2 (de)
WO (1) WO1998029303A2 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10153582A1 (de) * 2001-11-02 2003-05-22 Lufthansa Engineering And Oper Verfahren und Vorrichtung zum Enteisen der Oberfläche von Luftfahrzeugen
EP2527245A1 (de) * 2006-10-20 2012-11-28 LTA Corporation Linsenförmiges Luftschiff
DE102013011861A1 (de) * 2013-07-16 2015-01-22 Horst Balter Ballon/Heißluftballon/Zeppelin/Ballon bzw. Heißluftballon/Zeppelin-Kombination aus einem oder mehreren Auftriebskörpern zu einem Gesamtsystem
EP3098161A1 (de) * 2015-05-26 2016-11-30 Airbus Defence and Space GmbH Senkrechtstartfähiges fluggerät
CN109050838A (zh) * 2018-08-16 2018-12-21 浙江大学 基于矢量推进的水下直升机
DE102018116172A1 (de) 2018-07-04 2020-01-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Luftfahrzeug
WO2021152112A1 (de) * 2020-01-29 2021-08-05 Freiherr Von Gablenz Carl Heinrich Multifunktions-luftschiff mit einem oloiden/ellipsoloiden tragkörper mit spezifischer anordnung von triebwerken zur optimierung der flugeigenschaften des multifunktions-luftschiffs

