DE10047491B4 - Verfahren zum Umformen von Strukturen aus Aluminium-Legierungen - Google Patents

Verfahren zum Umformen von Strukturen aus Aluminium-Legierungen Download PDF

Info

Publication number
DE10047491B4
DE10047491B4 DE10047491A DE10047491A DE10047491B4 DE 10047491 B4 DE10047491 B4 DE 10047491B4 DE 10047491 A DE10047491 A DE 10047491A DE 10047491 A DE10047491 A DE 10047491A DE 10047491 B4 DE10047491 B4 DE 10047491B4
Authority
DE
Germany
Prior art keywords
component
holding device
temperature
contour
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE10047491A
Other languages
English (en)
Other versions
DE10047491A1 (de
Inventor
Stephane Jambu
Knut Juhl
Blanka Dr. Lenczowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Operations GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE10047491A priority Critical patent/DE10047491B4/de
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Priority to PCT/EP2001/009821 priority patent/WO2002026414A1/de
Priority to ES01965216T priority patent/ES2228944T3/es
Priority to EP01965216A priority patent/EP1320430B1/de
Priority to CA002423566A priority patent/CA2423566C/en
Priority to CNB018155340A priority patent/CN1230265C/zh
Priority to DE2001504142 priority patent/DE50104142D1/de
Priority to JP2002530234A priority patent/JP4776866B2/ja
Priority to US10/381,476 priority patent/US7217331B2/en
Priority to RU2003112217/02A priority patent/RU2271891C2/ru
Publication of DE10047491A1 publication Critical patent/DE10047491A1/de
Application granted granted Critical
Publication of DE10047491B4 publication Critical patent/DE10047491B4/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/021Deforming sheet bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/053Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure characterised by the material of the blanks
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

