CN1954392A - 低铂燃料电池、催化剂及其制备方法 - Google Patents

低铂燃料电池、催化剂及其制备方法 Download PDF

Info

Publication number
CN1954392A
CN1954392A CNA2005800111291A CN200580011129A CN1954392A CN 1954392 A CN1954392 A CN 1954392A CN A2005800111291 A CNA2005800111291 A CN A2005800111291A CN 200580011129 A CN200580011129 A CN 200580011129A CN 1954392 A CN1954392 A CN 1954392A
Authority
CN
China
Prior art keywords
catalyst
fuel
nano particle
film
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800111291A
Other languages
English (en)
Inventor
王宁
董翊
李依群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intematix Corp
Original Assignee
Intematix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intematix Corp filed Critical Intematix Corp
Publication of CN1954392A publication Critical patent/CN1954392A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明提供新型燃料电池催化剂,其包含负载在纳米结构材料(纳米颗粒)上的低铂浓度的新系列催化活性薄膜金属合金。在某些实施方式中,通过将催化剂薄膜和纳米颗粒处理到气体扩散介质如Toray或SGL碳纤维纸中来制备整合的气体扩散/电极/催化剂层。催化剂可以放置到与PEM燃料电池用品所用的电解质膜接触的位置上。

Description

低铂燃料电池、催化剂及其制备方法
相关申请的交叉参考
本申请是于2004年7月23日提交的USSN 10/898669的后续部分,USSN10/898669是于2004年4月12日提交的USSN 10/823088的后续部分,USSN 10/823088要求于2004年3月2日提交的USSN 60/549712的优先权和权益,上述所有申请的全部内容为了全部需要通过参考结合于此。
涉及在联邦资助的研究和开发下进行的本发明的权利的声明
[无]
发明领域
本发明所属领域为用于燃料电池(例如,聚合物电解质膜(PEM)燃料电池)的电化学催化剂领域。本发明涉及通过创新的催化剂组合物和构成燃料电池的电极与聚合物电解质(PEM)之间的界面或气体微分散(微扩散)层内部的纳米结构而减少铂含量,提高催化效率。
发明背景
燃料电池使氢和氧在不发生燃烧的情况下结合形成水,产生直流电。该过程可以描述为电解的相反过程。燃料电池具有用于固定或便携式电源用品的前景;但是,燃料电池在固定和便携式用品中用于发电的商业可行性取决于制造、成本和耐久性等多个问题的解决。
电化学燃料电池将燃料和氧化剂转化为电力和反应产物。典型的燃料电池由一个隔膜和两个称为阴极和阳极的电极组成。隔膜如三明治结构一样位于阴极和阳极之间。向阳极提供氢气形式的燃料,在阳极处铂及其合金之类的催化剂催化以下反应:2H2→4H++4e-
在阳极处,氢气分解为氢离子(质子)和电子。质子从阳极通过隔膜迁移到阴极。电子通过外电路以电流的形式从阳极迁移出来。向阴极提供形式为氧气或含氧空气的氧化剂,在阴极处,该氧化剂与已经通过隔膜的氢离子和从外电路迁移过来的电子反应,形成反应产物液态水。反应由铂族金属催化。阴极处发生的反应如下:O2+4H++4e-→2H2O。
160年以前人们首次论证了在原始燃料电池中化学能可以成功地转化为电能。但是,尽管燃料电池技术具有吸引人的***效率和环境优点,但是经证实将早期的科学实验结果开发为商业上可行的工业产品是困难的。通常涉及的问题是缺少合适的材料,能够使发电的成本和效率与已经存在的电力技术竞争。
在过去几年中,聚合物电解质燃料电池在效率和实用燃料电池设计方面取得了显著的改进。已经证明了一些用于便携式电池组和汽车电池组的燃料电池替代品的原型。但是,与成本、活性和电催化剂的稳定性相关的问题成为聚合物电解质燃料电池发展的主要问题。例如,铂(Pt)基催化剂是用于燃料电池和其它催化用品的最成功的催化剂。但是,不幸的是铂金属的高成本和稀缺性限制了这种材料在大规模应用中的使用。
此外,阳极由于一氧化碳中毒,也己成为铂使用中的一个问题。在阴极一侧,通常需要更高的催化剂量,因为含有甲醇和其它碳化合物的燃料通过隔膜,在铂的催化作用下与氧气在阴极上反应,从而降低了燃料电池的效率。
为了提高催化效率和降低成本,使用其它贵金属和非贵金属形成铂合金作为催化剂。研究了包括Pd、Rh、Ir、Ru、Os、Au等的贵金属。还尝试了包括Sn、W、Cr、Mn、Fe、Co、Ni、Cu等(美国专利6562499)的非贵金属。揭示了不同的铂合金作为燃料电池应用的催化剂。作为催化剂的二元合金包括Pt-Cr(美国专利4316944)、Pt-V(美国专利4202934)、Pt-Ta(美国专利5183713)、Pt-Cu(美国专利4716087)、Pt-Ru(美国专利6007934)、Pt-Y(美国专利4031291)等。作为催化剂的三元合金包括Pt-Ru-Os(美国专利5856036)、Pt-Ni-Co、Pt-Cr-C、Pt-Cr-Ce(美国专利5079107)、Pt-Co-Cr(美国专利4711829)、Pt-Fe-Co(美国专利4794054)、Pt-Ru-Ni(美国专利6517965)、Pt-Ga-Cr、Co、Ni(美国专利4880711)、Pt-Co-Cr(美国专利4447506)等。作为催化剂的四元合金包括Pt-Ni-Co-Mn(美国专利5225391)、Pt-Fe-Co-Cu(美国专利5024905)等。在阳极一侧,Ru在减少中毒问题方面起到重要的作用(Journal of The Electrochemical Society,(149(7)A862-A867,2002)(美国专利6339038)。Ru具有从水形成OHads的能力。这使CO通过催化解吸附作用转变成CO2。在阴极一侧,已经使用了非贵金属络合物催化剂,诸如Fe、Co、Ni卟啉(Solid State Ionics 148(2002)591-599)。
在电极设计领域中,对于电化学反应来说,通常需要反应气体(H2和O2)、催化剂和导体(对于质子和电子而言)的三相界面。广泛使用的燃料电池的制造方法是所谓的“油墨”涂层法。在该方法中,催化剂颗粒(例如,2-4纳米)负载在碳颗粒(15纳米,Vulcan XC72)上。这些颗粒与聚合电解质的溶液混合作为油墨,将该油墨涂抹在导体如碳纸的表面上,形成三相涂层。在该方法中,电解质膜覆盖了催化剂和碳的混合颗粒。因此,在该结构中,没有直接的三相界面存在。反应气体H2和O2不直接接触催化剂,而是必须扩散通过电解质层,到达催化剂表面。在阴极一侧,质子必须扩散通过电解质层,以接触到O2-离子。因此,存在两种相反的要求:质子需要厚电解质层以维持良好的传导率,而另一方面,厚电解质层会形成O2的扩散阻碍。为了解决该困难,已有建议对“油墨”涂层的设计作一些改进。Toyata公司(在美国专利6,015,635中)建议使用***到“油墨”涂层中的纯电解质束,来提高质子传导率。在美国专利6309772中,建议将经过电解质涂布的碳-催化剂颗粒与未经过电解质涂布的碳-催化剂颗粒混合,形成“油墨”层,来提高气体扩散。在这些“油墨”涂层结构中,催化剂的效率仍然受气体和质子扩散的限制。
最近,一些新的催化剂结构被用来提高催化效率。例如,3M公司(美国专利5,879,827和6,040,077)使用纳米结构的电极。在该结构中,针状的纳米聚合物须晶负载着沉积的针状纳米级的催化颗粒。首先,在基材上沉积有机材料。然后将该沉积层在真空中退火,形成针状纳米聚合物须晶的密集阵列。优选须晶的长度等于或小于1微米。然后在负载须晶上沉积催化剂薄膜。催化剂颗粒的直径小于10纳米,长度小于50纳米。在0.09-0.425毫克/平方厘米的Pt和Ru负载范围中,燃料电池得到满意的催化效率。但是,由于需要不导电的纳米聚合物须晶,并且需要将涂布了催化剂的聚合物须晶层转移到碳电极上,因此该方法是复杂的。在该设计中,在须晶层的下方仍然使用混合有Pt的碳油墨。
Gore Enterprise Holdings(美国专利6,287,717和6,300,000)使用在碳电极或混合有Pt的碳油墨层上的直接催化剂薄膜涂层。该催化剂薄膜作为界面层起着重要作用,该界面层具有与其余催化剂层不同的铂浓度。这种结构有效地降低了燃料电池中所用的催化剂的铂含量。宣称催化剂的负载小于0.1毫克/平方厘米。
发明概述
本发明提供新型的燃料电池催化剂,该催化剂包含负载在纳米结构材料(纳米颗粒)上的低铂浓度的新系列薄膜金属合金催化剂。在某些实施方式中,通过将催化剂薄膜和纳米颗粒处理到Toray或SGL碳纤维纸、碳纤维布、多孔电极等气体扩散介质中来制备整合的气体扩散/电极/催化剂层。催化剂可以放置到与用于PEM燃料电池用品的电解质膜接触的位置上。
这样,在一个实施方式中,本发明提供一种组合物,其包含多个负载有纳米颗粒(例如,纳米管、纳米纤维、纳米突(nanohorns)、纳米粉、纳米球、量子点等)的导电纤维(例如,碳纤维、金属纤维、多孔电极等)的。在某些实施方式中,导电纤维本身不是纳米颗粒或纳米纤维。多个纤维包括多孔电极和/或碳纸、碳布、碳浸渍聚合物、多孔导电聚合物、多孔金属导体等。在某些实施方式中,纳米颗粒包括碳纳米管,该纳米管用一种或多种选自以下的纳米管生长催化剂形成晶种(seeded):FexNiyCo1-x-y,其中0<x<1,0<y<1;Co1-xMox,其中0≤x≤0.3;Co1-x-yNixMoy,其中0.1≤x≤0.7,0≤y≤0.3;Co1-x-y-zNixVyCrz,其中0≤x≤0.7,0≤y≤0.2,0≤z≤0.2;Ni1-x-yMoxAly,其中0≤x≤0.2,0≤y≤0.2;Co1-x-yNixAly,其中0≤x≤0.7,0≤y≤0.2。某些优选的纳米管生长催化剂包括,但不限于,Co8.8Mo1.2、Co2.2Ni5.6Mo2.2、Co5.7Ni2.1V1.1Cr1.1、Ni8.0Mo1.0Al1.0和Co6.4Ni2.4Al1.2。在不同的实施方式中,纳米颗粒是长度小于50微米和/或宽度/直径小于约100纳米或小于约50纳米的纳米管。纳米颗粒上通常涂布着基本连续的薄膜,优选是催化活性薄膜,例如,包含铂或铂合金的膜。该薄膜可以部分或连续地覆盖纳米颗粒,在某些实施方式中,厚度范围约为1至1000埃,更通常约为5至100或500埃。