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2375090A (en) * 2001-01-17 2002-11-06 David Henry Foote Rotor tilting system, eg for helicopters
US6648272B1 (en) 2001-06-28 2003-11-18 Keith L. Kothmann Airship
US20040146917A1 (en) * 2001-08-03 2004-07-29 Nanosphere, Inc. Nanoparticle imaging system and method
DE20115193U1 (de) 2001-09-14 2002-01-17 Kuenkler Hermann Luftfahrzeug mit einem im unteren Rumpfbereich vorgesehenen Frachtraum
FR2831938B1 (fr) * 2001-11-07 2004-02-20 Eurocopter France Installation de lubrification pour boite de transmission de puissance basculante
FR2842271B1 (fr) * 2002-07-15 2004-09-10 Eurocopter France Boite de transmissiion de puissance basculante a transfert de charge par le carter
US6860449B1 (en) 2002-07-16 2005-03-01 Zhuo Chen Hybrid flying wing
US6719244B1 (en) * 2003-02-03 2004-04-13 Gary Robert Gress VTOL aircraft control using opposed tilting of its dual propellers or fans
CN1521084B (zh) * 2003-02-15 2014-03-19 刘春桥 复合飞艇
US20040232727A1 (en) * 2003-05-23 2004-11-25 Lyakir Vitaliy L. Automobile body having improved aerodynamic shape
US7472863B2 (en) * 2004-07-09 2009-01-06 Steve Pak Sky hopper
US7156342B2 (en) * 2004-09-27 2007-01-02 Ltas Holdings, Llc Systems for actively controlling the aerostatic lift of an airship
US8061343B2 (en) * 2004-10-21 2011-11-22 Deka Products Limited Partnership Controllable launcher
DE102004061977B4 (de) * 2004-12-23 2008-04-10 Lfk-Lenkflugkörpersysteme Gmbh Klein-Flugkörper
US7108228B1 (en) * 2005-02-02 2006-09-19 Manfred Marshall Hydrogen-fueled spacecraft
US8016225B2 (en) * 2005-11-19 2011-09-13 Francis Xavier Gentile Damage resistant aircraft
US20080011900A1 (en) * 2006-07-15 2008-01-17 Javier Quintana Apparatus and method to control the flight dynamics in a lighter-than-air airship
CA2557893A1 (en) * 2006-08-29 2008-02-29 Skyhook International Inc. Hybrid lift air vehicle
US7487936B2 (en) * 2006-10-23 2009-02-10 Ltas Holdings, Llc Buoyancy control system for an airship
GB2445744B (en) * 2007-01-16 2011-07-13 Hugh Michael Bonnin Stewart Hybrid air vehicle having air-cushion landing gear mounted under the payload module/cabin
US7874515B2 (en) * 2007-01-25 2011-01-25 Lockheed-Martin Corporation Air vehicle propulsion system on gimbaled truss
EP2121439B1 (de) * 2007-02-16 2012-11-14 Donald Orval Shaw Modulares fliegendes fahrzeug
NL2000529C2 (nl) * 2007-03-08 2008-09-09 Sst Condor Holding B V I O Vliegtuig ingericht voor verticaal opstijgen en landen.
CA2693379C (en) * 2007-08-09 2016-05-31 Lta Corporation Lenticular airship and associated controls
US8109802B2 (en) 2007-09-15 2012-02-07 Mattel, Inc. Toy helicopter having a stabilizing bumper
US8894002B2 (en) 2010-07-20 2014-11-25 Lta Corporation System and method for solar-powered airship
US8042772B2 (en) 2008-03-05 2011-10-25 The Boeing Company System and method for pneumatically actuating a control surface of an airfoil
US20090283630A1 (en) * 2008-05-15 2009-11-19 Al-Garni Ahmed Z Lighter-than-air vehicle for shading
US8857758B2 (en) 2008-05-15 2014-10-14 King Fahd University Of Petroleum And Minerals Lighter-than-air vehicle for shading
US8308104B2 (en) * 2008-06-13 2012-11-13 Kamyar Brothers Aircraft having a rotating turbine engine
US8245966B2 (en) 2009-02-04 2012-08-21 21St Century Airship Technologies Inc. Airship and vectored propeller drive therefor
DE102009012998A1 (de) * 2009-03-13 2010-09-16 Airbus Deutschland Gmbh Fördereinrichtung für Flugzeuge
WO2010135604A2 (en) * 2009-05-20 2010-11-25 Joby Energy, Inc. System and method for generating electrical power using a tethered airborne power generation system
IL199009A (en) * 2009-05-27 2013-11-28 Israel Aerospace Ind Ltd aircraft
ES2354796B1 (es) * 2009-05-28 2011-12-27 Vicente Gamon Polo Vehículo volador.
US20110042510A1 (en) * 2009-08-24 2011-02-24 Bevirt Joeben Lightweight Vertical Take-Off and Landing Aircraft and Flight Control Paradigm Using Thrust Differentials
US8727280B1 (en) 2009-12-08 2014-05-20 The Boeing Company Inflatable airfoil system having reduced radar and infrared observability
US8931739B1 (en) * 2009-12-08 2015-01-13 The Boeing Company Aircraft having inflatable fuselage
US20110198438A1 (en) * 2010-02-18 2011-08-18 21St Century Airship Technologies Inc. Propulsion and steering system for an airship
US8590828B2 (en) * 2010-02-24 2013-11-26 Robert Marcus Rotocraft
US8622337B2 (en) * 2010-03-30 2014-01-07 King Abdulaziz City For Science And Technology Airship for transportation
WO2012039810A1 (en) * 2010-06-29 2012-03-29 Aerovironment, Inc. Uav having hermetically sealed modularized compartments and fluid drain ports
USD670638S1 (en) 2010-07-20 2012-11-13 Lta Corporation Airship
US9987506B2 (en) 2010-12-15 2018-06-05 Robert Marcus UAV—or personal flying device—delivered deployable descent device
CA2830799A1 (en) 2011-03-31 2012-10-04 Lta Corporation Airship including aerodynamic, floatation, and deployable structures
CN102407933B (zh) * 2011-10-08 2013-09-11 西安森兰科贸有限责任公司 本质安全型矿用救援飞行器
US20130105635A1 (en) * 2011-10-31 2013-05-02 King Abdullah II Design and Development Bureau Quad tilt rotor vertical take off and landing (vtol) unmanned aerial vehicle (uav) with 45 degree rotors
USD665332S1 (en) * 2011-11-21 2012-08-14 Nortavia—Transportes Aereos S.A. Aircraft