Verfahren zum Umformen von Strukturen aus Aluminium-Legierungen, insbesondere aus naturharten AlMg-, naturharten AlMgSc- und/oder aushärtbaren AlMgLi-Legierungen, gekennzeichnet durch die Schritte:
a) elastisches Formen eines umzuformenden Bauteils (1) unter externer Krafteinwirkung (F, P, p), wobei das Bauteil (1) die Kontur (2a) einer Halteeinrichtung (2) einnimmt, die der gewünschten Endform (1a) des Bauteils (1) entspricht;
b) Erwärmen des elastisch geformten Bauteils (1) auf eine Temperatur (T1) größer als die für eine Kriechumformung und Spannungsrelaxation der Legierung erforderlichen Temperatur, so dass das Bauteil (1) unter Beibehaltung der im Schritt a) durch elastische Formung aufgeprägten Endform (1a) umgeformt wird.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Umformen von Strukturen aus Aluminium-Legierungen, insbesondere aus naturharten AlMg-, naturharten AlMgSc-, und/oder aushärtbaren AlMgLi-Legierungen.
  • In der Luft- und Raumfahrttechnik werden komplexe Strukturen mit hoher Festigkeit und Steifigkeit benötigt, die unter Berücksichtigung von Gewicht und aerodynamischen Gesichtspunkten ein optimales Design aufweisen müssen. Derartige Strukturen bzw. Formteile erfassen beispielsweise Flügelhautflächen, Abdeck- und Tankelemente für Raumfahrzeuge, Flugzeugrumpfflächen mit Strukturversteifungselementen wie Stringer und Spante. Die konturgenaue und zeichnungsgerechte Herstellung solcher Formteile aus Aluminium-Legierungen ist in der Regel schwierig und erfordert zumeist mehrere Umformschritte der Einzelkomponenten mit entsprechenden Zwischenglühbehandlungen.
  • Die Umsetzung von geschweißten Integralbauweisen im Flugzeugbau setzt die Verwendung gut schweißbarer, korrosionsbeständiger Werkstoffe wie AlMgSc- und AlMgLi-Legierungen voraus. Diese Legierungen weisen aufgrund ihres Eigenschaftsspektrums nur eine sehr begrenzte Duktilität auf. Dadurch ist eine Formgebung zur gewünschten Endkontur mit konventionellen Methoden teilweise nicht möglich, da das Formänderungsvermögen nicht ausreichend ist.
  • Heutiger Stand der Technik ist, daß die Außenhautfelder aus Blechen der Legierung AA2024 im lösungsgeglühten Zustand mittels Streckziehen umgeformt werden. Beim Streckziehen, das sowohl im kalten als auch im warmen Zustand durchgeführt werden kann, wird bekannterweise die umzuformende Struktur in einem oder mehreren Schritten bzw. Phasen (vgl. DE 195 04 649 C1 ) umgeformt. Dabei kann die umzuformende Struktur zunächst in Längsrichtung und anschließend über ein Formteil gezogen werden, das die gewünschte Endkontur aufweist.
  • Nachteilig ist hierbei, daß interne Spannungen durch den Formvorgang im Material entstehen, welche durch Überlagerung von Betriebslasten zum Versagen der Struktur führen können. Ferner ist ein Umformen in eine Struktur mit sphärischer Krümmung, d.h. mit Krümmungen entlang unterschiedlicher Raumrichtungen, schwierig und erfordert entsprechend ausgelegte Maschinen und formstabile Werkzeuge. Zudem wird die umzuformende Struktur durch Anbringen von Spannbacken meist an den Außenrändern verletzt, so daß diese Bereiche z.B. durch konturfräsen entfernt werden müssen. Dies führt nicht nur zu einem Materialverlust, sondern erfordert auch einen weiteren Bearbeitungsschritt, der zu unnötigem Aufwand und damit verbundenem Zeitverlust führt.
  • Bei den AlMg-Legierungen beobachtet man zudem bei Raumtemperaturumformung eine diskontinuierliche Verformung und die Ausbildung von charakteristischen Oberflächenerscheinungen, die auch als Lüder'sche Linien bezeichnet werden und sich störend auf die Materialeigenschaften auswirken können.
  • Ferner hat sich gezeigt, daß die Gruppe der AlMg-Legierungen eine planare Anisotropie mit einem r-Wertminimum in L-Richtung (Walzrichtung) aufweisen. Dies bedeutet, daß der Materialfluß beim Streckziehen zum Großteil aus der Blechdicke erfolgt und deshalb die umzuformende Struktur früher zur örtlichen Ausdünnung und zu vorzeitigem Versagen neigt. Ferner führt die Reduzierung der Blechdicke durch die Streckung dazu, daß das Erreichen einer zeichnungsgerechten Enddicke nur mit gleichmäßigen Dehnungsgraden erreicht werden kann und somit bei Bauteilen mit großen Abwicklungsunterschieden nur schwer zu realisieren ist.
  • Neben dem Streckziehen wird zum Umformen bekannterweise auch ein Aushärteverfahren verwendet, das beispielsweise unter Druck- und Temperatureinwirkung in einem Autoklaven oder Ofen durchgeführt wird, bei dem gleichzeitig ein Aushärteeffekt eintritt. Dieser sog. „age forming"-Prozeß wird für aushärtbare Al-Legierungen der 2xxx, 6xxx, 7xxx und 8xxx-Serien verwendet. Dabei erfolgt zunächst unter Druck- bzw. Krafteinwirkung eine elastische Formung der umzuformenden Struktur. Die umzuformende Struktur schmiegt sich an ein Formteil an, das einen kleineren Krümmungsradius als das fertige Bauteil aufweist, um dem sog. „Springback"-Effekt Rechnung zu tragen. Die umzuformende Struktur wird also zunächst über die gewünschte Endform hinaus geformt. Durch anschließende Erwärmung auf die legierungsspezifische Aushärtetemperatur erfolgt eine Formänderung unter teilweiser Spannungsrelaxation, wie das z.B. in dem Artikel von D.M. Hambrick, „Age forming technology expanded in an