在某些实施方式中,薄膜包含一种合金,该合金包括铂(Pt)、钒(V)和一种或多种选自Co、Ni、Mo、Ta、W和Zr、更通常选自Co和Ni的金属。在某些实施方式中,铂在合金中最多约占12%、25%或50%(摩尔比或原子百分比)。在某些实施方式中,合金含有铂、钒、镍和铜。在某些实施方式中,薄膜包含一种通式为PtxVyCozNiw的合金,其中x大于0.06且小于1;y、z和w分别大于0且小于1;且x+y+z+w=1。在某些实施方式中,x为0.12。在某些实施方式中,x为0.12,y为0.07,z为0.56,w为0.25。
本发明还提供一种包含多个纳米颗粒的燃料电池催化剂,该纳米颗粒上涂布着基本连续的催化活性薄膜,例如包含铂或铂合金的薄膜。在某些实施方式中,纳米颗粒是纳米管。该纳米管用一种或多种选自以下的纳米管生长催化剂形成晶种:FexNiyCo1-x-y,其中0<x<1,0<y<1;Co1-xMox,其中0≤x≤0.3;Co1-x-yNixMoy,其中0.1≤x≤0.7,0≤y≤0.3;Co1-x-y-zNixVyCrz,其中0≤x≤0.7,0≤y≤0.2,0≤z≤0.2;Ni1-x-yMoxAly,其中0≤x≤0.2,0≤y≤0.2;Co1-x-yNixAly,其中0≤x≤0.7,0≤y≤0.2。特别优选的纳米管生长催化剂包括,但不限于,Co8.8Mo1.2、Co2.2Ni5.6Mo2.2、Co5.7Ni2.1V1.1Cr1.1、Ni8.0Mo1.0Al1.0和Co6.4Ni2.4Al1.2。在不同的实施方式中,纳米管的长度小于50微米和/或宽度/直径小于约100纳米或小于约50纳米。薄膜可以部分或连续地覆盖纳米颗粒,在某些实施方式中,厚度范围约为1至1000埃,更通常约为5至100或500埃。
在某些实施方式中,薄膜包含一种合金,该合金包括铂(Pt)、钒(V)和一种或多种选自Co、Ni、Mo、Ta、W和Zr、更通常选自Co和Ni的金属。在某些实施方式中,铂在合金中最多约占12%、25%或50%(摩尔比或原子百分比)。在某些实施方式中,合金含有铂、钒、镍和铜。在某些实施方式中,薄膜包含一种通式为PtxVyCozNiw的合金,其中x大于0.06且小于1;y、z和w分别大于0且小于1;且x+y+z+w=1。在某些实施方式中,x为0.12。在某些实施方式中,x为0.12,y为0.07,z为0.56,w为0.25。在某些实施方式中,纳米颗粒被附着到或结合到基材(例如,多孔碳基材、聚合物基材、碳纸等)中。纳米颗粒可以电连接到电极上。在某些实施方式中,纳米颗粒选自纳米管、纳米纤维、纳米突、纳米粉、纳米球和量子点。在某些实施方式中,纳米颗粒是用一种或多种选自以下的催化剂形成晶种的碳纳米管:FexNiyCo1-x-y,其中0<x<1,0<y<1;Co1-xMox,其中0≤x≤0.3;Co1-x-yNixMoy,其中0.1≤x≤0.7,0≤y≤0.3;Co1-x-y-zNixVyCrz,其中0≤x≤0.7,0≤y≤0.2,0≤z≤0.2;Ni1-x-yMoxAly,其中0≤x≤0.2,0≤y≤0.2;Co1-x-yNixAly,其中0≤x≤0.7,0≤y≤0.2。在某些实施方式中,纳米颗粒是用一种或多种选自以下的催化剂形成晶种的碳纳米管:Co8.8Mo1.2、Co2.2Ni5.6Mo2.2、Co5.7Ni2.1V1.1Cr1.1、Ni8.0Mo1.0Al1.0和Co6.4Ni2.4Al1.2。在某些实施方式中,纳米颗粒是长度小于约200微米、宽度小于约100纳米的纳米管。在某些实施方式中,纳米颗粒是直径约为10纳米至100纳米的纳米管。
在另一个实施方式中,本发明提供一种电极-隔膜组合,其包括:至少一个包含第一燃料电池催化剂的第一导电电极;至少一个包含第二燃料电池催化剂的第二导电电极;将第一导电电极和第二导电电极隔开的质子交换隔膜;所述第一燃料电池催化剂和第二燃料电池催化剂独立地选自文中所述的催化剂(例如,多个纳米颗粒,其中所述纳米颗粒涂布着基本连续的催化活性薄膜,例如,包含铂或铂合金的薄膜)。所述第一燃料电池催化剂和第二燃料电池催化剂可以包含相同或不同的纳米颗粒和/或相同或不同的催化活性薄膜。在某些实施方式中,质子交换隔膜的厚度约为2微米至100微米。合适的质子交换隔膜包括,但不限于,Nafion、二氧化硅Nafion复合物、聚膦腈、磺化的(PPO)、二氧化硅-聚合物复合物等。在某些实施方式中,第一导电电极和第一燃料电池催化剂形成隔离层。在某些实施方式中,第一导电层和第一燃料电池催化剂还包括位于电极和催化剂之间的微扩散层。在某些实施方式中,第一导电电极和第一燃料电池催化剂形成整合的单一层(例如,IGEC)。因此,在某些实施方式中,第一燃料电池催化剂还可作为微扩散层。在某些实施方式中,第二导电层和第二燃料电池催化剂还包括位于电极和催化剂之间的微扩散层。在某些实施方式中,第二导电电极和第二燃料电池催化剂形成整合的单一层(例如,IGEC)。因此,在某些实施方式中,第二燃料电池催化剂也可作为微扩散层。
本发明还提供一种燃料电池堆,其包括多个文中所述的电连接的电极隔膜组合(膜电极组件(MEA))。本发明还提供包含一种或多种这种燃料电池堆的电气装置。另外,本发明提供一种电池组替代品,所述电池组替代品包括容纳文中所述燃料电池堆的外壳,外壳提供用于接触需要电力的装置的正极端和负极端。在某些实施方式中,电池组替代品可以给房屋、手机、照明***、计算机和/或器具供电。
在某些实施方式中,本发明提供制造燃料催化剂的方法。该方法通常包括以下步骤:提供多个纳米颗粒;在纳米颗粒上沉积基本连续的催化活性薄膜,例如包含铂或铂合金的薄膜。该沉积操作可以是任何合适的方法,包括但不限于,溅射沉积、化学气相沉积(CVD)、分子束外延(MBE)、等离子体辅助气相沉积和电子束蒸发沉积。薄膜可以部分或全部地覆盖纳米颗粒。在某些实施方式中,纳米颗粒是包含文中所述纳米管生长催化剂的纳米管。薄膜通常包括文中所述的任何金属或金属合金,厚度通常在文中所述的范围内。纳米颗粒可以附着在基材(例如,一种或多种碳纤维、多孔碳基材、多孔电极等)上。合适的纳米颗粒包括,但不限于,纳米管、纳米纤维、纳米突、纳米粉、纳米球和量子点。在某些优选的实施方式中,纳米颗粒是文中所述的碳纳米管。
本发明还提供制备燃料电池元件的方法。该方法通常包括以下步骤:提供多个纤维和/或多孔电极材料;在多个纤维和/或多孔电极材料上沉积纳米颗粒催化剂;使用纳米颗粒催化剂在多个纤维和/或多孔电极材料上形成纳米颗粒;在纳米颗粒上形成包含基本连续的薄膜的催化活性层,从而形成一种燃料电池元件,该元件含有多个负载着部分或全部涂布有催化活性薄膜的纳米颗粒的纤维。在某些实施方式中,所述多个纤维包括多个碳纤维(例如,碳纤维纸或其它多孔碳电极)。在某些实施方式中,纳米颗粒催化剂是碳纳米管催化剂,例如文中所述的,和/或纳米颗粒是碳纳米管,例如文中所述的,和/或基本连续的薄膜是催化活性薄膜,例如文中所述的。在某些实施方式中,通过化学气相沉积(CVD)形成纳米颗粒。在某些实施方式中,沉积纳米颗粒催化剂包括将催化剂通过化学气相沉积(CVD)法沉积在纤维上。在某些优选的实施方式中,纳米管生长催化剂是选自以下的催化剂:Co1-xMox,其中0≤x≤0.3;Co1-x-yNixMoy,其中0.1≤x≤0.7,0≤y≤0.3;Co1-x-y-zNixVyCrz,其中0≤x≤0.7,0≤y≤0.2,0≤z≤0.2;Ni1-x-yMoxAly,其中0≤x≤0.2,0≤y≤0.2;Co1-x-yNixAly,其中0≤x≤0.7,0≤y≤0.2。某些合适的催化剂包括,但不限于,Co8.8Mo1.2、Co2.2Ni5.6Mo2.2、Co5.7Ni2.1V1.1Cr1.1、Ni8.0Mo1.0Al1.0和Co6.4Ni2.4Al1.2。在某些实施方式中,提供多个纤维和/或多孔电极材料包括提供碳纤维纸;沉积纳米颗粒催化剂包括通过化学气相沉积法沉积所述催化剂;形成纳米颗粒包括形成碳纳米管;形成催化活性层包括沉积含有铂或铂合金的基本连续的薄膜。
本发明还提供一种制造燃料电池用碳纳米管的方法。该方法通常包括以下步骤:提供纳米管生长催化剂,其选自:FexNiyCo1-x-y,其中0<x<1,0<y<1;Co1-xMox,其中0≤x≤0.3;Co1-x-yNixMoy,其中0.1≤x≤0.7,0≤y≤0.3;Co1-x-y-zNixVyCrz,其中0≤x≤0.7,0≤y≤0.2,0≤z≤0.2;Ni1-x-yMoxAly,其中0≤x≤0.2,0≤y≤0.2;Co1-x-yNixAly,其中0≤x≤0.7,0≤y≤0.2;在所述催化剂上形成碳纳米管(例如,通过CVD)。在某些实施方式中,催化剂是选自以下的催化剂:Co8.8Mo1.2、Co2.2Ni5.6Mo2.2、Co5.7Ni2.1V1.1Cr1.1、Ni8.0Mo1.0Al1.0和Co6.4Ni2.4Al1.2
本发明还提供一种碳纳米管,其包含选自以下的纳米管生长催化剂:FexNiyCo1-x-y,其中0<x<1,0<y<1;Co1-xMox,其中0≤x≤0.3;Co1-x-yNixMoy,其中0.1≤x≤0.7,0≤y≤0.3;Co1-x-y-zNixVyCrz,其中0≤x≤0.7,0≤y≤0.2,0≤z≤0.2;Ni1-x-yMoxAly,其中0≤x≤0.2,0≤y≤0.2;Co1-x-yNixAly,其中0≤x≤0.7,0≤y≤0.2。在某些实施方式中,催化剂是选自以下的催化剂:Co8.8Mo1.2、Co2.2Ni5.6Mo2.2、Co5.7Ni2.1V1.1Cr1.1、Ni8.0Mo1.0Al1.0和Co6.4Ni2.4Al1.2
