CN101024495B - 碳纳米管、含它的担载催化剂及采用该催化剂的燃料电池 - Google Patents

碳纳米管、含它的担载催化剂及采用该催化剂的燃料电池 Download PDF

Info

Publication number
CN101024495B
CN101024495B CN2006101725564A CN200610172556A CN101024495B CN 101024495 B CN101024495 B CN 101024495B CN 2006101725564 A CN2006101725564 A CN 2006101725564A CN 200610172556 A CN200610172556 A CN 200610172556A CN 101024495 B CN101024495 B CN 101024495B
Authority
CN
China
Prior art keywords
carbon nanotube
catalyst
fuel cell
loaded
nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006101725564A
Other languages
English (en)
Other versions
CN101024495A (zh
Inventor
许廷娜
李晶姬
郑太远
朴相铉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of CN101024495A publication Critical patent/CN101024495A/zh
Application granted granted Critical
Publication of CN101024495B publication Critical patent/CN101024495B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G9/00Forming or shuttering elements for general use
    • E04G9/02Forming boards or similar elements
    • E04G9/06Forming boards or similar elements the form surface being of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • B01J35/615
    • B01J35/617
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/32Specific surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明提供碳纳米管,其制备方法,包括它的担载催化剂,及采用该担载催化剂的燃料电池。所述制备碳纳米管的方法包括:在单壁纳米管中沉积用于产生多壁纳米管的金属催化剂;及利用该用于产生多壁纳米管的金属催化剂,在单壁纳米管上生长多壁纳米管。本发明的碳纳米管具有令人满意的比表面积和低表面电阻。因而,所述碳纳米管表现得显著好于常规催化剂载体。因此,当用作燃料电池的电极的催化剂载体时,碳纳米管能够改善燃料电池的导电性。另外,采用所述电极的燃料电池具有优异的效率和综合性能。