autoclave", SAE Technical Paper Series, General Aviation Aircraft Meeting and Exhibition, Wichita, Kansas April 16–19, 1985, No. 850885 beschrieben ist. Dies führt dazu, dass das Bauteil beim Abkühlen zu einem gewissen Grad rückfedert und erst dann die Endform einnimmt. Somit weist die umgeformte Struktur nach dem Abkühlen und Entlasten einen größeren Krümmungsradius auf als vor der Erwärmung. Dies ist vor allem für die Herstellung von Formteilen problematisch, da der „Springback"-Effekt mit hoher Genauigkeit vorausgesagt werden muss, um das Formteil so zu entwerfen, dass letztendlich das fertige Bauteil die gewünschte Endform einnimmt. Dies erfordert wiederum eine aufwendige Simulation des „Springback"-Effekts, wie z.B. in den Druckschriften EP 0517982 A1 und EP 0527570 B1 beschrieben ist.
  • Neben den heute verwendeten aushärtbaren Legierungen (z.B. AA2024, AA6013, AA6056) sind für zukünftige Flugzeuggenerationen neue naturharte, d.h. nichtaushärtbare Legierungen entwickelt worden, die im Gegensatz zu den etablierten Legierungen aus metallurgischen Gründen nicht lösungsgeglüht werden können, da dies zu einem irreversiblen Festigkeitsverlust führen würde. Somit lassen sich die neuen Werkstoffe nicht problemlos durch konventionelle Verfahren umformen. Aufgrund dessen sind Alternativen für die Herstellung doppelt gekrümmter bzw. sphärischer Hautfelder erforderlich.
  • Somit ist es die Aufgabe der vorliegenden Erfindung, ein Umformverfahren zu schaffen, mit dem auf einfache Weise, d.h. mit möglichst wenig Prozessschritten, komplexe Strukturen ohne nennenswerten „Springback"-Effekt umgeformt werden können.
  • Die Aufgabe wird erfindungsgemäß mit den Merkmalen des Patentanspruchs 1 gelöst. Dabei wird ein umzuformendes Bauteil aus den erfindungsgemäßen Legierungen unter externer Krafteinwirkung elastisch geformt und nimmt dabei seine gewünschte Endform ein, und das elastisch geformte Bauteil wird anschließend auf eine Temperatur größer als die zur Kriechumformung und Spannungsrelaxation der Legierung erforderlichen Temperatur erwärmt, so dass das Bauteil möglichst unter Beibehaltung seiner Endform umgeformt wird.
  • Auf diese Weise wird erreicht, daß das Bauteil ohne nennenswerte Rückfederung unter Wärmeeinwirkung umgeformt wird und dabei die durch die elastische Formung eingeprägte Endform nahezu beibehält. Das Bauteil weist also nach der Umformung und anschließenden Abkühlung prinzipiell die selbe Krümmung auf wie vor der Wärmebehandlung. Dies hat den Vorteil, daß die zur elastischen Formung verwendeten Formteile bzw. Halteeinrichtungen mit ausreichender Genauigkeit die selbe Form wie die theoretische Form des Bauteils aufweisen und somit eine komplexe Simulation zum Vorhersagen des „Springback"-Effekts nicht erforderlich ist.
  • Die elastische Formung des Bauteils vor der Wärmebehandlung, wobei das Bauteil bereits seine gewünschte Endform einnimmt, kann gemäß einer ersten Ausführungsform derart durchgeführt werden, daß nach dem Einlegen des umzuformenden Bauteils in eine Halteeinrichtung eine externe Kraft auf das Bauteil einwirkt, woraufhin das Bauteil unter elastischer Formung sich an die Kontur der Halteeinrichtung anschmiegt. Die externe Kraft kann dabei über eine mechanische Druck- bzw. Stempeleinrichtung übertragen werden, die das Bauteil in Richtung Halteeinrichtung drückt. Alternativ kann die elastische Formung durch Einwirken eines äußeren Druckes erfolgen, der beispielsweise in einem evakuierten Raum erzeugt wird.
  • Gemäß einer weiteren Ausführungsform ist es zweckmäßig, daß auf das in die Halteeinrichtung eingelegte Bauteil eine äußere Kraft derart einwirkt, daß sich das Bauteil in Richtung Halteeinrichtung elastisch durchbiegt, so daß zwischen Bauteil und Halteeinrichtung ein Hohlraum entsteht. Dieser Hohlraum wird dann mit einem Dichtmaterial abgedichtet und anschließend evakuiert. Durch den entstehenden Unterdruck schmiegt sich das Bauteil unter elastischer Formung an die Kontur der Halteeinrichtung vollständig an und nimmt die gewünschte Endform ein. Danach erfolgt unter Wärmeeinwirkung bei Temperaturen, die oberhalb der für die Kriechumformung und Spannungsrelaxation der Legierung erforderlichen Temperatur liegen, die Umformung des Bauteils.
  • Der Vorteil liegt also nicht nur darin, daß die Kontur der Halteeinrichtung der gewünschten Endform des umzuformenden Bauteils entspricht, sondern auch in der Tatsache, daß die Formung durch Einwirken der externen Kräfte rein elastischer Natur ist. Dies bedeutet, daß das Bauteil wieder in seine ursprüngliche Form übergeht, wenn keine externen Kräfte mehr auf das Bauteil einwirken. Somit sind Korrekturen oder ein erneutes Einlegen problemlos möglich. Die elastische Formung des Bauteils durch Einwirken der externen Kräfte kann somit jederzeit wiederholt werden.
  • Zweckmäßig ist es ferner, das Bauteil mit einer Aufheizgeschwindigkeit von 20°C/s bis 10°C/h auf eine maximale Temperatur oberhalb der für die Kriechumformung und Spannungsrelaxation der Legierung erforderlichen Temperatur zu erwärmen und anschließend das Bauteil mit einer Rate zwischen 200°C/s bis 10°C/h abzukühlen. Vorzugsweise liegt die maximale Temperatur zwischen 200°C und 450°C und wird typischerweise für eine Zeitdauer von 0 bis 72 h konstant gehalten.