本发明还提供碳纳米管生长催化剂(例如,用于燃料电池用碳纳米管生长)。优选的催化剂包括选自以下的催化剂:FexNiyCo1-x-y,其中0<x<1,0<y<1;Co1-xMox,其中0≤x≤0.3;Co1-x-yNixMoy,其中0.1≤x≤0.7,0≤y≤0.3;Co1-x-y-zNixVyCrz,其中0≤x≤0.7,0≤y≤0.2,0≤z≤0.2;Ni1-x-yMoxAly,其中0≤x≤0.2,0≤y≤0.2;Co1-x-yNixAly,其中0≤x≤0.7,0≤y≤0.2。在某些实施方式中,催化剂是选自以下的催化剂:Co8.8Mo1.2、Co2.2Ni5.6Mo2.2、Co5.7Ni2.1V1.1Cr1.1、Ni8.0Mo1.0Al1.0和Co6.4Ni2.4Al1.2
定义
文中所用的术语“纳米颗粒”指尺寸至少等于或小于约500纳米、优选等于或小于约100纳米、更优选等于或小于约50或20纳米,或者晶体粒度等于或小于约10纳米的颗粒,上述数值由电子显微图像和/或标准2-θx-射线衍射扫描的衍射半峰宽测得。
术语“膜电极组件(MEA)”和“膜电极组合”可替换使用,通常指被PEM隔开的至少两个电极。
术语“电连接”当涉及纳米颗粒(例如纳米颗粒催化剂)和电极时指这样一种连接,即电子或质子通过该连接能够从纳米颗粒传递到电极或者从电极传递到纳米颗粒。电连接不一定需要纳米颗粒与电极之间发生实际的物理接触。因此电连接包括,但不限于,直接电传导、电子隧道效应、电感耦合等。
术语“基本连续的”当用于形容“涂布有基本连续的薄膜的纳米颗粒”时指当存在于纳米颗粒上时形成相当均匀的涂层的薄膜。这与看上去成块状或球状的膜不同。该涂层不会显得班驳或高低不平的。在某些实施方式中,膜基本连续地覆盖纳米颗粒的表面的至少20%、优选至少30%或40%、更优选至少50%或60%、最优选至少70%或80%。
术语“负载着”当用于提到“多个负载着纳米颗粒的碳纤维”时指纳米颗粒被吸附在纤维上和/或被化学结合(例如,离子型、疏水型或共价型的)和/或被***到纤维内或纤维之间的空隙中。
术语“整合的气体扩散/电极/催化剂(IGEC)”指多孔(气体扩散电极),其含有全部或部分被基本连续的催化活性薄膜(例如,铂或铂合金薄膜)覆盖的纳米颗粒。在某些实施方式中,IGEC也作为整合的微扩散器件。
术语“燃料电池元件”指包含可用于构建燃料电池的结构的整合元件。在某些实施方式中,“燃料电池元件”是IGEC。
术语“燃料电池催化剂”指用于燃料电池的催化活性材料(例如,铂或铂合金)或涂布有催化活性材料薄膜的纳米颗粒。因此,例如,在某些实施方式中,燃料电池催化剂包含多个纳米颗粒,所述纳米颗粒涂布有包含铂或铂合金的基本连续的薄膜。从文中将能清楚地了解它的具体应用。
术语“纳米颗粒催化剂”指用作催化剂和/或成核点和/或开始和/或引导纳米颗粒形成的“晶种”的材料。
“催化活性薄膜”指能够催化燃料电池中发生的一个或多个化学反应的薄膜。在某些实施方式中,催化活性薄膜包含铂或铂合金。
附图简要说明
图1显示了催化剂薄膜/碳纳米管层/碳纤维片的详细结构的示意图。
图2显示了微型燃料电池的负载电流随阴极一侧的Pt含量固定为各合金体系的40%的四种连续三元催化剂Ni-Co、Ni-Mo、Ni-V、Co-Mo、Co-V和Mo-V)组成发生的变化。通过将市售Pt-Ru商品电极(来自ElectroChem)、Nafion 117和沉积在TORAY碳纤维纸上的催化剂的三个层进行热压来制造微型燃料电池。各测试在0.785平方毫米的区域上进行。
图3A与图3B显示了微型燃料电池的负载电流与不同铂合金催化剂中的Pt浓度的函数关系图。图3A显示微型燃料电池的负载电流与PtxV1-x合金催化剂中Pt浓度的函数关系图。比较V/Pt-O的稳定性,确认PtxV1-x催化剂的氧化效应。对阴极一侧和阳极一侧的催化剂都进行了所述测试。通过将PtRu商品电极(来自ElectroChem)、Nafion 117和沉积在TORAY碳纸上的Pt-V催化剂的三个层进行热压来制造微型燃料电池。各测试在0.785平方毫米的区域上进行。图3B显示微型燃料电池的负载电流与PtxCo1-x合金催化剂中Pt浓度的函数关系图。比较Co/Pt-O的稳定性,确认PtxCo1-x催化剂的氧化效应。对阴极一侧和阳极一侧的催化剂都进行了所述测试。通过将PtRu商品电极(来自ElectroChem)、Nafion 117和沉积在TORAY碳纸上的Pt-V催化剂的三个层进行热压来制造微型燃料电池。各测试在0.785平方毫米的区域上进行。
图4显示了微型燃料电池的负载电压随阴极一侧的Pt含量固定为各合金体系的20%的四种连续三元催化剂Ni-Co、Ni-V、Co-V和连续四元催化剂Ni0.5(Co1-xVx)0.5组成发生的变化。通过将Pt-Ru商品电极(来自ElectroChem)、Nafion 117和沉积在TORAY碳纤维纸上的催化剂的三个层进行热压来制造微型燃料电池。各测试在0.785平方毫米的区域上进行。
图5显示了微型燃料电池的负载电流与阴极和阳极两侧上催化剂层厚度之间的函数关系图。通过将Pt-Ru商品电极(来自ElectroChem)、Nafion 117和沉积在TORAY碳纤维纸上的催化剂的三个层进行热压来制造微型燃料电池。各测试在0.785平方毫米的区域上进行。
图6A和6B显示了纳米结构对燃料电池输出电流的影响。图6A显示了燃料电池电压与催化剂中含有的每毫克Pt对应的输出电流的函数关系图。比较的三种样品是(1)标准组装的三层燃料电池,购自ElectroChem,Pt催化剂含量为1毫克/平方厘米,(2)直接涂布在碳纤维纸上的Pt0.12Co0.88薄膜催化剂,(3)涂布在直接生长在碳纤维纸上的碳纳米管上的Pt0.12Co0.88薄膜催化剂。图6B显示催化剂中含有的每毫克Pt对应的燃料电池功率与输出电流的函数关系图。比较的三种样品是(1)标准组装的三层燃料电池,购自ElectroChem,Pt催化剂含量为1毫克/平方厘米,(2)直接涂布在碳纤维纸上的Pt0.12Co0.88薄膜催化剂,(3)涂布在直接生长在碳纤维纸上的碳纳米管上的Pt0.12Co0.88薄膜催化剂。
图7A和7B显示铂含量对燃料电池输出功率的影响。图7A显示了燃料电池的电压与催化剂中含有的每毫克Pt对应的输出电流的函数关系图。比较的三种样品是(1)标准组装的三层燃料电池,购自ElectroChem,Pt催化剂含量为1毫克/平方厘米,(2)涂布在直接生长在碳纤维纸上的碳纳米管上的Pt0.12Co0.88薄膜催化剂,和(3)涂布在直接生长在碳纤维纸上的碳纳米管上的Pt0.24Co0.76薄膜催化剂。图7B显示催化剂中含有的每毫克Pt对应的燃料电池功率与输出电流的函数关系图。比较的三种样品是(1)标准组装的三层燃料电池,购自ElectroChem,Pt催化剂含量为1毫克/平方厘米,(2)涂布在直接生长在碳纤维纸上的碳纳米管上的Pt0.12Co0.88薄膜催化剂,和(3)涂布在直接生长在碳纤维纸上的碳纳米管上的Pt0.24Co0.76薄膜催化剂。
图8A和8B显示了燃料电池的输出功率。图8A显示燃料电池电压与催化剂中含有的每毫克Pt对应的输出电流的函数关系图。比较的三种样品是(1)标准组装的三层燃料电池,购自ElectroChem,Pt催化剂含量为1毫克/平方厘米,(2)涂布在直接生长在具有200Ni催化剂的碳纤维纸上的碳纳米管上的Pt0.12Co0.88薄膜催化剂,和(3)涂布在直接生长在具有400催化剂的碳纤维纸上的碳纳米管上的Pt0.12Co0.88薄膜催化剂。图8B显示催化剂中含有的每毫克Pt对应的燃料电池功率与输出电流的函数关系图。比较的三种样品是(1)标准组装的三层燃料电池,购自ElectroChem,Pt催化剂含量为1毫克/平方厘米,(2)涂布在直接生长在具有200Ni催化剂的碳纤维纸上的碳纳米管上的Pt0.12Co0.88薄膜催化剂,和(3)涂布在直接生长在具有400Ni催化剂的碳纤维纸上的碳纳米管上的Pt0.12Co0.88薄膜催化剂。
图9A和9B显示了纳米结构对燃料电池输出的影响。图9A显示了燃料电池电压与催化剂中含有的每毫克Pt对应的输出电流的函数关系图。比较的三种样品是(1)标准组装的三层燃料电池,购自ElectroChem,Pt催化剂含量为1毫克/平方厘米,(2)涂布在直接生长在具有200Co催化剂的碳纤维纸上的碳纳米管上的Pt0.12Co0.88薄膜催化剂,和(3)涂布在直接生长在具有200Ni催化剂的碳纤维纸上的碳纳米管上的Pt0.12Co0.88薄膜催化剂。图9B显示催化剂中含有的每毫克Pt对应的燃料电池功率与输出电流的函数关系图。比较的三种样品是(1)直接涂布在碳纤维纸上的Pt0.12Co0.88薄膜催化剂,(2)涂布在直接生长在具有200Co催化剂的碳纤维纸上的碳纳米管上的Pt0.12Co0.88薄膜催化剂,和(3)涂布在直接生长在具有200Ni催化剂的碳纤维纸上的碳纳米管上的Pt0.12Co0.88薄膜催化剂。
图10说明了在纤维(例如,碳纤维)上生长的纳米颗粒(例如,碳纳米管)。纳米颗粒部分或完全地涂布有基本连续的催化活性薄膜(见插图)。
图11显示以下三种样品的SEM图:(1)直接涂布在碳纤维纸上的Pt0.12Co0.88薄膜催化剂,(2)涂布在直接生长在具有200Co催化剂的碳纤维纸上的碳纳米管上的Pt0.12Co0.88薄膜催化剂,和(3)涂布在直接生长在具有200Ni催化剂的碳纤维纸上的碳纳米管上的Pt0.12Co0.88薄膜催化剂。
图12说明三层导电材料的结构,其中各层具有最优化的孔隙度和厚度。
图13的A-F显示直接生长在碳纤维(Toray碳纸)上的碳纳米管和碳纳米管上的薄膜的SEM图。A:通过离子束溅射到碳纳米管上的Pt薄膜样品(250)的45X放大倍数下的SEM图,其中纳米管通过化学气相沉积直接生长在碳纤维纸基材上,并具有作为催化剂的Ni。左角上的白色区域显示Pt涂层。B:通过离子束溅射到碳纳米管上的Pt薄膜样品(250)的300X放大倍数下的SEM图,其中纳米管通过化学气相沉积直接生长在碳纤维纸基材上,并具有作为催化剂的Ni。图中显示碳纳米管均匀地覆盖在Toray碳纸顶层的各碳纤维上,且裸露的碳纤维的直径从约10微米增大到约30-40微米(作为经过CNT涂布的纤维),表明碳纤维上CNT层的厚度约为10微米。C:通过离子束溅射到碳纳米管上的Pt薄膜样品(250)的3000X放大倍数下的SEM图,其中纳米管通过化学气相沉积直接生长在碳纤维纸基材上,并具有作为催化剂的Ni。图中显示在碳纤维上形成均匀的碳纳米管网络结构。D:通过离子束溅射到碳纳米管上的Pt薄膜样品(250)的20000X放大倍数下的SEM图,其中纳米管通过化学气相沉积直接生长在碳纤维纸基材上,并具有作为催化剂的Ni。图中显示在碳纤维上形成均匀的碳纳米管网络结构。E:通过离子束溅射到碳纳米管上的Pt薄膜样品(250)的100000X放大倍数下的SEM图,其中纳米管通过化学气相沉积直接生长在碳纤维纸基材上,并具有作为催化剂的Ni。图中显示整齐的碳纳米管的均一尺寸为100纳米。F:通过离子束溅射到碳纳米管上的Pt薄膜样品(250)的200000X放大倍数下的SEM图,其中纳米管通过化学气相沉积直接生长在碳纤维纸基材上,并具有作为催化剂的Ni。图中显示在各碳纳米管上形成连续的Pt薄膜涂层。