CN102897311A (zh) * 2012-10-29 2013-01-30 中国科学院光电研究院 超压碟形浮升一体飞行器
CN102910286A (zh) * 2012-11-09 2013-02-06 许宏伟 一种低空飞行器
US9845141B2 (en) 2012-12-07 2017-12-19 Raven Industries, Inc. Atmospheric balloon system
US9193480B2 (en) 2012-12-07 2015-11-24 Raven Industries, Inc. High altitude balloon system
RU2536421C2 (ru) * 2013-04-12 2014-12-20 Общество с ограниченной ответственностью ОКБ "АТЛАНТ Силовая установка с изменяемым вектором тяги
CA2929507A1 (en) 2013-11-04 2015-07-23 Lta Corporation Cargo airship
FR3014838B1 (fr) * 2013-12-17 2015-12-25 Eurocopter France Giravion equipe d'un rotor arriere anti couple participant selectivement a la sustentation et a la propulsion en translation du giravion
US9708059B2 (en) * 2014-02-19 2017-07-18 The United States Of America As Represented By The Adminstrator Of The National Aeronautics And Space Administration Compound wing vertical takeoff and landing small unmanned aircraft system
RU2550797C1 (ru) * 2014-04-09 2015-05-10 Рудольф Львович Гроховский Дирижабль
US9296477B1 (en) * 2014-07-21 2016-03-29 Glenn Coburn Multi-rotor helicopter
WO2016022040A1 (ru) * 2014-08-05 2016-02-11 Ардн Технолоджи Лимитед Аэромобиль
US11014658B1 (en) * 2015-01-02 2021-05-25 Delbert Tesar Driveline architecture for rotorcraft featuring active response actuators
US20160221661A1 (en) 2015-02-02 2016-08-04 Derek Lee Bohannon Tendon sleeve for high-altitude balloon and system for making the same
JP5875093B1 (ja) 2015-06-17 2016-03-02 浩平 中村 浮揚型飛行体
CN104950908B (zh) * 2015-07-02 2017-08-15 上海交通大学 平流层飞艇水平位置控制***及实现方法
CN104960658A (zh) * 2015-07-21 2015-10-07 中国科学院光电研究院 一种倾转装置
CN106608350B (zh) * 2015-10-22 2024-03-15 深圳光启合众科技有限公司 多旋翼飞行器
US10919610B2 (en) * 2015-11-05 2021-02-16 Elio Tecnologia, Serviços E Participaçoes Ltda. Unmanned ellipsoid multi-rotor airship and respective method of construction
US10367447B2 (en) * 2015-12-16 2019-07-30 Skycom Corporation Lighter-than-air aircraft and method to reduce leakage within a flexible bladder
US11548650B2 (en) * 2016-02-05 2023-01-10 Brendon G. Nunes Hybrid airship
JP6617901B2 (ja) * 2016-03-10 2019-12-11 パナソニックIpマネジメント株式会社 飛行体
CN107618647A (zh) * 2016-07-13 2018-01-23 深圳光启空间技术有限公司 飞艇
CN107618648A (zh) * 2016-07-14 2018-01-23 深圳光启空间技术有限公司 飞艇
RU2642210C1 (ru) * 2016-12-22 2018-01-24 Александр Александрович Перфилов Воздухоплавательный аппарат
EP3354559B1 (de) * 2017-01-26 2019-04-03 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Eine schuberzeugungseinheit mit mindestens zwei rotorbaugruppen und einer ummantelung
US11254450B2 (en) 2017-02-06 2022-02-22 Charles Ronald Grigg Air and space craft with enhanced lift
CN107021209A (zh) * 2017-04-21 2017-08-08 杨爱迪 全要素矢量推进***
RU2652373C1 (ru) * 2017-05-31 2018-04-25 Александр Александрович Перфилов Воздухоплавательный аппарат
WO2019092471A1 (en) * 2017-11-13 2019-05-16 Total Sa A method for transporting a payload to a target location, and related hybrid airship
RU2684813C1 (ru) * 2018-02-19 2019-04-15 Дмитрий Атбашьян Узел подвешивания и регулирования угла вектора тяги двигателя
US12006048B2 (en) 2018-05-31 2024-06-11 Joby Aero, Inc. Electric power system architecture and fault tolerant VTOL aircraft using same
JP2021525673A (ja) 2018-05-31 2021-09-27 ジョビー エアロ, インコーポレイテッドJoby Aero, Inc. 電力システムアーキテクチャとこれを用いたフォールトトレラントvtol航空機
WO2020009871A1 (en) 2018-07-02 2020-01-09 Joby Aero, Inc. System and method for airspeed determination
EP3853736A4 (de) 2018-09-17 2022-11-16 Joby Aero, Inc. Flugzeugsteuerungssystem
WO2020118310A1 (en) 2018-12-07 2020-06-11 Joby Aero, Inc. Rotary airfoil and design method therefor
JP7275272B2 (ja) 2018-12-07 2023-05-17 ジョビー エアロ,インコーポレイテッド 航空機制御システム及び方法
US10845823B2 (en) 2018-12-19 2020-11-24 Joby Aero, Inc. Vehicle navigation system
US11230384B2 (en) 2019-04-23 2022-01-25 Joby Aero, Inc. Vehicle cabin thermal management system and method
EP3959770A4 (de) 2019-04-23 2023-01-04 Joby Aero, Inc. Wärmeverwaltungssystem und -verfahren für batterie
JP2022530463A (ja) 2019-04-25 2022-06-29 ジョビー エアロ インク 垂直離着陸航空機
US11338914B2 (en) * 2019-06-09 2022-05-24 Textron Innovations Inc. Differential thrust vectoring system
CN114340998A (zh) * 2019-10-09 2022-04-12 小鹰公司 用于不同飞行模式的混合功率***
US11106221B1 (en) * 2019-11-25 2021-08-31 Kitty Hawk Corporation Multicopter with self-adjusting rotors
CN111219450B (zh) * 2020-01-20 2021-03-30 张世栋 一种传动转向集成式齿轮箱
US10926654B1 (en) 2020-03-31 2021-02-23 Kitty Hawk Corporation Electric vertical take-off and landing vehicle with wind turbine
JP6934145B1 (ja) * 2020-05-28 2021-09-15 楽天グループ株式会社 飛行体
FR3122165A1 (fr) 2021-04-21 2022-10-28 Safran Nacelles Ensemble propulsif, en particulier d’aéronef, pour la protection à l’encontre d’un effort de balourd et procédé de protection
CN113060280B (zh) * 2021-05-13 2021-11-02 哈尔滨学院 一种多自由度遥感无人机
US20230227142A1 (en) * 2022-01-18 2023-07-20 ZeroAvia, Inc. Gimbaling cyclic thrust vectoring
CN114379761A (zh) * 2022-02-17 2022-04-22 青岛飞宇航空科技有限公司 一种气囊硬性支撑物的结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1326760A (en) * 1919-12-30 macinante
US4591112A (en) * 1975-09-09 1986-05-27 Piasecki Aircraft Corporation Vectored thrust airship
DE3729149A1 (de) * 1987-09-01 1989-04-27 Bruno Kleine Hub- und drachenflugzeug