Description

碳纳米管、含它的担载催化剂及采用该催化剂的燃料电池
技术领域
本发明涉及一种碳纳米管,包括它的担载催化剂,及采用该担载催化剂的燃料电池,更具体地,本发明涉及一种具有优异的导电性的碳纳米管,包括它的担载催化剂,及通过采用该担载催化剂而具有优异性能的燃料电池。
背景技术
燃料电池为通过燃料和氧化气体之间的电化学反应,将储存在燃料中的能量转换成电能的能量转化装置。燃料电池可以分为利用固体氧化物电解质的固体氧化物电解质燃料电池,其能够在1000℃下工作;熔融碳酸盐燃料电池,其能够在500~700℃下工作;磷酸电解质燃料电池,其能够在约200℃下工作;及碱性电解质燃料电池和固体聚合物电解质燃料电池,其能够在室温下或者在约100℃或更低的温度下工作。
固体电解质燃料电池的实例包括利用氢气作为燃料源的质子交换膜燃料电池(PEMFC),利用直接提供给阳极的液体甲醇溶液作为燃料发电的直接甲醇燃料电池(DMFC)等。聚合物电解质燃料电池为清洁能源,能够替代矿物燃料,并具有高功率密度和高能量转化效率。另外,聚合物电解质燃料电池能够在室温下工作,并能够小型化和密封。这些特性使得聚合物电解质燃料电池成为无污染汽车、家用发电***、便携式通讯设备、军事装备、医疗器材、空间技术设备等的理想选择。
PEMFC通过氢和氧之间的电化学反应产生直流电,并包括介于阳极和阴极之间的质子交换膜。
质子交换膜由固体聚合物材料如Nafion构成,该固体聚合物材料具有良好的质子导电性并使得未反应的气体或燃料向阴极侧渗透最少。阳极和阴极包括提供反应气体或液体的支撑层,及用于反应气体的氧化/还原的催化剂。
当氢反应气体提供给PEMFC时,氢分子在阳极中通过氧化反应分解为质子和电子。质子穿过质子交换膜渗透到阴极。
与此同时,氧提供给阴极,并且氧接受电子形成氧离子。氧离子然后与来自阳极的质子结合,产生水。
PEMFC中的气体扩散层(GDL)包括在阳极和阴极的每一个中。促进燃料电池化学反应的催化剂层形成于每个阳极和阴极支撑层上。阳极和阴极支撑层可以由碳布或碳纸构成。
DMFC具有与上述PEMFC相似的结构,但是利用液体甲醇溶液代替氢作为燃料源。当甲醇溶液提供给阳极时,在催化剂存在的条件下发生氧化反应,产生质子、电子和二氧化碳。虽然DMFC具有比PEMFC稍低的能量效率,但是在DMFC中利用液体燃料使得DMFC应用于便携式电子设备更容易。
为了通过增加燃料电池的能量密度来提高功率密度和电压,已经对电极、燃料和电解质膜进行了研究。具体地,已经做出了许多尝试来提高电极中的催化剂活性。一般,用于PEMFC和DMFC中的催化剂为Pt、Pd、Rh、Ru或Pt与其它金属的合金,需要较少量的催化剂金属,使得制造成本降低。
为了在保持或改善燃料电池性能的同时降低催化剂的量,可以使用具有大比表面积的导电性碳质材料作为载体并可以将Pt细颗粒等分散在载体中,从而增加催化剂金属的比表面积。
通常,糊状的催化剂如Pt均匀地涂布在多孔碳支撑基底上。
然而,催化剂在支撑基底中的分散是不均匀的,并且碳支撑基底的表面积和电导率也不足够大。因为碳纳米管具有许多有吸引力的物理性质如良好的导电性、优异的力学强度、高纵横比和大的面积/体积比,所以已经做出各种尝试,把碳纳米管应用于燃料电池电极中。
然而,常规碳纳米管不具有令人满意的表面电阻,而不能用作支撑燃料电池的催化剂的催化剂载体。
发明内容
本发明提供具有令人满意的比表面积和优异的表面电阻的碳纳米管,包括它的担载催化剂,及采用该担载催化剂的燃料电池。
根据本发明的一个方面,提供制备碳纳米管的方法,该方法包括:在单壁纳米管中沉积用于产生多壁纳米管的金属催化剂;及利用该用于产生多壁纳米管的金属催化剂,在单壁纳米管上生长多壁纳米管。
所述单壁纳米管通过化学气相沉积或电弧放电生长。
根据本发明的另一个方面,提供利用上述方法制备的碳纳米管。
碳纳米管的表面电阻率可以为1~30毫欧/sq,优选为约8毫欧/sq。BET比表面积可以为100~1000m2/g,优选为约200m2/g。碳纳米管的拉曼分析光谱的G带峰积分值(band peak integral)(IG)与D带峰积分值(ID)之比可以为3或更大,并且碳纳米管的拉曼分析光谱可以显示RGB模式峰(mode peak)。IG与ID之比取决于多壁纳米管的生长方法。即,当采用具有提供良好结晶的能力的电弧放电来生长多壁纳米管时,该比值会大。
根据本发明的另一个方面,提供包括上述碳纳米管和催化剂金属的担载催化剂。碳纳米管的表面电阻率可以为1~30毫欧/sq,碳纳米管的BET比表面积可以为100~1000m2/g。此外,催化剂金属的量可以为担载催化剂的40~80%。
根据本发明的另一个方面,提供燃料电池,其采用包括上述担载催化剂的电极。
附图说明
通过参照附图详述其示例性实施方案,本发明的上述及其它特征和优点将变得更加清楚,在附图中:
图1为根据本发明实施方案的制备碳纳米管的方法的示意图;
图2和图3分别为制备实施例1中制得的根据本发明实施方案的碳纳米管在次生生长之前和之后的扫描电镜照片;