图14说明本发明燃料催化剂和纳米颗粒的优点。在某些实施方式中,燃料电池催化剂可以结合到多孔电极中(如实施方式B所述),从而消除了传统构造(如实施方式A所述)中存在的单独的催化剂层和微扩散层。
详细说明
I.燃料电池催化剂
本发明涉及用于燃料电池的改进型催化剂和整合的气体-扩散/电极/催化剂(IGEC)的开发。本发明还提供利用所述改进型催化剂的燃料电池、燃料电池电极组合。
在某些实施方式中,本发明的催化剂包含涂布有含有催化活性金属(例如,铂、铂合金等)的基本连续的薄膜的纳米颗粒。不受限于具体理论,据信通过在纳米颗粒上沉积含有催化活性金属或合金的薄膜来增加有效活性表面的面积,可以提高薄膜的催化效率。纳米颗粒可以部分地涂布有基本连续的薄膜或完全被该薄膜覆盖。在典型的实施方式中,薄膜的厚度范围约为1纳米至500纳米,优选约为2纳米至300纳米,更优选约为5纳米至100纳米,最优选约为10纳米至50纳米。
纳米颗粒可以包括许多种类中的任何纳米颗粒。通常纳米颗粒的至少一维尺寸约小于500纳米,更优选至少两维尺寸或三维尺寸中的各维尺寸约小于500纳米。在某些实施方式中,纳米颗粒的特征是至少一维尺寸约小于100纳米或50纳米。
合适的纳米颗粒包括,但不限于,各种富勒烯(fullerenes)、碳纳米管、碳纳米突、碳(和其它)纳米纤维、纳米球/粉、量子点、金属包裹的富勒烯等。在某些优选的实施方式中,纳米颗粒结合碳。因此,碳基纳米颗粒包括,但不限于,碳纳米管、碳纳米突、碳纳米纤维、纳米球/粉等,特别适合用于本发明的催化剂中。
纳米颗粒可以是许多可能的而且仍然适用于本发明形貌中的任何形貌。因此,例如,本发明考虑使用以下种类的纳米管:单壁式、双壁式、多壁式、之字形空间螺旋式纳米管,或空间螺旋、扭曲、直线形、弯曲、纽结、卷曲、扁平和圆形纳米管的混合物;纳米管的股、扭曲的纳米管、辫子形的纳米管;纳米管的小束(例如,在某些实施方式中,管子数约小于10)、纳米管的中束(例如,在某些实施方式中,管子数以数百个计)、纳米管的大束(例如,在某些实施方式中,管子数以数千个计);纳米架(nanotorii)、纳米圈(nanocoils)、纳米棒、纳米线、纳米突;空心纳米笼(nanocages)、填充的纳米笼、多面纳米笼、空心纳米茧(nanococoons)、填充纳米茧、多面纳米茧;薄纳米片(nanoplatelets)、厚纳米片、***式纳米片,等等。各种纳米颗粒(纳米结构)可假设为非均相形式。这种非均相形式包括,但不限于这样的结构,即该结构中的一部分具有一定的化学组成,而该结构的其它部分具有不同的化学组成。一个例子是多壁式纳米管,其中不同壁的化学组成相互之间可不相同。非均相形式还可包括纳米结构化材料的不同形式,其中上述形式中的不止一种形式结合到一个更大的不规则结构中。另外,在某些实施方式中,上述材料中的任何材料可以具有裂缝、断层、分枝或其它杂质和/或缺陷。
制造纳米颗粒的方法是本领域技术人员所熟知的。因此,例如,美国专利6451175、6713519、6712864、6709471和Hafner等(1999)J.Am.Chem.Soc.,121:9750-9751;Hafner等(1999)Scientific Correspondence 398:761-762等中描述了制备碳纳米管的方法。类似地,例如Berber等(2000)PhysicalReview B,62(4):R2291-2294中描述了纳米突的生产,而例如美国专利6706248、6485858中描述了纳米纤维的生产,等等。
在本发明的催化剂中,纳米颗粒部分或全部地被含有催化活性金属或合金的基本连续的薄膜所覆盖。在某些实施方式中,催化活性金属或合金包含铂(Pt)。合适的合金包括,但不限于:二元合金,诸如Pt-Cr、Pt-V、Pt-Ta、Pt-Cu、Pt-Ru、Pt-Y等;和/或三元合金,包括但不限于,Pt-Ru-Os、Pt-Ni-Co、Pt-Cr-C、Pt-Cr-Ce、Pt-Co-Cr、Pt-Fe-Co、Pt-Ru-Ni、Pt-Ga-Cr-Co、Pt-Ga-Cr-Ni、Pt-Co-Cr等;和/或四元合金,包括但不限于Pt-Ni-Co-Mn、Pt-Fe-Co-Cu等。
单位面积(例如,催化剂的单位面积)的铂含量是实用PEM燃料电池用品的最重要的成本标准之一。在某些实施方式中,对含有Co、Ni、Mo和V的Pt合金的二元、三元和四元组成进行优化,如图2所示。如图3所示,发现钒可以显著地提高催化剂的耐氧化性。因此,在某些实施方式中,薄膜包括含有铂(Pt)和钒(V)以及任选的一种或多种其它金属(例如,Co、Ni、Mo、Ta、W、Zr等)的合金。在某些实施方式中,PtNiCoV合金是优选的用于燃料电池阳极和阴极的Pt合金催化剂体系,如图4所示。
还对铂合金体系中的铂(Pt)浓度进行了最优化。图3A和3B显示,随着Pt浓度的提高,燃料电池的输出电流迅速增加,但是在Pt-V和Pt-Co合金体系中都是Pt浓度达到约12%时输出电流达到饱和。因此,在某些实施方式中,对于PEM燃料电池的阴极和/或阳极来说,铂催化剂合金中优选的铂浓度都为12%或小于12%。
在某些实施方式中,薄膜包含通式为PtxVyCozNiw的合金,其中x大于0.06且小于1;y、z和w独立地大于0且小于1;且x+y+z+w=1。
在某些实施方式中,也对催化剂层的厚度进行了最优化,以减少铂含量。图5显示,对于催化剂Pt0.12Co0.88合金来说,薄膜厚度约为100时,电流输出达到饱和。因此,在某些优选的实施方式中,PEM燃料电池的阴极和/或阳极的薄膜Pt合金催化剂的厚度为100或小于100。
在某些实施方式中,薄膜不是基本连续的,而是“多样化的”,在下面的纳米颗粒上形成多个岛状物/小岛状物。在某些情况下,小岛状物的膜厚度约为5埃至100埃,而面积约为1至104平方纳米。
可通过多种常规方法中的任何方法将薄膜施涂于纳米颗粒。在某些实施方式中,可通过简单的化学方法施涂薄膜。因此,例如,在某些实施方式中,可通过直接喷涂或使纳米颗粒暴露于含有薄膜材料的溶剂并蒸发除去溶剂来将薄膜施涂到纳米颗粒上。在某些实施方式中,薄膜可以通过电沉积(例如电镀)沉积到纳米颗粒上。在某些实施方式中,通过常规的半导体加工方法将薄膜施涂到纳米颗粒上,这些半导体加工方法例如溅射、化学气相沉积(CVD)、分子束外延(MBE)、等离子体辅助气相沉积,等等(参见,例如,Choudhury(1997)The Handbook of Microlithography,Micromachining,and Microfabrication,Soc.Photo-Optical Instru.Engineer,Bard& Faulkner(1997)Fundamentals of Microfabrication,等)。
如上文中所述,通过在纳米颗粒(例如纳米管)上提供基本连续的薄膜来提高薄膜的催化效力。例如,图6A显示碳纳米管负载的Pt0.12Co0.88催化剂可以在相同的工作电压下将每毫克Pt的输出电流提高一个数量级。图6B显示碳纳米管负载的Pt0.12Co0.88催化剂可以将整个电流工作范围内的每毫克Pt的输出功率提高一个数量级。图7A和7B再次证实,12%的Pt对于碳纳米管负载的Pt合金催化剂来说是足够的。
图8A和8B表明受催化剂厚度、生长时间和催化剂材料控制的碳纳米管的密度和尺寸会影响催化剂性能。在某些实施方式中,优选的碳纳米管从几个纳米到100纳米,且具有最优密度。图13显示在用扫描电镜放大45至200000倍观察到的涂布在碳纳米管上的薄膜催化剂的结构,其中碳纳米管直接生长在Toray碳纸顶层的碳纤维上。碳纳米管均匀地生长在各纤维上,如图13(b)所示。如图13中c、d和e所示,碳纳米管层的厚度约为10微米,为均匀的网状结构。图13中f显示Pt薄膜(催化剂)是碳纳米管上的连续薄膜。
用于本发明的催化剂的纳米颗粒可以是各种形式,例如,在溶液中、作为干燥粉末和/或生长在多孔基材上。在某些实施方式中,纳米颗粒生长和保留在多孔基材上。在某些实施方式中,该多孔基材本身作为电极。
II.纳米颗粒催化剂(晶种)的最优化
在某些实施方式中,本发明涉及用于纳米颗粒生长(更优选用于碳纳米管生长)的催化剂的最优化。在某些优选的实施方式中,纳米颗粒(例如碳纳米管)在载体(例如,碳纤维)上生长,然后被涂布上基本连续的薄膜(例如,催化活性薄膜)。
当某些纳米颗粒(例如,碳纳米管)生长时,纳米颗粒催化剂(“晶种”)经常暴露在纳米颗粒的表面(例如,碳纳米管端部)上。因此,当将薄膜施涂到包含所述催化剂(晶种)的纳米颗粒上时,催化剂(晶种)颗粒与形成薄膜的材料混合,可以改变薄膜的催化活性。因此,希望使用适合纳米颗粒生长并且可以提高或基本不会对所施加的薄膜的催化活性造成不良影响的纳米颗粒催化剂材料来促进纳米颗粒生长。
惊奇地发现不是所有纳米颗粒催化剂对纳米颗粒生长和燃料电池工作都是有益的。因此,例如,铁对于碳纳米管生长是有益的,但是却会干扰所施加的薄膜的催化活性。一些元素,例如铝,似乎对燃料电池的工作没有不良影响。一些元素或它们的合金对于纳米颗粒(例如,碳纳米管)生长和燃料电池工作都是有益的。这些“最佳”的晶种材料包括,但不限于,Co、Ni、V和Mo。
惊奇地发现以下所列的合金特别适合碳纳米管生长和燃料电池工作。它们很大程度上提高了燃料电池的催化性质。
1.Co1-xMox,其中0≤x≤0.3;
2.Co1-x-yNixMoy,其中0.1≤x≤0.7,0≤y≤0.3;
3.Co1-x-y-zNixVyCrz,其中0≤x≤0.7,0≤y≤0.2,0≤z≤0.2;
4.Ni1-x-yMoxAly,其中0≤x≤0.2,0≤y≤0.2;