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE210003C (de) *
FR1391203A (fr) * 1964-02-20 1965-03-05 Hélice à diamètre variable
US3567157A (en) * 1966-12-30 1971-03-02 Boeing Co Aircraft propulsion mounting arrangement
US3486717A (en) * 1967-05-09 1969-12-30 Bell Aerospace Corp Prop-rotor pylon stabilization means
US3633849A (en) * 1969-02-25 1972-01-11 Alberto Kling Flying craft
US3592412A (en) * 1969-10-03 1971-07-13 Boeing Co Convertible aircraft
US3997131A (en) * 1973-12-12 1976-12-14 Alberto Kling Rotor means for an aircraft
FR2286053A1 (fr) * 1974-09-27 1976-04-23 Aerospatiale Aerostat stabilise et pilote
CA1054124A (en) * 1975-09-09 1979-05-08 Frank N. Piasecki Vectored thrust airship
DE2659401A1 (de) * 1975-12-31 1977-08-04 Lightspeed Usa Inc Luftschiff
DE3508100A1 (de) * 1985-03-07 1986-09-11 Hans Jürgen 5475 Burgbrohl Bothe Hybrid-flugzeug
GB2197276B (en) * 1986-09-26 1990-04-04 Airship Ind Improvements in airships
US4995572A (en) * 1989-06-05 1991-02-26 Piasecki Aircraft Corporation High altitude multi-stage data acquisition system and method of launching stratospheric altitude air-buoyant vehicles
RU2009073C1 (ru) * 1989-12-19 1994-03-15 Володар Иванович Бирюлев Аэростатический комбинированный летательный аппарат
DE4132718A1 (de) * 1991-10-01 1993-04-22 Guenter Schleicher Luftschiff fuer den einsatz ohne hilfspersonal bei starts und landungen
AU2232192A (en) * 1992-02-17 1993-09-03 Hashimoto, Megumi Device for landing airship or the like
US5381985A (en) * 1992-04-23 1995-01-17 Mcdonnell Douglas Helicopter Co. Wingtip mounted, counter-rotating proprotor for tiltwing aircraft
JP3468783B2 (ja) * 1992-08-20 2003-11-17 睦郎 豊東 全方向推進型飛行船
DE4318985C2 (de) * 1993-06-08 1999-01-07 Zeppelin Luftschiffbau Lande- und Verankerungsvorrichtung für ein Luftschiff
US5368256A (en) * 1993-08-19 1994-11-29 Lockheed Corporation Propulsion system for a lighter-than-air vehicle
US5449129A (en) * 1994-02-18 1995-09-12 Lockheed Corporation Propulsion system for a lighter-than-air vehicle
DE4422987C2 (de) * 1994-06-30 1996-07-18 Wilmowsky Freiherr Von Kaspar Kipprotorhubschrauber
US5823468A (en) * 1995-10-24 1998-10-20 Bothe; Hans-Jurgen Hybrid aircraft
US5740987A (en) * 1995-12-01 1998-04-21 Morris; Joseph J. Helicopter cyclic control assembly
US5853145A (en) * 1997-01-09 1998-12-29 Cartercopters, Llc Rotor head for rotary wing aircraft