  • Vorteilhaft ist hierbei, daß innerhalb der genannten Bereiche die Erwärmungs- bzw. Abkühlrate sowie die maximale Temperatur an die verwendete Legierung oder an die gewünschten physikalischen Eigenschaften angepasst werden kann. Zudem kann nach dem Durchführen des Verfahrens eine erneute Umformung des Bauteils erfolgen, was mit den bekannten Verfahren nicht bzw. nur bedingt möglich ist.
  • Ein weiterer Vorteil des erfindungsgemäßen Verfahrens liegt darin, daß sowohl einfach gekrümmte als auch sphärische Strukturen in einem Arbeitsschritt umgeformt werden können. Zu diesem Zweck weist die Halteeinrichtung Krümmungen auf, die sich in unterschiedliche Raumrichtungen erstrecken und der fertigen Endkontur des umzuformenden Bauteils entsprechen. Ferner können neben 2D- auch komplexe 3D-Strukturen, an denen bereits Stringer und Spante befestigt sind, auf einfache Art und Weise umgeformt werden. Gleichzeitig werden Verformungen, hervorgerufen durch Wärmespannungen durch einen vorangegangenen Schweißvorgang, durch das erfindungsgemäße Umformverfahren ausgeglichen.
  • Im folgenden wird die Erfindung anhand der beigefügten Abbildungen in näheren Einzelheiten erläutert. In denen zeigt:
  • 1 eine schematische Darstellung zum Erläutern des Einlegens eines umzuformenden Bauteils in eine Halteeinrichtung;
  • 2 eine schematische Darstellung zum Erläutern des Einwirkens einer äußeren Kraft auf das umzuformende Bauteil;
  • 3 eine schematische Darstellung des erfindungsgemäßen Umformschrittes; und
  • 4 ein T(t)-Diagramm der für die Umformung des Bauteils erforderlichen Wärmebehandlung.
  • 1 zeigt eine schematische Darstellung zum Erläutern des Einlegens eines umzuformenden Bauteils 1 in eine Halteeinrichtung 2. Das umzuformende Bauteil 1 kann ein zweidimensionales Blech aus walzhartem, naturhartem Material sein. Ebenso können an dem Blech bereits mittels Reibrührschweißen, Laserschweißen oder anderen geeigneten Verfahren Versteifungselemente angebracht sein (nicht dargestellt), so daß die umzuformende Struktur eine dreidimensionale Gestalt aufweist. In diesem Fall wird das Blech derart in die Halteeinrichtung 2 eingelegt, daß die Verstärkungsstrukturen von der Halteeinrichtung 2 wegweisen. Im Allgemeinen kann jede beliebige, komplexe, dreidimensionale Struktur in die Halteeinrichtung zum Umformen eingelegt werden, die insbesondere aus einer naturharten, d.h. nicht aushärtbaren Aluminium-Legierungen besteht. Diese nicht aushärtbaren Aluminium-Legierungen können AlMg-Legierungen oder insbesondere AlMgSc-Legierungen sein. Aber auch aushärtbare AlMgLi-Legierungen können verwendet werden.
  • Die Halteeinrichtung 2, in die das umzuformende Bauteil 1 eingelegt wird, weist eine Form bzw. Kontur 2a auf, die der gewünschten Endform des umgeformten Bauteils 1 entspricht. Im Folgenden wird die Endform des Bauteils 1 mit der Bezugsziffer 1a bezeichnet. Die Krümmung der Halteeinrichtung 2 kann sich sowohl in der in 1 dargestellten Ebene als auch in der dazu senkrechten Ebene erstrecken, so daß ein Bauteil auch in eine Endform mit sphärischer bzw. doppelter Krümmung in einem Arbeitsschritt umgeformt werden kann.
  • Das Bauteil 1 wird zunächst in seinem ungeformten Zustand in die Halteeinrichtung 2 eingelegt. Dabei bildet sich zwischen Bauteil 1 und Halteeinrichtung 2 ein Hohlraum 3.
  • Anschließend wirkt auf das ungeformte Bauteil 1 von oben, d.h. von der Halteeinrichtung 2 entgegengesetzten Seite des Bauteils 1, eine Kraft F ein. Diese Kraft F kann beispielsweise über eine in 1 lediglich schematisch dargestellte Stempel- bzw. Druckanordnung 4 auf das Bauteil 1 übertragen werden. Andere geeignete Mittel zum Einwirken dieser äußeren Kraft sind ebenso möglich. Dies kann z.B. das Einwirken eines äußeren Druckes P innerhalb eines evakuierten Raumes sein, in dem sich Halteeinrichtung und Bauteil befinden. Ebenso ist eine Kombination der Kräfte F und P möglich.
  • Aufgrund des Einwirkens der äußeren Kraft F und/oder P wird das Bauteil 1 derart elastisch geformt, daß es sich in Richtung Halteeinrichtung 2 durchbiegt. Wie aus 2 zu sehen ist, ist dabei der Krümmungsradius des elastisch deformierten Bauteils 1 größer als der der Halteeinrichtung 2, so daß weiterhin ein Hohlraum 3 zwischen Bauteil 1 und Halteeinrichtung 2 vorhanden ist. Das Volumen des Hohlraumes 3 ist jedoch im Vergleich zu dem in 1 dargestellten Ausgangszustand kleiner. Die elastische Formung des Bauteils 1 durch Einwirken der externen Kräfte führt auch dazu, daß die Auflagefläche zwischen Bauteil 1 und Halteeinrichtung 2 größer wird und somit der Hohlraum 3 unter Verwendung eines Dichtmaterials 5 luftdicht abgeschlossen werden kann. Das Dichtmaterial 5 ist hierbei typischerweise ein temperaturbeständiges, modifiziertes Silikonmaterial, das am Randbereich des Bauteils 1 aufgetragen wird.
  • Nach dem Abdichten wird der Hohlraum 3 zwischen Bauteil 1 und Halteeinrichtung 2 evakuiert. Zu diesem Zweck sind in der Halteeinrichtung 2 Durchbohrungen 6 angeordnet, über die der Hohlraum 3 an eine Vakuumpumpe (nicht dargestellt) angeschlossen wird. Durch das Evakuieren entsteht im Hohlraum ein Unterdruck p, wodurch das Bauteil 1 weiter in Richtung Halteeinrichtung 2 gezogen wird, bis es vollständig an der Kontur 2a der Halteeinrichtung 2 anliegt, wie in 3 dargestellt ist. Es sei angemerkt, daß in 3 auf die Darstellung der Druck- bzw. Stempelanordnung verzichtet wurde. Zudem befindet sich die Anordnung in einem geschlossenen Gehäuse 7, das ein Ofen, ein Autoklave oder dergleichen sein kann.