图4为在制备实施例1中制得的根据本发明实施方案的碳纳米管的拉曼分析光谱;及
图5为根据制备实施例1制得的根据本发明实施方案的碳纳米管在次生生长之后的透射电子显微镜照片。
具体实施方式
现在将参照附图更全面地描述本发明,附图中图示了本发明的示例性实施方案。然而,本发明可以以许多不同的形式实施,并不应该解释为限于本文中所提出的实施方案;相反,提供这些实施方案是为了使得本公开将是彻底和完全的,并将向本领域的技术人员全面地传达本发明的构思。
图1为根据本发明实施方案制备碳纳米管的方法的示意图。
参照图1,通过向具有优异的比表面积的单壁纳米管(SWNT)10中沉积用于产生多壁纳米管的金属催化剂11,制备碳纳米管。通过次生生长,生长出具有优异的结晶性质的多壁纳米管(MWNT)12。所述碳纳米管具有令人满意的比表面积和优异的表面电阻,从而提供优异的导电性。
SWNT 10可以通过形成第一金属催化剂层和利用第一金属催化剂层生长碳纳米管制得。作为选择,可以使用商品如在比利时可以得到的Nanocyl,在休斯顿可以得到的CNI,或者在韩国首尔可以得到的ILJIN。
用于MWNT 12的次生生长的金属催化剂11可以选自镍、铁、钴及其合金。这种用于产生多壁纳米管的金属催化剂可以为过渡金属状态或离子状态。
按100重量份的SWNT 10计,用于产生多壁纳米管的金属催化剂11的量可以为0.1~100重量份。可以采用任何向SWNT 10中沉积用于产生多壁纳米管的金属催化剂的方法来生长碳纳米管。具体地,可以采用液相法,液相法能够将过渡金属如Ni、Fe、Co、Pd等的前体,即金属乙酸盐、金属硝酸盐如Fe2(NO3)39H2O、金属-有机化合物如镍(II)乙酰丙酮化物或铜(II)乙酰丙酮化物、二茂铁等均匀地分散在单壁碳纳米管中(Ref.:J.Phys.:Condens.Matter 15(2003)S3011-S3035)。
在次生生长中,可以采用任何用于生长碳纳米管的常规方法。方法的实例包括化学气相沉积(CVD)方法如热CVD方法、DC等离子体CVD方法、RF等离子体CVD方法或微波等离子体CVD方法,及电弧放电方法。
当MWNT的结晶优异时,所制备的碳纳米管的导电性高。因此,在MWNT的生长过程中较高的温度是更好的。当采用CVD方法时,温度可以为450~650℃,优选为600~650℃。当采用电弧放电方法时,温度可以为至少650℃。
根据本发明当前实施方案的碳纳米管的BET比表面积可以为100~1000m2/g,且根据本发明当前实施方案的碳纳米管的表面电阻率可以为1~30mΩ/sq,这是非常小的。因此,碳纳米管的导电性高。具体地,所述碳纳米管既具有SWNT的令人满意的比表面积,又具有MWNT的低表面电阻。
当利用拉曼分析法分析碳纳米管时,G带峰积分值(IG)与D带峰积分值(ID)之比为3或更大,并显示出RGB模式峰。本文中,RGB模式峰是波数为100~300cm-1的峰。优选地,G带峰积分值(IG)与D带峰积分值(ID)之比为3~10000。
所述碳纳米管可以用作燃料电池的催化剂载体。现在将描述包括所述碳纳米管的根据本发明另一个实施方案的担载催化剂。
担载催化剂包括所述碳纳米管及分散并担载在碳纳米管上的催化剂金属颗粒。
催化剂金属的实例包括钛(Ti),钒(V),铬(Cr),锰(Mn),铁(Fe),钴(Co),镍(Ni),铜(Cu),锌(Zn),铝(Al),钼(Mo),硒(Se),锡(Sn),铂(Pt),钌(Ru),钯(Pd),钨(W),铱(Ir),锇(Os),铑(Rh),铌(Nb),钽(Ta),铅(Pb),及其混合物,但不限于此。
适宜的催化剂金属可以基于担载催化剂需要促进的具体反应进行选择。催化剂金属可以为单一金属或者至少两种金属的合金。例如,当担载催化剂用于燃料电池如磷酸燃料电池(PAFC)、质子交换膜燃料电池(PEMFC)等的阴极或阳极催化剂层时,催化剂金属可以为铂。作为另一个实例,当担载催化剂用于DMFC的阳极催化剂层时,催化剂金属可以为铂-钌合金,铂与钌的原子比一般可以为约0.5∶1~2∶1。作为另一个实例,当担载催化剂用于直接甲醇燃料电池(DMFC)的阴极催化剂层时,催化剂金属可以为铂。
催化剂金属的平均粒径可以为约1~5nm。当催化剂金属的平均粒径小于1nm时,催化剂金属不会加速催化剂反应。当催化剂金属的平均粒径大于5nm时,全部催化剂颗粒的反应表面积会降低,因而,催化剂金属的活性会低。
担载催化剂中催化剂金属的量可以为担载催化剂的约40~80%。当担载催化剂中催化剂金属的量低于40wt%时,不可能将担载催化剂用于燃料电池中。当担载催化剂中催化剂金属的量大于80wt%时,催化剂的成本增加,而不会引起催化剂作用的相应增加,并且催化剂粒径会大于所需的粒径。
为了制备担载催化剂,可以采用各种制备担载催化剂的方法。例如,担载催化剂可以通过将催化剂金属前体溶液浸渍在载体中以及还原催化剂金属前体制得。因为这类方法详细地公开于各种文献中,所以本文中将省略其描述。