5.Co1-x-yNixAly,其中0≤x≤0.7,0≤y≤0.2。
6.FexNiyCo1-x-y,其中0<x<1,0<y<1。
在某些特别优选的实施方式中,用于纳米颗粒生长的催化剂包括以下所列中的一种或多种:Co8.8Mo1.2、Co2.2Ni5.6Mo2.2、Co5.7Ni2.1V1.1Cr1.1、Ni8.0Mo1.0Al1.0和Co6.4Ni2.4Al1.2
III.电极-隔膜组合和制造方法
在某些实施方式中,本发明的燃料电池催化剂(部分或全部被基本连续的薄膜所覆盖的纳米颗粒)被制造到电极/隔膜组合中。一种典型的电极/隔膜组合包括:至少一个含有第一燃料电池催化剂(部分或全部被基本连续的催化薄膜所覆盖的纳米颗粒)的第一导电电极;至少一个含有第二燃料电池催化剂的第二导电电极;和将第一导电电极和第二导电电极隔开的质子交换隔膜。
在一个更传统的构造中(参见,例如,图14中的“A”),催化剂(涂布有薄膜的纳米颗粒)在电极或聚合物隔膜上形成隔层。另外,可以任选存在微扩散层。因此,这种构造包括七个单独的层(两个电极,两个催化剂层,两个微扩散层和一个PEM)。但是,纳米颗粒可以与包含气体可扩散电极的纤维(例如,碳纤维片)交错,这样燃料电池催化剂(涂布有薄膜的纳米颗粒)就可以与电极整合在一起的方式制造,这是本发明的惊奇发现和优点。
另外,纳米颗粒催化剂本身能够用作微扩散层,所以额外的微扩散层并非必须或希望的。因此,在某些实施方式中,本发明考虑整合的气体扩散/电极/催化剂(IGEC)和隔膜的组合,该组合只包括三层;例如,两个IGEC层,它们被一个质子交换隔膜隔开(例如,参见,图4中的“B”)。
这种整合的微扩散层和催化剂/碳层很容易制造。例如,可以使碳纳米管(CNT)直接生长在碳纤维片表面层(1-5纤维直径)上的碳纤维上(参见,例如,图10)。裸露的碳纤维的直径约为10微米(参见,图11,1),而覆盖有CNT的碳的直径约为50微米(参见,图13,B)。这样,气体扩散电极的大孔洞转化为小孔洞,覆盖有CNT的顶部碳纤维层可用作微扩散层,来提高气体(例如,氢气)向催化剂的分散。涂布在碳纳米管顶层的铂或合金薄膜可以用作具有大表面积的有效催化剂结构。
在另一种方法中,可以将纳米颗粒(例如,CNT、CNH或其它纳米粉)喷涂到碳纤维片(或其它气体扩散电极)上,然后将所述薄膜涂布在纳米颗粒层上。如图12所示,中间微扩散层可以任选地用在纳米颗粒/催化剂层和碳纤维片(气体扩散电极)之间。
在某些实施方式中,由碳和/或其它导电材料制成的纤维或须晶可以在多孔导电基材上生长。它们可以用作负载催化薄膜的载体。在一个优选的方法中,碳纳米管直接在商品碳纤维纸上生长;然后通过化学气相沉积将如Pt、Ni、Co、Fe和它们的合金的催化剂薄层沉积在碳纳米管上,如图1的示意图所示。也可以将碳纳米管或其它类似的纳米结构化的导电材料喷涂或刷涂到碳纤维纸(气体扩散)电极上。然后,可以将铂合金薄膜催化剂沉积到直接接触质子交换隔膜(PEM)的这些碳纳米管层上。
在某些实施方式中,碳纳米管或其它类似的纳米结构化的导电材料也可以作为具有最优孔隙度和优选厚度(例如,从几纳米到数十微米)的薄片来制备。然后将该薄片放置到或压制到碳纤维纸上。然后将该薄膜催化剂沉积到直接接触质子交换隔膜的碳纳米管片上。
在某些优选的实施方式中,首先用薄膜催化剂涂布各碳纳米颗粒(例如,碳纳米管)。例如,可使用电镀来制造这种涂布了催化剂的碳纳米管或其它类似的纳米结构化的导电材料。然后将这些涂布了催化剂的纳米结构化的导电材料喷涂、刷涂或描绘到碳纸电极或燃料电池隔膜层上。或者,这些涂布了催化剂的纳米结构化的导电材料也可以作为具有最优孔隙度和优选厚度(从几微米至数十微米)的薄片来制备。然后将这种薄片放置或压制到碳纤维纸上。
一般而言,如图12和14所示,各层具有最佳孔隙度和厚度的三层导电材料的一个优选结构对于燃料电池工作是最有效和最经济的。例如,顶层由涂布了催化薄膜催化剂的碳纳米管制成,其中碳纳米管的直径从几纳米到100纳米,具有例如高纵横比(给催化作用提供尽可能大的表面)和均匀的微米级或纳米级孔隙分散层。可以精确控制该层的厚度(例如,至数十纳米管层,因为这些材料都是非常贵的材料)。在某些实施方式中,中间层由碳纤维或粉末制成,其中纤维或碳球的直径为亚微米(submicrometer)至几微米,层厚约为十微米至数十微米。纤维直径为几微米至数十微米、纸厚度为几百微米的商品Toray碳纤维纸适用于本申请。这种结构的孔径和密度从底层到顶层慢慢变化。
用作质子交换隔膜(PEM)的材料是本领域技术人员所熟知的。合适的质子交换隔膜材料包括,但不限于,Nafion、二氧化硅Nafion复合物(参见,例如,Adjemian等.(2002)J.Electrochem.Soc.,149(3):A256-A261)、用于高温PEMFC的聚膦腈(混合的无机/有机聚合物,具有-P=N-主链)(参见,例如,Fedkin等(2002)Materials Letters,52:192-196;Chalkova等(2002)Electrochemical and Solid State Letters,10:221-223)、金属泡沫材料(参见,例如,(2002)Fuel Cell Technology News,4(9))、磺化的聚(2,6-二甲基-1,4-亚苯基氧化物)(PPO)、聚苯乙烯-嵌段-聚(亚乙烯-无规-亚丁基)-嵌段</I>-聚苯乙烯、聚[(氯乙烯-共-(1-甲基-4-乙烯基哌嗪、聚(2-乙烯基吡啶-共-苯乙烯)、二氧化硅-聚合物复合物质子交换隔膜,等等。
V.燃料电池/燃料电池应用
本发明的隔膜电极组合(隔膜电极组件)可以成组使用(组装)以提高电压和功率输出,由此形成燃料电池,该燃料电池能够发出要使用该燃料电池的特定应用所需水平的功率。在电池堆内,相邻的单个电池(隔膜电极组件)通常通过双极板(BPP)电连接,其中双极板设置在两个电极中与接触电解质隔膜的面相对的两个面之间。这些BPP通常对反应物是没有渗透性的,以防止反应物渗透到相对电极,发生混合和化学反应失控。考虑到这种功能,BPP常被称为隔板。BPP或隔板通常由金属、微粒状的碳和石墨材料、浸渍石墨或其它由石墨和聚合物粘合剂组成的模塑化合物制成(参见,例如,美国专利4214969)。BPP表面上的流动通道或凹槽使燃料可以到达相邻的阳极,使氧化剂可以到达相邻的阴极,并且可以移出反应产物和未反应的燃料剩余物和氧化剂剩余物。这些流动通道减少了BPP的可用面积,因为电接触面积只限于通道之间的表面的一部分。
电极通常包括称为气体扩散层(GDL)的多孔结构。GDL为燃料和氧化剂分别到达催化剂层提供了足够的进入通道,并为反应产物离开催化剂层进入相邻BPP的流动通道提供了出口。为了便于流动通道和GDL孔之间的质量转递,暴露于通道的GDL表面积通常都尽可能大。因此,优选BPP表面的大部分被流动通道所占,只有少部分留下来用于电接触。但是,BPP和GDL之间的高接触电阻限制了电接触面积的减少。这两者之间的接触面积需要足够大到能避免在高电流密度下发生局部过热,这最终会导致组件被破坏。
已有一些提议,用来提高BPP和GDL之间的电接触,并且为本领域技术人员所知。例如美国专利4956131和6706437以及欧洲专利EP-A0955686、EP-A 0949704、EP-A 0975040、EP-A 0933825、EP-A 1030393等中描述了合适的方法。
依据本发明制造的燃料电池是实际上适用于任何用品的能源。这类用品包括,但不限于,电动车、计算机、手机和其它电子器件、家用发电***等。燃料电池是特别理想的,因为它们已经表现出高能量转化效率、高功率密度和几乎可以不计的污染。在车辆如汽车中,氢气的一种便利来源是甲醇的蒸气重整,因为甲醇比氢气更容易储存在车辆中。
文中所述的方法、器件和用品只是说明性的,而非限制性的。使用文中所述的内容,本领域技术人员可以按常规实施其它制造方法等。
实施例
以下实施例用来说明而非限制要求权利的本发明。
实施例1
通过多层沉积和后扩散退火处理Pt合金薄膜催化剂。对于具有固定组成的合金膜,使用由所选元素的原子量计算的厚度比控制所需的组成。对于组成连续改变的合金膜,在沉积的过程中产生厚度的梯度变化。在10-4托和室温的典型条件下使用纯金属靶进行离子束溅射沉积。通常多层的总厚度约为100。为了内扩散进行的后退火在约700℃、10-8托的真空下进行12小时。使用商品碳纤维纸作为大部分组成研究的基材。
通过沉积在碳纤维纸上的碳纳米管来提高催化剂的表面积,提供微气体扩散结构。在Toray碳纸的碳纤维上生长碳纳米管的步骤为:
(1)在碳纤维纸上沉积200厚的Ni作为催化剂;
(2)将碳纤维纸放入到与Ar、H2和C2H4气体管路连接的管式炉(6’长,直径为2”)中;
(3)通入速率为100毫升/分钟的Ar流30分钟,驱除空气;
(4)向管式炉中通入Ar(50毫升/分钟)和H2(10毫升/分钟)的混合物,以20℃/分钟的速率开始将温度升高到700℃;
(5)在700℃,将气体流混合物调整为Ar(15毫升/分钟)、H2(15毫升/分钟),通入管式炉中,进行10分钟;
(6)以20℃/分钟的速率使温度下降到20℃。
将纳米管喷涂到碳上的步骤为:
将纳米管用乙醇在玛瑙球磨机中进行研磨。将所产生的悬浮液涂抹或喷涂到Toray碳纸上。通过电子束沉积法在涂抹的纳米管的顶层表面上沉积Pt。测量的催化效率达到在生长的纳米管上的水平。
制造燃料电池的步骤包括:
(1)将nafion溶液(5摩尔%)滴到涂布有催化剂的碳纸上或碳纳米管/碳纸上,在空气中干燥,
(2)切割一片与催化剂样品相同尺寸的覆盖有Pt/Ru碳油墨作为催化剂(Pt∶Ru=2∶1,Pt=1毫克/平方厘米)的ElectroChem碳电极,
(3)将标准电极、隔膜和催化剂样品以三明治结构放到热压机上。在80℃以1吨的压力压制它们10分钟,形成燃料电池隔膜组件。
所有燃料电池测试的条件都为;在阳极一侧室内O2流速为100毫升/分钟和阴极一侧室内H2流速为100毫升/分钟。所有***密封隔绝空气,并保持在80℃。使用一系列电阻(1~4700欧姆)来调节燃料电池的负载。Keithley万用表用来监控测试燃料电池的输出电压和电流。
应理解文中所述的实施例和实施方式只是为了说明的目的,本领域技术人员可以据此作各种改变或变化,这些改变和变化也包括在本申请的精神和范围以及所附权利要求的范围内。文中引用的所有出版物、专利和专利申请的全部内容为了全部需要通过参考结合于此。