  • In diesem Zusammenhang ist ferner anzumerken, daß in den Fällen, in denen die externe Kraft bzw. die externen Kräfte F und/oder P ausreichen, um das Bauteil bereits ganz an die Kontur 2a der Halteeinrichtung 2 zu drücken, auf das Evakuieren des Hohlraumes verzichtet werden kann. Dies ist beispielsweise dann der Fall, wenn dünne Bleche bzw. gering gekrümmte Strukturen umgeformt werden.
  • Auch in dem in 3 dargestellten Zustand befindet sich das Bauteil 1 zunächst im elastisch geformten Zustand, so daß die Formung reversibel ist und der Prozeß von Neuem durchgeführt werden könnte, wenn keine externe Kraft mehr auf das Bauteil einwirken würde. D.h., wenn keine äußere Kraft mehr auf das umzuformende Bauteil einwirkt, kehrt es wieder in seine ungeformte ursprüngliche Ausgangslage zurück. Somit sind Korrekturen jederzeit problemlos möglich.
  • Nachdem das Bauteil durch die obigen Schritte unter elastischer Formung in seine Endform 1a gebracht wurde, wird das Bauteil 1 innerhalb des geschlossenen Gehäuses 7 unter Aufrechterhaltung des Vakuums wärmebehandelt. Durch die Erwärmung wird das Bauteil 1 unter Spannungsrelaxation der während der elastischen Formung in das Material eingebrachten Spannungen umgeformt. Nach Abschluß der Spannungsrelaxation durch Wärmeeinwirkung kann das Vakuum abgeschaltet werden und eine Abkühlphase schließt sich an. Das Bauteil behält dabei nahezu die durch die Kontur der Halteeinrichtung vorgegebene Endform 1a bei, ohne daß eine signifikante Rückfederung eintritt.
  • Die Wärmebehandlung erfolgt dabei gemäß dem in 4 dargestellten schematischen T(t)-Verlauf. Im evakuierten Zustand, d.h. das Bauteil 1 liegt völlig an der Kontur 2a der Halteeinrichtung 2 an, wird das Bauteil 1 auf eine maximale Temperatur T1 erwärmt, die oberhalb der für die Kriechumformung und Spannungsrelaxation der Legierung erforderlichen Temperatur liegt, die typischerweise größer oder gleich 200°C ist. Das Bauteil wird dabei mit einer Aufheizgeschwindigkeit zwischen 20°C/s und 10°C/h innerhalb eines ersten Zeitintervalls Δt1 bis zu der gewünschten Zieltemperatur T1 erwärmt. Die Aufheizrate kann dabei, entgegen des in 4 dargestellten kontinuierlichen Verlaufes, auch innerhalb des Intervalls Δt1 stufenförmig oder in anderer geeigneter Weise variieren. Die maximale Temperatur T1, die typischerweise zwischen 220°C und 450°C liegt, wird zum Zeitpunkt t1 erreicht. Diese Temperatur wird dann für eine Zeitdauer Δt2 konstant gehalten, wobei Δt2 typischerweise zwischen 0 und 72 h liegt. Innerhalb dieses Zeitintervalls Δt2 erfolgt die wesentliche Spannungsrelaxation des Bauteils. Nach Ablauf dieses Zeitintervalls, d.h. zum Zeitpunkt t2, kann das Vakuum abgeschaltet werden und eine Abkühlphase mit einer Rate von typischerweise 200°C/s bis 10°C/h schließt sich an. Die Abkühlung kann, wie in 4 schematisch dargestellt, kontinuierlich erfolgen oder auch stufenweise. Die Abkühlung kann dabei durch normale Luftkühlung oder auf andere geeignete Weise erfolgen.
  • Wesentlich ist, daß das Bauteil während des Abkühlprozesses seine durch die Kontur 2a der Halteeinrichtung 2 vorgegebene Endform 1a nahezu beibehält. Eine signifikante Rückfederung in eine Form mit größerem Krümmungsradius als die Halteeinrichtung tritt nicht ein. Somit kann die Halteeinrichtung mit ausreichender Genauigkeit mit den Abmessungen der gewünschten Endform hergestellt werden. Eine komplizierte Simulation des Rückfedereffektes, wie es beispielsweise bei herkömmlichen aushärtbaren Legierungen, die durch das „age forming"-Verfahren umgeformt werden, der Fall ist, ist nicht erforderlich.
  • Wie eingangs bereits erwähnt, kommen als umzuformende Bauteile nicht nur zweidimensionale Bleche aus den oben genannten Aluminium-Legierungen sondern auch dreidimensionale Formen in Frage, die in eine gewünschte doppelt gekrümmte bzw. sphärische Form umgeformt werden können. Somit erübrigt sich ein aufwendiges Herstellen von gekrümmten Teilen vor dem Schweißvorgang. Dies war bisher erforderlich, da Bleche und Stringer im endkonturnahen Zustand z.B. durch Laserschweißen verbunden wurden.
  • Ferner wird ein durch Laserschweißen hervorgerufener Verzug des Bauteils bzw. Unebenheiten oder Welligkeiten der Bleche (auch Zeppelin-Effekt genannt), die z.B. beim Befestigen von Stringern mittels Laser-Schweißverfahren in dem Blech erzeugt werden, während des in 3 dargestellten schematischen Umformprozesses nahezu ausgeglichen. Somit hat das erfindungsgemäße Verfahren zudem den Vorteil, daß es derartige Unebenheiten nahezu vollständig kompensiert, ohne daß komplizierte Nachbehandlungsverfahren bzw. Richtvorgänge erforderlich sind.
  • Zudem gibt es bei dem erfindungsgemäßen Verfahren nur einen geringen Materialverlust, da die Randbereiche an den Längskanten, an denen beim konventionellen Formverfahren die Streckkraft eingeleitet wird, nicht abgetrennt werden müssen.