现在将描述根据本发明实施方案的燃料电池。
燃料电池包括阴极,阳极,及介于阴极和阳极之间的电解质膜。本文中,阴极和阳极至少有一个包含根据本发明实施方案的担载催化剂。
燃料电池可以为PAFC、PEMFC或DMFC,但是不限于此。对于燃料电池的结构和制备方法不作限制,详细资料公开于各种文献中,因而,本文中省略其详细描述。
将参照下面的实施例更详细地描述本发明。下面的实施例仅是为了说明性目的,而不是限制本发明的范围。
制备实施例1:碳纳米管的制备
在100℃下,将0.25g SWNT(CNI)和0.09g作为镍催化剂前体的NiCl2·6H2O(或Ni(CH3COO)2)与100g水和80g乙二醇混合24小时。接着干燥液体混合物。随后,在650℃下,利用乙炔气体对干燥的混合物进行热气相沉积。作为次生生长,生长MWNT 10分钟,制备碳纳米管。
图2和图3分别为根据制备实施例1制得的碳纳米管在次生生长之前和之后的扫描电镜照片。
在图2和图3中,MWNT与SWNT混合。
利用拉曼分析法分析根据制备实施例1制得的碳纳米管,结果示于图4中。SWNT和MWNT的拉曼分析光谱一起示于图4中。
参照图4,SWNT显示出G峰(~1600cm-1)和清晰的RBM模式峰。另一方面,与SWNT相比,MWNT具有比G峰更强的D峰(1320cm-1),且没有显示出RBM模式峰。
制备实施例1的碳纳米管具有较强的D峰,并且也显示出RBM模式峰。
图5为根据制备实施例1制得的碳纳米管在次生生长之后的透射电子显微镜照片。
在图5中,SWNT和MWNT同时存在。
实施例1:燃料电池的制备
将0.5g制备实施例1的碳纳米管放入塑料带中。独立地,将0.9616gH2PtCl6溶解在1.5ml丙酮中。将溶液倒入含有碳纳米管的塑料带中,进行混合。
将混合物在空气中干燥4小时,然后放入坩埚中。在60℃下,将坩埚中的混合物于干燥器中干燥过夜。接着,将坩埚在60℃下热处理12小时,在200℃下热处理5小时,及在250℃下热处理2小时,然后向坩埚中供氮10分钟。然后,在将温度提高至200℃的同时,向坩埚供氢代替氮。将温度在200℃下保持2小时,以减少担载碳载体上的氯化铂。随后,向坩埚中供氮代替氢,接着将温度以5℃/分钟提高至250℃。将温度在250℃下保持5小时,并冷却产物,得到担载催化剂。
将担载催化剂分散在异丙醇和Nafion 115(由DuPont制造)的分散体中,制备浆料。利用喷涂方法,将浆料以3mg/cm2的密度涂布在碳纸上,3mg/cm2的密度是指在每1cm2碳纸上有3mg的铂浆料。随后,使碳电极穿过辊压机,以增加催化剂层和碳电极之间的附着强度。于是,制得阴极。使用商业的PtRu黑催化剂形成阳极,并利用所制得的阳极和阴极制备单元电池。
对比例1
按照与实施例1相同的方法制备燃料电池,所不同的是,使用从CNI可以得到的SWNT代替制备实施例1的碳纳米管。
对比例2
按照与实施例1相同的方法制备燃料电池,所不同的是,使用从ShowhaDenko可以得到的MWNT代替制备实施例1的碳纳米管。
对比例3
按照与实施例1相同的方法制备燃料电池,所不同的是,使用重量比为3∶1的从CNI可以得到的SWNT和从Showha Denko可以得到的MWNT的混合物代替制备实施例1的碳纳米管。
利用感应耦合等离子体分析(induced coupled plasma analysis),测量得自实施例1以及对比例1至3的担载催化剂的担载的铂的量。结果示于下表1中。
此外,测量了碳纳米管的BET表面积和表面电阻率,及分别用于实施例1以及对比例1至3中的担载催化剂的平均铂粒径。结果也示于下表1中。此处,通过X-射线衍射测量平均铂粒径。
[表1]
Figure 460964DEST_PATH_GA20178114200610172556401D00041
参照表1,对比例1的碳纳米管上担载的Pt的量为56wt%,且对比例1的平均Pt粒径为3.1nm。对比例2和3的碳纳米管上担载的Pt的量分别为56wt%和67wt%。对比例2和3的平均Pt粒径分别为5.1nm和3.6nm。实施例1的碳纳米管上担载的Pt的量为58wt%,且实施例1的平均Pt粒径为3nm。这些结果表明,目前正在采用的方法可用于制备本发明的担载催化剂。
在50℃下,通过向燃料电池提供过量的2M甲醇和过量的空气,分析实施例1以及对比例1至3的单元电池的性能。
结果,发现实施例1的单元电池的性能好于对比例1至3的单元电池的性能。
本发明的碳纳米管具有令人满意的比表面积和低表面电阻。因而,所述碳纳米管表现得显著好于常规催化剂载体。因此,当用作燃料电池的电极的催化剂载体时,所述碳纳米管能够改善燃料电池的导电性。另外,采用所述电极的燃料电池具有优异的效率和综合性能。
尽管已经参照其示例性实施方案具体地给出和描述了本发明,但是本领域的普通技术人员应当理解其中可以做出各种形式和细节上的改变,而不脱离如所附的权利要求书所定义的本发明的构思和范围。