Claims (126)

1.一种组合物,其包含多个负载着纳米颗粒的导电纤维。
2.如权利要求1所述的组合物,其特征在于,所述导电纤维是碳纤维。
3.如权利要求1所述的组合物,其特征在于,所述纳米颗粒选自下组:纳米管、纳米纤维、纳米突、纳米粉、纳米球和量子点。
4.如权利要求1所述的组合物,其特征在于,所述纳米颗粒是碳纳米管。
5.如权利要求1所述的组合物,其特征在于,所述多个导电纤维包括多孔电极。
6.如权利要求2所述的组合物,其特征在于,所述碳纤维包括多孔电极。
7.如权利要求2所述的组合物,其特征在于,所述多个碳纤维包括碳纸或碳布或碳浸渍的聚合物。
8.如权利要求1所述的组合物,其特征在于,所述多个导电纤维包括多孔金属片。
9.如权利要求4所述的组合物,其特征在于,所述碳纳米管用一种或多种催化剂形成晶种,所述催化剂包含一种或多种选自下组的材料:Co、Ni、V、Cr、Pt、Ru、Mo、W、Ta和Zr。
10.如权利要求4所述的组合物,其特征在于,所述碳纳米管用一种或多种选自下组的催化剂形成晶种:FexNiyCo1-x-y,其中0≤x≤1,0≤y≤1;Co1-xMox,其中0≤x≤0.3;Co1-x-yNixMoy,其中0.1≤x≤0.7,0≤y≤0.3;Co1-x-y-zNixVyCrz,其中0≤x≤0.7,0≤y≤0.2,0≤z≤0.2;Ni1-x-yMoxAly,其中0≤x≤0.2,0≤y≤0.2;Co1-x-yNixAly,其中0≤x≤0.7,0≤y≤0.2。
11.如权利要求4所述的组合物,其特征在于,所述碳纳米管用一种或多种选自下组的催化剂形成晶种:Co8.8Mo1.2、Co2.2Ni5.6Mo2.2、Co5.7Ni2.1V1.1Cr1.1、Ni8.0Mo1.0Al1.0和Co6.4Ni2.4Al1.2
12.如权利要求4所述的组合物,其特征在于,所述纳米颗粒是长度小于50微米、直径约小于100纳米的纳米管。
13.如权利要求4所述的组合物,其特征在于,所述纳米颗粒是直径约为1纳米至100纳米的纳米管。
14.如权利要求1或4所述的组合物,其特征在于,所述纳米颗粒涂布有包含铂合金的基本连续的薄膜。
15.如权利要求14所述的组合物,其特征在于,所述薄膜部分地覆盖所述纳米颗粒。
16.如权利要求14所述的组合物,其特征在于,所述纳米颗粒完全涂布有所述薄膜。
17.如权利要求14所述的组合物,其特征在于,所述薄膜的厚度约为1埃至1000埃。
18.如权利要求17所述的组合物,其特征在于,所述薄膜的厚度约为5埃至500埃。
19.如权利要求1或4所述的组合物,其特征在于,所述纳米颗粒涂布有包含铂合金的非连续的薄膜。
20.如权利要求19所述的组合物,其特征在于,所述薄膜包括厚度约为5埃至100埃、面积约为1至104平方纳米的岛状物。
21.如权利要求17所述的组合物,其特征在于,所述薄膜的厚度约为5埃至100埃。
22.如权利要求21所述的组合物,其特征在于,所述薄膜包含一种合金,所述合金含有铂(Pt)、钒(V)和一种或多种选自下组的金属:Co、Ni、Mo、Ta、W和Zr。
23.如权利要求22所述的组合物,其特征在于,所述薄膜包含一种合金,所述合金含有铂(Pt)、钒(V)和一种或多种选自下组的金属:Co和Ni。
24.如权利要求22所述的组合物,其特征在于,所述铂在所述合金中最多约占50%(摩尔比或原子百分数)。
25.如权利要求22所述的组合物,其特征在于,所述铂在所述合金中最多约占12%(摩尔比或原子百分数)。
26.如权利要求22所述的组合物,其特征在于,所述合金包含铂、钒、镍和钴。
27.如权利要求22所述的组合物,其特征在于,所述薄膜包含通式为PtxVyCozNiw的合金,其中:
x大于0.06且小于1;
y、z和w分别大于0且小于1;
且x+y+z+w=1。
28.如权利要求27所述的组合物,其特征在于,x是0.12。
29.如权利要求27所述的组合物,其特征在于,x是0.12,y是0.07,z是0.56,w是0.25。
30.一种包含多个纳米颗粒的燃料电池催化剂,所述纳米颗粒涂布有包含铂或铂合金的基本连续的薄膜。
31.如权利要求30所述的燃料电池催化剂,其特征在于,所述薄膜部分地覆盖所述纳米颗粒。
32.如权利要求30所述的燃料电池催化剂,其特征在于,所述纳米颗粒完全涂布有所述薄膜。
33.如权利要求30所述的燃料电池催化剂,其特征在于,所述薄膜的厚度约为1埃至1000埃。
34.如权利要求33所述的燃料电池催化剂,其特征在于,所述薄膜的厚度约为5埃至500埃。
35.如权利要求33所述的燃料电池催化剂,其特征在于,所述薄膜的厚度约为5埃至100埃。
36.如权利要求30所述的燃料电池催化剂,其特征在于,所述薄膜包含一种合金,所述合金含有铂(Pt)、钒(V)和一种或多种选自下组的金属:Co、Ni、Mo、Ta、W和Zr。
37.如权利要求36所述的燃料电池催化剂,其特征在于,所述薄膜包含一种合金,所述合金含有铂(Pt)、钒(V)和一种或多种选自下组的金属:Co和Ni。
38.如权利要求36所述的燃料电池催化剂,其特征在于,所述铂在所述合金中最多约占50%(摩尔比或原子百分数)。
39.如权利要求36所述的燃料电池催化剂,其特征在于,所述铂在所述合金中最多约占12%(摩尔比或原子百分数)。
40.如权利要求39所述的燃料电池催化剂,其特征在于,所述合金含有铂、钒、镍和钴。
41.如权利要求36所述的燃料电池催化剂,其特征在于,所述薄膜包含通式为PtxVyCozNiw的合金,其中:
x大于0.06且小于1;
y、z和w分别大于0且小于1;
且x+y+z+w=1。
42.如权利要求41所述的燃料电池催化剂,其特征在于,x是0.12。
43.如权利要求41所述的燃料电池催化剂,其特征在于,x是0.12,y是0.07,z是0.56,w是0.25。
44.如权利要求30所述的燃料电池催化剂,其特征在于,所述纳米颗粒附着或结合到基材中。
45.如权利要求44所述的燃料电池催化剂,其特征在于,所述纳米颗粒附着或结合到多孔碳基材中。
46.如权利要求44所述的燃料电池催化剂,其特征在于,所述纳米颗粒附着或结合到多孔导电基材中。
47.如权利要求44所述的燃料电池催化剂,其特征在于,所述纳米颗粒与电极电连接。
48.如权利要求44所述的燃料电池催化剂,其特征在于,所述纳米颗粒附着到聚合物基材上。
49.如权利要求44所述的燃料电池催化剂,其特征在于,所述纳米颗粒是碳纳米管,所述纳米管附着在碳纤维上或与碳纤维接触。
50.如权利要求30所述的燃料电池催化剂,其特征在于,所述纳米颗粒选自下组:纳米管、纳米纤维、纳米突、纳米粉、纳米球和量子点。
51.如要求30所述的燃料电池催化剂,其特征在于,所述纳米颗粒是碳纳米管。
52.如权利要求30所述的组合物,其特征在于,所述碳纳米管用一种或多种选自下组的催化剂形成晶种:FexNiyCo1-x-y,其中0<x<1,0<y<1;Co1-xMox,其中0≤x≤0.3;Co1-x-yNixMoy,其中0.1≤x≤0.7,0≤y≤0.3;Co1-x-y-zNixVyCrz,其中0≤x≤0.7,0≤y≤0.2,0≤z≤0.2;Ni1-x-yMoxAly,其中0≤x≤0.2,0≤y≤0.2;Co1-x-yNixAly,其中0≤x≤0.7,0≤y≤0.2。
53.如权利要求30所述的组合物,其特征在于,所述碳纳米管用一种或多种选自下组的催化剂形成晶种:Co8.8Mo1.2、Co2.2Ni5.6Mo2.2、Co5.7Ni2.1V1.1Cr1.1、Ni8.0Mo1.0Al1.0和Co6.4Ni2.4Al1.2
54.如权利要求51所述的燃料电池催化剂,其特征在于,所述纳米颗粒是长度约小于200微米、宽度约小于100纳米的纳米管。
55.如权利要求51所述的燃料电池催化剂,其特征在于,所述纳米颗粒是直径约为10纳米至100纳米的纳米管。
56.一种电极-隔膜组合,其包括:
至少一个包含第一燃料电池催化剂的第一导电电极;
至少一个包含第二燃料电池催化剂的第二导电电极;
隔开第一导电电极和第二导电电极的质子交换隔膜;
所述第一燃料电池催化剂和第二燃料电池催化剂独立地选自如权利要求30至55中任一项所述的催化剂。
57.如权利要求56所述的电极隔膜组合,其特征在于,所述第一燃料电池催化剂和所述第二燃料电池催化剂是不同的材料。
58.如权利要求56所述的电极隔膜组合,其特征在于,所述质子交换隔膜的厚度约为2微米至100微米。
59.如权利要求56所述的电极隔膜组合,其特征在于,所述质子交换隔膜包含选自下组的材料:Nafion、二氧化硅Nafion复合物、聚膦腈、磺化的(PPO)和二氧化硅-聚合物复合物。
60.如权利要求56所述的电极隔膜组合,其特征在于,所述第一导电电极和所述第一燃料电池催化剂形成隔层。
61.如权利要求60所述的电极隔膜组合,其特征在于,所述第一导电层和第一燃料电池催化剂还包括在所述电极和所述催化剂之间的微扩散层。
62.如权利要求56所述的电极隔膜组合,其特征在于,所述第一导电电极和第一燃料电池催化剂形成整合的单层。
63.如权利要求62所述的电极隔膜组合,其特征在于,所述第一燃料电池催化剂还作为微扩散层。
64.如权利要求62所述的电极隔膜组合,其特征在于,所述第二导电电极和第二燃料电池催化剂形成整合的单层。
65.如权利要求64所述的电极隔膜组合,其特征在于,所述第二燃料电池催化剂还作为微扩散层。
66.一种燃料电池堆,其包括多个电连接的电极隔膜组合,所述电极隔膜组合包括:
至少一个包含第一燃料电池催化剂的第一导电电极;
至少一个包含第二燃料电池催化剂的第二导电电极;
隔开第一导电电极和第二导电电极的质子交换隔膜;
所述第一燃料电池催化剂和第二燃料电池催化剂独立地选自如权利要求30至54中任一项所述的催化剂。
67.一种电气装置,其包括如权利要求66所述的燃料电池堆。
68.如权利要求67所述的电气装置,其特征在于,所述装置是运输车辆。
69.一种电池组替代品,其特征在于,所述电池组替代品包括容纳如权利要求66所述的燃料电池堆的外壳,其中所述外壳提供用于接触需要电力的装置的正极端和负极端。
70.如权利要求69所述的电池组替代品,其特征在于,所述电池组替代品给房屋、手机、照明***、计算机和/或器具供电。
71.一种制造燃料催化剂的方法,所述方法包括:
提供多个纳米颗粒;
在所述纳米颗粒上沉积包含铂或铂合金的基本连续的薄膜。