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1326760A (en) * 1919-12-30 macinante
US4591112A (en) * 1975-09-09 1986-05-27 Piasecki Aircraft Corporation Vectored thrust airship
DE3729149A1 (de) * 1987-09-01 1989-04-27 Bruno Kleine Hub- und drachenflugzeug

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10153582A1 (de) * 2001-11-02 2003-05-22 Lufthansa Engineering And Oper Verfahren und Vorrichtung zum Enteisen der Oberfläche von Luftfahrzeugen
EP2527245A1 (de) * 2006-10-20 2012-11-28 LTA Corporation Linsenförmiges Luftschiff
EP2537744A1 (de) * 2006-10-20 2012-12-26 LTA Corporation Linsenförmiges Luftschiff
EP2537743A1 (de) * 2006-10-20 2012-12-26 LTA Corporation Linsenförmiges Luftschiff
DE102013011861A1 (de) * 2013-07-16 2015-01-22 Horst Balter Ballon/Heißluftballon/Zeppelin/Ballon bzw. Heißluftballon/Zeppelin-Kombination aus einem oder mehreren Auftriebskörpern zu einem Gesamtsystem
DE102013011861B4 (de) 2013-07-16 2023-07-06 Horst Balter Ballon/Heißluftballon/Zeppelin/Ballon bzw. Heißluftballon/Zeppelin-Kombination aus einem oder mehreren Auftriebskörpern zu einem Gesamtsystem
EP3098161A1 (de) * 2015-05-26 2016-11-30 Airbus Defence and Space GmbH Senkrechtstartfähiges fluggerät
RU2674224C2 (ru) * 2015-05-26 2018-12-05 Эрбас Дифенс Энд Спейс Гмбх Выполненный с возможностью вертикального взлета летательный аппарат
US10518875B2 (en) 2015-05-26 2019-12-31 Airbus Defence and Space GmbH Vertical take-off aircraft
DE102018116172A1 (de) 2018-07-04 2020-01-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Luftfahrzeug
CN109050838A (zh) * 2018-08-16 2018-12-21 浙江大学 基于矢量推进的水下直升机
WO2021152112A1 (de) * 2020-01-29 2021-08-05 Freiherr Von Gablenz Carl Heinrich Multifunktions-luftschiff mit einem oloiden/ellipsoloiden tragkörper mit spezifischer anordnung von triebwerken zur optimierung der flugeigenschaften des multifunktions-luftschiffs