Claims (10)

1.一种制备碳纳米管的方法,包括:
在单壁碳纳米管中沉积用于产生多壁碳纳米管的金属催化剂;及
利用该用于产生多壁碳纳米管的金属催化剂,在单壁碳纳米管上生长多壁碳纳米管。
2.根据权利要求1的方法,其中所述单壁碳纳米管通过化学气相沉积或电弧放电生长。
3.根据权利要求1的方法,其中所述用于产生多壁碳纳米管的金属催化剂包括至少一种选自镍、铁、钴及其合金的催化剂。
4.利用权利要求1~3中任一项的方法制备的碳纳米管。
5.根据权利要求4的碳纳米管,其具有1~30毫欧/sq的表面电阻率和100~1000m2/g的BET比表面积。
6.根据权利要求4的碳纳米管,其中所述碳纳米管的拉曼分析光谱的G带峰积分值与D带峰积分值之比为3或更大,且碳纳米管的拉曼分析光谱显示RGB模式峰,其中RGB模式峰是波数为100~300cm-1的峰。
7.一种担载催化剂,包括:
根据权利要求4的碳纳米管;及
分散并担载在碳纳米管上的催化剂金属或硒(Se)的颗粒,
其中所述催化剂金属为选自钛(Ti),钒(V),铬(Cr),锰(Mn),铁(Fe),钴(Co),镍(Ni),铜(Cu),锌(Zn),铝(Al),钼(Mo),锡(Sn),铂(Pt),钌(Ru),钯(Pd),钨(W),铱(Ir),锇(Os),铑(Rh),铌(Nb),钽(Ta),铅(Pb),及其混合物中的至少一种。
8.根据权利要求7的担载催化剂,其中所述碳纳米管的表面电阻率为1~30毫欧/sq,且碳纳米管的BET比表面积为100~1000m2/g。
9.根据权利要求7的担载催化剂,其中所述催化剂金属的量为担载催化剂的40~80重量%。
10.一种燃料电池,其采用包含根据权利要求7的担载催化剂的电极。
CN2006101725564A 2006-02-23 2006-12-31 碳纳米管、含它的担载催化剂及采用该催化剂的燃料电池 Expired - Fee Related CN101024495B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020060017879A KR100745736B1 (ko) 2006-02-23 2006-02-23 카본나노튜브, 이를 포함한 담지 촉매 및 상기 담지 촉매를이용한 연료전지
KR17879/06 2006-02-23