72.如权利要求71所述的方法,其特征在于,所述沉积通过选自下组的方法进行:溅射沉积、化学气相沉积(CVD)、原子层沉积(ALD)、分子束外延(MBE)、激光处理、等离子体辅助气相沉积、电子束蒸发沉积、电镀和化学镀。
73.如权利要求71所述的方法,其特征在于,所述沉积是通过按照以下顺序进行的连续综合方法在多孔电极基材上实现的:溅射、蒸发、电镀、ALD或CVD沉积纳米颗粒生长催化剂薄膜,然后CVD、等离子体辅助CVD或激光处理沉积纳米颗粒,然后溅射、蒸发、电镀、ALD或CVD沉积燃料电池催化剂薄膜。
74.如权利要求71所述的方法,其特征在于,所述薄膜部分地覆盖纳米颗粒。
75.如权利要求71所述的方法,其特征在于,所述纳米颗粒完全涂布有所述薄膜。
76.如权利要求71所述的方法,其特征在于,所述薄膜的厚度约为1埃至500埃。
77.如权利要求76所述的方法,其特征在于,所述薄膜的厚度约为5埃至100埃。
78.如权利要求71所述的方法,其特征在于,所述薄膜包含一种合金,所述合金含有铂(Pt)、钒(V)和一种或多种选自下组的金属:Co、Ni、Mo、Ta、W和Zr。
79.如权利要求78所述的方法,其特征在于,所述薄膜包含一种合金,所述合金含有铂(Pt)、钒(V)和一种或多种选自下组的金属:Co和Ni。
80.如权利要求78所述的方法,其特征在于,所述铂在所述合金中最多约占12%。
81.如权利要求80所述的方法,其特征在于,所述合金含有铂、钒、镍和钴。
82.如权利要求78所述的方法,其特征在于,所述薄膜包含通式为PtxVyCozNiw的合金,其中:
x大于0.06且小于1;
y、z和w分别大于0且小于1;
且x+y+z+w=1。
83.如权利要求82所述的方法,其特征在于,x是0.12。
84.如权利要求82所述的方法,其特征在于,x是0.12,y是0.07,z是0.56,w是0.25。
85.如权利要求71所述的方法,其特征在于,所述纳米颗粒附着在基材上。
86.如权利要求85所述的方法,其特征在于,所述纳米颗粒附着在多孔碳基材上。
87.如权利要求85所述的方法,其特征在于,所述纳米颗粒附着在多孔电极上。
88.如权利要求85所述的方法,其特征在于,所述纳米颗粒与多孔电极电连接。
89.如权利要求85所述的方法,其特征在于,所述纳米颗粒附着在聚合物电解质膜基材上。
90.如权利要求71所述的方法,其特征在于,所述纳米颗粒选自下组:纳米管、纳米纤维、纳米突、纳米粉、纳米球和量子点。
91.如权利要求71所述的方法,其特征在于,所述纳米颗粒是碳纳米管。
92.如权利要求91所述的方法,其特征在于,所述纳米颗粒是长度约小于50微米、宽度约小于100纳米的纳米管。
93.如权利要求92所述的燃料电池催化剂,其特征在于,所述纳米颗粒是直径约为50纳米至100纳米的纳米管。
94.一种制备燃料电池元件的方法,所述方法包括:
提供多个纤维和/或多孔电极材料;
在所述多个纤维和/或多孔电极材料上沉积纳米颗粒催化剂;
使用所述纳米颗粒催化剂在所述多个纤维和/或多孔电极材料上形成纳米颗粒;
在所述纳米颗粒上形成包含基本连续薄膜的催化活性层,从而形成包含多个负载着纳米颗粒的纤维的燃料电池元件,其中所述纳米颗粒部分或全部涂布有催化活性薄膜。
95.如权利要求94所述的方法,其特征在于,所述多个纤维包括多个碳纤维。
96.如权利要求95所述的方法,其特征在于,所述多个碳纤维包括多孔电极。
97.如权利要求95所述的方法,其特征在于,所述多个纤维包括碳纤维纸。
98.如权利要求94所述的方法,其特征在于,所述纳米颗粒催化剂是碳纳米管催化剂,所述纳米颗粒是碳纳米管。
99.如权利要求98所述的方法,其特征在于,所述纳米颗粒通过选自下组的方法形成:化学气相沉积(CVD)、等离子体辅助CVD、溅射、激光处理和原子层沉积(ALD)。
100.如权利要求94所述的方法,其特征在于,所述沉积纳米颗粒催化剂包括通过选自下组的方法在所述纤维上沉积所述催化剂:溅射沉积、化学气相沉积(CVD)、原子层沉积(ALD)、分子束外延(MBE)、等离子体辅助气相沉积、电子束蒸发沉积、电镀和化学镀、和原子层沉积(ALD)。
101.如权利要求98所述的方法,其特征在于,所述催化剂是选自下组的催化剂:FexNiyCo1-x-y,其中0<x<1,0<y<1;Co1-xMox,其中0≤x≤0.3;Co1-x-yNixMoy,其中0.1≤x≤0.7,0≤y≤0.3;Co1-x-y-zNixVyCrz,其中0≤x≤0.7,0≤y≤0.2,0≤z≤0.2;Ni1-x-yMoxAly,其中0≤x≤0.2,0≤y≤0.2;Co1-x-yNixAly,其中0≤x≤0.7,0≤y≤0.2。
102.如权利要求98所述的方法,其特征在于,所述催化剂是选自下组的催化剂:Co8.8Mo1.2、Co2.2Ni5.6Mo2.2、Co5.7Ni2.1V1.1Cr1.1、Ni8.0Mo1.0Al1.0和Co6.4Ni2.4Al1.2
103.如权利要求98所述的方法,其特征在于,所述纳米管的长度小于50微米,宽度约小于100纳米。
104.如权利要求98所述的方法,其特征在于,所述纳米管的直径约为50纳米至100纳米。
105.如权利要求98所述的方法,其特征在于,所述纳米颗粒涂布有包含铂或铂合金的基本连续的薄膜。
106.如权利要求105所述的方法,其特征在于,所述薄膜部分地覆盖所述纳米颗粒。
107.如权利要求105所述的方法,其特征在于,所述纳米颗粒完全涂布有所述薄膜。
108.如权利要求105所述的方法,其特征在于,所述薄膜的厚度约为1埃至1000埃。
109.如权利要求107所述的方法,其特征在于,所述薄膜的厚度约为5埃至500埃。
110.如权利要求107所述的方法,其特征在于,所述薄膜的厚度约为5埃至100埃。
111.如权利要求110所述的方法,其特征在于,所述薄膜包含一种合金,所述合金含有铂(Pt)、钒(V)和一种或多种选自下组的金属:Co、Ni、Mo、Ta、W和Zr。
112.如权利要求111所述的方法,其特征在于,所述薄膜包含一种合金,所述合金含有铂(Pt)、钒(V)和一种或多种选自下组的金属:Co和Ni。
113.如权利要求111所述的方法,其特征在于,所述铂在所述合金中最多约占50%(摩尔比或原子百分数)。
114.如权利要求111所述的方法,其特征在于,所述铂在所述合金中最多约占12%(摩尔比或原子百分数)。
115.如权利要求111所述的方法,其特征在于,所述合金含有铂、钒、镍和钴。
116.如权利要求111所述的方法,其特征在于,所述薄膜包含通式为PtxVyCozNiw的合金,其中:
x大于0.06且小于1;
y、z和w分别大于0且小于1;
且x+y+z+w=1。
117.如权利要求116所述的方法,其特征在于,x是0.12。
118.如权利要求116所述的方法,其特征在于,x是0.12,y是0.07,z是0.56,w是0.25。
119.如权利要求94所述的方法,其特征在于:
所述提供多个纤维和/或多孔电极材料包括提供碳纤维纸或碳纤维布或多孔金属电极;
所述沉积纳米颗粒催化剂包括通过化学气相沉积或物理气相沉积法沉积所述催化剂;
所述形成纳米颗粒包括形成碳纳米管;
所述形成催化活性层包括沉积含有铂或铂合金的基本连续的薄膜。
120.一种制造用于燃料电池的碳纳米管的方法,所述方法包括:
提供选自以下的纳米管生长催化剂:FexNiyCo1-x-y,其中0<x<1,0<y<1;Co1-xMox,其中0≤x≤0.3;Co1-x-yNixMoy,其中0.1≤x≤0.7,0≤y≤0.3;Co1-x-y-zNixVyCrz,其中0≤x≤0.7,0≤y≤0.2,0≤z≤0.2;Ni1-x-yMoxAly,其中0≤x≤0.2,0≤y≤0.2;Co1-x-yNixAly,其中0≤x≤0.7,0≤y≤0.2;
在所述催化剂上形成碳纳米管。
121.如权利要求120所述的方法,其特征在于,所述催化剂是选自下组的催化剂:Co8.8Mo1.2、Co2.2Ni5.6Mo2.2、Co5.7Ni2.1V1.1Cr1.1、Ni8.0Mo1.0Al1.0和Co6.4Ni2.4Al1.2
122.如权利要求120所述的方法,其特征在于,所述形成通过选自以下的方法进行:化学气相沉积(CVD)、溅射、激光处理和原子层沉积(ALD)。
123.一种碳纳米管,所述纳米管包含选自下组的纳米管生长催化剂:FexNiyCo1-x-y,其中0<x<1,0<y<1;Co1-xMox,其中0≤x≤0.3;Co1-x-yNixMoy,其中0.1≤x≤0.7,0≤y≤0.3;Co1-x-y-zNixVyCrz,其中0≤x≤0.7,0≤y≤0.2,0≤z≤0.2;Ni1-x-yMoxAly,其中0≤x≤0.2,0≤y≤0.2;Co1-x-yNixAly,其中0≤x≤0.7,0≤y≤0.2。
124.如权利要求123所述的碳纳米管,其特征在于,所述催化剂是选自下组的催化剂:Co8.8Mo1.2、Co2.2Ni5.6Mo2.2、Co5.7Ni2.1V1.1Cr1.1、Ni8.0Mo1.0Al1.0和Co6.4Ni2.4Al1.2
125.一种用于燃料电池用碳纳米管生长的催化剂,所述催化剂是选自下组的催化剂:FexNiyCo1-x-y,其中0<x<1,0<y<1;Co1-xMox,其中0≤x≤0.3;Co1-x-yNixMoy,其中0.1≤x≤0.7,0≤y≤0.3;Co1-x-y-zNixVyCrz,其中0≤x≤0.7,0≤y≤0.2,0≤z≤0.2;Ni1-x-yMoxAly,其中0≤x≤0.2,0≤y≤0.2;Co1-x-yNixAly,其中0≤x≤0.7,0≤y≤0.2。
126.如权利要求125所述的催化剂,其特征在于,所述催化剂是选自下组的催化剂:Co8.8Mo1.2、Co2.2Ni5.6Mo2.2、Co5.7Ni2.1V1.1Cr1.1、Ni8.0Mo1.0Al1.0和Co6.4Ni2.4Al1.2
CNA2005800111291A 2004-03-02 2005-03-02 低铂燃料电池、催化剂及其制备方法 Pending CN1954392A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US54971204P 2004-03-02 2004-03-02
US60/549,712 2004-03-02
US10/823,088 2004-04-12
US10/898,669 2004-07-23