Claims (11)

  1. Verfahren zum Umformen von Strukturen aus Aluminium-Legierungen, insbesondere aus naturharten AlMg-, naturharten AlMgSc- und/oder aushärtbaren AlMgLi-Legierungen, gekennzeichnet durch die Schritte: a) elastisches Formen eines umzuformenden Bauteils (1) unter externer Krafteinwirkung (F, P, p), wobei das Bauteil (1) die Kontur (2a) einer Halteeinrichtung (2) einnimmt, die der gewünschten Endform (1a) des Bauteils (1) entspricht; b) Erwärmen des elastisch geformten Bauteils (1) auf eine Temperatur (T1) größer als die für eine Kriechumformung und Spannungsrelaxation der Legierung erforderlichen Temperatur, so dass das Bauteil (1) unter Beibehaltung der im Schritt a) durch elastische Formung aufgeprägten Endform (1a) umgeformt wird.
  2. Verfahren nach Anspruch 1, wobei die elastische Formung gemäß Schritt a) umfasst: – Einlegen des umzuformenden Bauteils (1) in die Halteeinrichtung (2) und; – Einwirken einer externen Kraft (F, P, p) auf das Bauteil (1), so dass sich das Bauteil (1) durch elastische Formung an die Kontur (2a) der Halteeinrichtung (2) anlegt und die Endform (1a) einnimmt.
  3. Verfahren nach Anspruch 1, wobei die elastische Formung gemäß Schritt a) umfasst: – Einlegen des umzuformenden Bauteils (1) in die Halteeinrichtung (2); – Einwirken einer externen Kraft (F, P) auf das Bauteil (1), so dass sich das Bauteil (1) in Richtung Halteeinrichtung (2) elastisch durchbiegt; – Abdichten des zwischen Bauteil (1) und Halteeinrichtung (2) entstehenden Hohlraumes (3) mit einem Dichtmaterial (5); und – Evakuieren des Hohlraumes (3), so dass das Bauteil (2) sich an die Kontur (2a) der Halteeinrichtung (2) anlegt und die Endform (1a) einnimmt.
  4. Verfahren nach Anspruch 1, wobei – das Bauteil (1) mit einer Aufheizgeschwindigkeit von 20°C/s bis 10°C/h auf die Temperatur (T1) aufgeheizt wird; – die Temperatur (T1) für eine Zeitdauer zwischen 0 und 72 h gehalten wird; und – anschließend das Bauteil (1) mit einer Rate von 200°C/s bis 10°C/h abkühlt wird.
  5. Verfahren nach Anspruch 1, wobei die Temperatur (T1) zwischen 200°C und 450°C liegt.
  6. Verfahren nach Anspruch 1, wobei das in die Halteeinrichtung (2) eingelegte Bauteil (1) in ein Bauteil mit einfach oder doppelt gekrümmter oder sphärischer Kontur umgeformt wird.
  7. Verfahren nach Anspruch 1, wobei komplexe 2D- oder 3D-Strukturen zur Umformung in die Halteeinrichtung (2) eingelegt werden.
  8. Verfahren nach Anspruch 1, wobei das umzuformende Bauteil (1) aus einer naturharten AlMg-Legierung besteht.
  9. Verfahren nach Anspruch 1, wobei das umzuformende Bauteil (1) aus einer naturharten AlMgSc-Legierung besteht.
  10. Verfahren nach Anspruch 1, wobei das umzuformende Bauteil (1) aus einer aushärtbare AlMgLi-Legierung besteht.
  11. Verfahren nach Anspruch 1, wobei das umzuformende Bauteil (1) aus einer Kombination der Werkstoffe gemäß Anspruch 8–10 besteht.
DE10047491A 2000-09-26 2000-09-26 Verfahren zum Umformen von Strukturen aus Aluminium-Legierungen Expired - Lifetime DE10047491B4 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE10047491A DE10047491B4 (de) 2000-09-26 2000-09-26 Verfahren zum Umformen von Strukturen aus Aluminium-Legierungen
US10/381,476 US7217331B2 (en) 2000-09-26 2001-08-25 Method for shaping structures comprised of aluminum alloys
EP01965216A EP1320430B1 (de) 2000-09-26 2001-08-25 Verfahren zum umformen von strukturen aus aluminium-legierungen
CA002423566A CA2423566C (en) 2000-09-26 2001-08-25 Method for shaping structures comprised of aluminum alloys
CNB018155340A CN1230265C (zh) 2000-09-26 2001-08-25 使铝合金结构成型的方法
DE2001504142 DE50104142D1 (de) 2000-09-26 2001-08-25 Verfahren zum umformen von strukturen aus aluminium-legierungen
PCT/EP2001/009821 WO2002026414A1 (de) 2000-09-26 2001-08-25 Verfahren zum umformen von strukturen aus aluminium-legierungen
ES01965216T ES2228944T3 (es) 2000-09-26 2001-08-25 Procedimiento para la conformacion de estructuras formadas por aleaciones de aluminio.
RU2003112217/02A RU2271891C2 (ru) 2000-09-26 2001-08-25 Способ пластического формообразования конструкций из алюминиевых сплавов
JP2002530234A JP4776866B2 (ja) 2000-09-26 2001-08-25 アルミニウム合金からなる構造の成形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10047491A DE10047491B4 (de) 2000-09-26 2000-09-26 Verfahren zum Umformen von Strukturen aus Aluminium-Legierungen