Also Published As

Publication number Publication date
ATE225279T1 (de) 2002-10-15
WO1998029303B1 (de) 1999-10-07
PL334353A1 (en) 2000-02-28
CA2276876A1 (en) 1998-07-09
CN1249720A (zh) 2000-04-05
RU2196703C2 (ru) 2003-01-20
EP0948441B1 (de) 2002-10-02
IL130655A0 (en) 2000-06-01
EP1160156A3 (de) 2003-05-21
ID21900A (id) 1999-08-12
US6467724B2 (en) 2002-10-22
EP1160156A2 (de) 2001-12-05
CN1392083A (zh) 2003-01-22
ES2185145T3 (es) 2003-04-16
CN1123486C (zh) 2003-10-08
DK0948441T3 (da) 2003-02-03
WO1998029303A3 (de) 1998-11-05
JP2001507306A (ja) 2001-06-05
CN1085973C (zh) 2002-06-05
IL130655A (en) 2003-04-10
PT948441E (pt) 2003-02-28
DE59813586D1 (de) 2006-07-20
ATE328787T1 (de) 2006-06-15
CZ233299A3 (cs) 1999-12-15
US20020003189A1 (en) 2002-01-10
BR9806838A (pt) 2000-03-14
UA49050C2 (uk) 2002-09-16
US6286783B1 (en) 2001-09-11
WO1998029303A2 (de) 1998-07-09
AU717125B2 (en) 2000-03-16
DE59805790D1 (de) 2002-11-07
EP1160156B1 (de) 2006-06-07
AU6206998A (en) 1998-07-31
EP0948441A2 (de) 1999-10-13
WO1998029303A8 (de) 1999-11-11

Similar Documents

Publication Publication Date Title
EP0948441B1 (de) Luftfahrzeug mit einem im wesentlichen als aerostatischem auftriebskörper ausgebildeten rumpf
DE2922059C2 (de) Verbundflugzeug
DE3421115A1 (de) Luft- lastenhubeinrichtung
DE3929886A1 (de) Flugzeug mit um eine querachse kippbaren triebwerksgondeln
DE69920876T2 (de) Unbemannter hubschrauber
DE102006028885B4 (de) Senkrechtstartendes Hybridflugzeug
DE2422081A1 (de) Fluggeraet
DE2640433C2 (de) Schubvektor-Luftschiff
WO2000073142A2 (de) Leichter-als-luft-flugapparat und verfahren zum steuern eines solchen flugapparats
US1761444A (en) Aircraft construction
EP0754620B1 (de) Kipprotorhubschrauber
DE4443731A1 (de) V/STOL-Flugzeug
DE2556907C2 (de)
DE2054536A1 (de) Kombiniertes Flug- und Bodeneffektgerät
EP3168567B1 (de) Unbemannter flugkörper
EP1685024B1 (de) Luftfahrzeug
DE10203431A1 (de) Verfahren und Vorrichtung zum Transport von Gütern mittels eines Flugverbunds aus Aerostaten
DE3636454A1 (de) Fluggeraet, insbesondere drehfluegelfluggeraet in der art eines flugschraubers fuer hoehere fluggeschwindigkeiten
AT411987B (de) Kippflügelflugzeug
DE202024101871U1 (de) Luftfahrzeug
WO2023110533A1 (de) Vtol-luftfahrzeug mit batterieelektrischem antrieb und verbrennungsmotor
DE1406514C (de) Senkrecht startendes und lan dendes Flugzeug
DE10141838C1 (de) Luftschiff
DE19924464A1 (de) Leichter-als-Luft-Flugapparat
CH383784A (de) Propellergetriebenes Verwandlungsflugzeug mit Starrflügel

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: ECONOFLUG GMBH, 50674 KOELN, DE

8127 New person/name/address of the applicant

Owner name: ECONOFLUG AG, 50674 KOELN, DE

8127 New person/name/address of the applicant

Owner name: IABG INDUSTRIEANLAGEN-BETRIEBSGESELLSCHAFT MBH, 85

8125 Change of the main classification

Ipc: B64C 2900

8131 Rejection
8127 New person/name/address of the applicant

Owner name: KUENKLER, HERMANN, DR., 85521 OTTOBRUNN, DE