Publications (1)

Publication Number Publication Date
CN1954392A true CN1954392A (zh) 2007-04-25

Family

ID=38059756

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800111291A Pending CN1954392A (zh) 2004-03-02 2005-03-02 低铂燃料电池、催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN1954392A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635362B (zh) * 2008-07-25 2012-03-28 清华大学 膜电极及采用该膜电极的燃料电池
CN103531824A (zh) * 2012-07-03 2014-01-22 现代自动车株式会社 制造燃料电池阳极的方法
CN104203408A (zh) * 2012-03-30 2014-12-10 庄信万丰燃料电池有限公司 用于燃料的薄膜催化材料
CN104218250A (zh) * 2014-09-17 2014-12-17 同济大学 一种燃料电池用PtM/C电催化剂及其制备方法
CN104203408B (zh) * 2012-03-30 2016-11-30 庄信万丰燃料电池有限公司 用于燃料的薄膜催化材料
CN109524676A (zh) * 2018-11-20 2019-03-26 安徽明天氢能科技股份有限公司 一种立体化的燃料电池催化层电极及其制备方法
CN110944732A (zh) * 2017-06-13 2020-03-31 里兰斯坦福初级大学理事会 具有增强的催化活性的电化学催化剂

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472135A (zh) * 2002-07-29 2004-02-04 ����Sdi��ʽ���� 用于燃料电池的碳纳米管及其制备方法以及采用它的燃料电池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472135A (zh) * 2002-07-29 2004-02-04 ����Sdi��ʽ���� 用于燃料电池的碳纳米管及其制备方法以及采用它的燃料电池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635362B (zh) * 2008-07-25 2012-03-28 清华大学 膜电极及采用该膜电极的燃料电池
CN104203408A (zh) * 2012-03-30 2014-12-10 庄信万丰燃料电池有限公司 用于燃料的薄膜催化材料
CN104203408B (zh) * 2012-03-30 2016-11-30 庄信万丰燃料电池有限公司 用于燃料的薄膜催化材料
US9577269B2 (en) 2012-03-30 2017-02-21 Johnson Matthey Fuel Cells Limited Thin film catalytic material for use in fuel
CN103531824A (zh) * 2012-07-03 2014-01-22 现代自动车株式会社 制造燃料电池阳极的方法
CN103531824B (zh) * 2012-07-03 2018-03-09 现代自动车株式会社 制造燃料电池阳极的方法
CN104218250A (zh) * 2014-09-17 2014-12-17 同济大学 一种燃料电池用PtM/C电催化剂及其制备方法
CN110944732A (zh) * 2017-06-13 2020-03-31 里兰斯坦福初级大学理事会 具有增强的催化活性的电化学催化剂
CN109524676A (zh) * 2018-11-20 2019-03-26 安徽明天氢能科技股份有限公司 一种立体化的燃料电池催化层电极及其制备方法

Similar Documents

Publication Publication Date Title
KR101240144B1 (ko) 저농도 백금 연료 전지, 촉매, 및 그의 제조방법
US7351444B2 (en) Low platinum fuel cell catalysts and method for preparing the same
Liu et al. A review of anode catalysis in the direct methanol fuel cell
CN101024495B (zh) 碳纳米管、含它的担载催化剂及采用该催化剂的燃料电池
EP2432058B1 (en) Nanowire-based membrane electrode assemblies for fuel cells
US8247136B2 (en) Carbon based electrocatalysts for fuel cells
EP2008322B1 (en) Platinum and platinum based alloy nanotubes as electrocatalysts for fuel cells
CN100438160C (zh) 用于燃料电池的Pt/Ru合金催化剂
US7105246B2 (en) Catalytic material, electrode, and fuel cell using the same
CN101641816B (zh) 用于基于聚合物电解质的燃料电池的电化学催化剂的方法
Xue et al. Novel chemical synthesis of Pt–Ru–P electrocatalysts by hypophosphite deposition for enhanced methanol oxidation and CO tolerance in direct methanol fuel cell
US20130149632A1 (en) Electrode catalyst for a fuel cell, method of preparing the same, and membrane electrode assembly and fuel cell including the electrode catalyst
WO2007075437A2 (en) Low platinum fuel cells, catalysts, and method for preparing the same
Song et al. Uniform multilayer graphene-coated iron and iron-carbide as oxygen reduction catalyst
JP2007526616A5 (zh)
Zeng et al. PtFe alloy nanoparticles confined on carbon nanotube networks as air cathodes for flexible and wearable energy devices
Etesami et al. Recent progress of electrocatalysts for hydrogen proton exchange membrane fuel cells
CN1954392A (zh) 低铂燃料电池、催化剂及其制备方法
Hosseini et al. Novel bimetallic Pd–X (X= Ni, Co) nanoparticles assembled on N-doped reduced graphene oxide as an anode catalyst for highly efficient direct sodium borohydride–hydrogen peroxide fuel cells
KR20130067476A (ko) 연료 전지용 전극 촉매, 이의 제조 방법, 및 이를 포함한 막 전극 접합체 및 연료 전지
Hu et al. Synthesis of anti-poisoning spinel Mn–Co–C as cathode catalysts for low-temperature anion exchange membrane direct ammonia fuel cells
Wang et al. Carbon nanotube-bridged MXene nanoarchitectures decorated with ultrasmall Rh nanoparticles for efficient methanol oxidation
KR102103098B1 (ko) 전극 촉매, 그의 제조 방법 및 당해 전극 촉매를 사용한 전극 촉매층
Mu et al. Synthesis of platinum/multi-wall carbon nanotube catalysts
Sanad et al. Metal-organic framework in fuel cell technology: Fundamentals and application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20070425