Publications (2)

Publication Number Publication Date
DE10047491A1 DE10047491A1 (de) 2002-04-18
DE10047491B4 true DE10047491B4 (de) 2007-04-12

Family

ID=7657566

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10047491A Expired - Lifetime DE10047491B4 (de) 2000-09-26 2000-09-26 Verfahren zum Umformen von Strukturen aus Aluminium-Legierungen
DE2001504142 Expired - Lifetime DE50104142D1 (de) 2000-09-26 2001-08-25 Verfahren zum umformen von strukturen aus aluminium-legierungen

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE2001504142 Expired - Lifetime DE50104142D1 (de) 2000-09-26 2001-08-25 Verfahren zum umformen von strukturen aus aluminium-legierungen

Country Status (9)

Country Link
US (1) US7217331B2 (de)
EP (1) EP1320430B1 (de)
JP (1) JP4776866B2 (de)
CN (1) CN1230265C (de)
CA (1) CA2423566C (de)
DE (2) DE10047491B4 (de)
ES (1) ES2228944T3 (de)
RU (1) RU2271891C2 (de)
WO (1) WO2002026414A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10324366A1 (de) * 2003-05-27 2004-12-16 Feldbinder & Beckmann Fahrzeugbau Gmbh & Co Kg Verfahren und Vorrichtung zur Herstellung eines Formteiles, sowie Formteil, insbesondere ein Behälterboden
DE102005001829B4 (de) * 2005-01-14 2009-05-07 Audi Ag Verfahren zum Umformen einer Platine
EP3587105B1 (de) 2006-10-30 2022-09-21 ArcelorMittal Beschichtete stahlbänder, verfahren zur herstellung davon, verfahren zur verwendung davon, daraus hergestellte stanzzuschnitte, daraus hergestellte gestanzte produkte und erzeugnisse, die solch ein gestanztes produkt enthalten
DE102011006032A1 (de) 2011-03-24 2012-09-27 Airbus Operations Gmbh Verfahren zur Herstellung eines Strukturbauteils sowie Strukturbauteil
US9773077B2 (en) * 2012-04-09 2017-09-26 Arcelormittal Investigacion Y Desarrollo, S.L. System and method for prediction of snap-through buckling of formed steel sheet panels
EP2727665B1 (de) * 2012-10-31 2018-06-06 Airbus Defence and Space GmbH Verfahren zur Herstellung eines Formbauteils und Verwendung des Verfahrens zur Herstellung eines Formbauteils
WO2016057688A1 (en) * 2014-10-07 2016-04-14 The Penn State Research Foundation Method for reducing springback using electrically-assisted manufacturing
CN104438481B (zh) * 2014-11-28 2016-04-06 中南大学 一种大曲率铝合金整体壁板构件的制备方法
DE102016207172B3 (de) * 2016-04-27 2017-08-24 Premium Aerotec Gmbh Vorrichtung und Anordnung zum Formen eines gekrümmt flächigen Bauteils, sowie Verfahren zur Herstellung der Vorrichtung
CN106862377B (zh) * 2017-03-14 2018-12-28 中南大学 一种铝合金板的成形方法
CN106978578B (zh) * 2017-05-18 2019-01-25 中南大学 一种铝合金板蠕变时效成形方法
DE102017114663A1 (de) 2017-06-30 2019-01-03 Airbus Operations Gmbh Verfahren zum Umformen eines Bauteils
EP3880859A1 (de) * 2018-11-12 2021-09-22 Airbus SAS Verfahren zur herstellung einer hochenergetischen hydrogeformten struktur aus einer legierung der serie 7xxx
US20200222967A1 (en) * 2019-01-11 2020-07-16 Embraer S.A. Methods for producing creep age formed aircraft components
CN112207522A (zh) * 2020-10-26 2021-01-12 许晨玲 一种大型铝合金整体壁板平度控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0517982A1 (de) * 1991-06-10 1992-12-16 Avco Corporation Verfahren zur Entwicklung eines Werkzeuges
EP0527570A1 (de) * 1991-08-12 1993-02-17 Avco Corporation Verfahren zur Entwicklung des komplizierten Profils von Werkzeugen
DE19504649C1 (de) * 1995-02-13 1996-08-22 Daimler Benz Ag Verfahren und Ziehwerkzeug zum Streckziehen von Blechen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188811A (en) 1978-07-26 1980-02-19 Chem-Tronics, Inc. Metal forming methods
DE4334940C2 (de) 1992-10-15 1996-10-31 Max Co Ltd Schlagschraubvorrichtung
FR2696957B1 (fr) * 1992-10-21 1994-11-25 Snecma Procédé de formage de pièces en alliages à base de titane.
US5597529A (en) * 1994-05-25 1997-01-28 Ashurst Technology Corporation (Ireland Limited) Aluminum-scandium alloys
CN1489637A (zh) * 2000-12-21 2004-04-14 �Ƹ��� 铝合金产品及人工时效方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0517982A1 (de) * 1991-06-10 1992-12-16 Avco Corporation Verfahren zur Entwicklung eines Werkzeuges
EP0527570A1 (de) * 1991-08-12 1993-02-17 Avco Corporation Verfahren zur Entwicklung des komplizierten Profils von Werkzeugen
DE19504649C1 (de) * 1995-02-13 1996-08-22 Daimler Benz Ag Verfahren und Ziehwerkzeug zum Streckziehen von Blechen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D.M. Hambrick: "Age forming technology in an autoclave", SAE Technical Paper Series, General Aviation Aircraft Meeting and Exhibition, Wichita, Kansas April 16-19, 1985, No. 850885
D.M. Hambrick: "Age forming technology in an autoclave", SAE Technical Paper Series, General Aviation Aircraft Meeting and Exhibition, Wichita,Kansas April 16-19, 1985, No. 850885 *
F. Ostermann: "Anwendungstechnologie Aluminium: Springer Verlag, 1998, ISBN 3-540-62706-5, S. 59-68 *

Also Published As

Publication number Publication date
CN1455711A (zh) 2003-11-12
CA2423566A1 (en) 2003-03-25
WO2002026414A1 (de) 2002-04-04
EP1320430B1 (de) 2004-10-13
US7217331B2 (en) 2007-05-15
RU2271891C2 (ru) 2006-03-20
JP4776866B2 (ja) 2011-09-21
JP2004509765A (ja) 2004-04-02
CA2423566C (en) 2010-01-05
DE10047491A1 (de) 2002-04-18
CN1230265C (zh) 2005-12-07
US20040050134A1 (en) 2004-03-18
ES2228944T3 (es) 2005-04-16
EP1320430A1 (de) 2003-06-25
DE50104142D1 (de) 2004-11-18

Similar Documents

Publication Publication Date Title
DE10047491B4 (de) Verfahren zum Umformen von Strukturen aus Aluminium-Legierungen
DE10063287B4 (de) Verfahren zum Umformen eines Metallbleches
DE60010968T2 (de) Verfahren und Vorrichtung zur Verformung von metallischen Werkstoffen sowie verformten metallischen Werkstoffen
DE69202026T2 (de) Verfahren zur Entwicklung des komplizierten Profils von Werkzeugen.
DE102004010700B4 (de) Verfahren zur Herstellung einer integrierten monolithischen Aluminiumstruktur, Aluminiumprodukt mit dieser integrierten monolithischen Aluminiumstruktur, sowie Verwendung des Aluminiumprodukts
DE69205187T2 (de) Verfahren zur Herstellung einer hohlen Schauffel für eine Turbomaschine.
DE102007046293A1 (de) Metallblechumformverfahren
DE68912773T2 (de) Mittels superplastischer verformung/diffusionsverbindung hergestellte gekrümmte strukturen.
DE69021211T2 (de) Laminat für gebogene Struktur und Verfahren zu ihrer Herstellung.
EP3003599A1 (de) Verfahren zur herstellung eines federbeindoms
DE69102998T2 (de) Verfahren zur Entwicklung eines Werkzeuges.
WO2021032430A1 (de) Verfahren und vorrichtung zum herstellen eines bauteils aus einem faserverbundwerkstoff
DE60300768T2 (de) Verfahren zum Herstellen eines Blechartikels durch superplastische oder schnelle plastische Verformung
WO2017194313A1 (de) Verfahren zur herstellung eines bauteils
DE102016111105A1 (de) Mehrfach-warmumformvorrichtung und warmumformverfahren derselben
DE102015225370B4 (de) Verfahren zur Herstellung eines metallischen Hybridbauteils, sowie hiermit hergestelltes metallisches Hybridbauteil
DE102004040272A1 (de) Fahrzeugtür
DE102014106289B4 (de) Verfahren und Anlage zum Bearbeiten eines metallischen Gussteils
DE102015208752A1 (de) Verfahren zum halbwarmumformen höchstzugfester Stahlbleche
EP2428589A2 (de) Verfahren zur Herstellung einer Legeform für die Fertigstellung von Bauteilen
DE19806761A1 (de) Kraftfahrzeugteil und Verfahren zu seiner Herstellung
DE102014213196A1 (de) Formwerkzeug zur Herstellung von warmumgeformten Bauteilen
DE102006046305B4 (de) Vorrichtung zum mindestens partiellen Umformen von Blech über die bekannten Formgebungsgrenzen hinaus
DE102007018281A1 (de) Werkzeug zum Innenhochdruckformen, sowie Verfahren zum Innenhochdruckformen
DE19829577B4 (de) Verfahren und Vorrichtung zur Herstellung von Teilen mit Hilfe der Innen-Hochdruck-Umformtechnik

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: EADS DEUTSCHLAND GMBH, 85521 OTTOBRUNN, DE

8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: AIRBUS DEUTSCHLAND GMBH, 21129 HAMBURG, DE

8327 Change in the person/name/address of the patent owner

Owner name: AIRBUS OPERATIONS GMBH, 21129 HAMBURG, DE

R071 Expiry of right