Publications (2)

Publication Number Publication Date
CN101024495A CN101024495A (zh) 2007-08-29
CN101024495B true CN101024495B (zh) 2010-07-14

Family

ID=38546038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006101725564A Expired - Fee Related CN101024495B (zh) 2006-02-23 2006-12-31 碳纳米管、含它的担载催化剂及采用该催化剂的燃料电池

Country Status (4)

Country Link
US (1) US8283275B2 (zh)
JP (1) JP4624368B2 (zh)
KR (1) KR100745736B1 (zh)
CN (1) CN101024495B (zh)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3440005A1 (de) * 1984-11-02 1986-05-15 J.M. Voith Gmbh, 7920 Heidenheim Sortierapparat fuer fasersuspensionen
EP1957406A4 (en) * 2005-11-16 2012-11-07 Hyperion Catalysis Int MIXED STRUCTURES OF SINGLE-WALL AND MULTI-WALL CARBON CANNONS
KR100829555B1 (ko) 2007-01-25 2008-05-14 삼성에스디아이 주식회사 탄소나노튜브, 담지 촉매, 상기 담지 촉매의 제조 방법 및상기 담지 촉매를 포함한 연료 전지
CN101635362B (zh) 2008-07-25 2012-03-28 清华大学 膜电极及采用该膜电极的燃料电池
CN101425583B (zh) * 2007-11-02 2011-06-08 清华大学 燃料电池膜电极及其制备方法
CN101465434B (zh) * 2007-12-19 2010-09-29 清华大学 燃料电池膜电极及其制备方法
CN101425584B (zh) * 2007-11-02 2011-05-04 清华大学 燃料电池膜电极及其制备方法
US9077042B2 (en) 2008-07-25 2015-07-07 Tsinghua University Membrane electrode assembly and biofuel cell using the same
CN101752568B (zh) 2008-12-17 2012-06-20 清华大学 膜电极及采用该膜电极的生物燃料电池
CN101752567B (zh) * 2008-12-17 2012-09-19 清华大学 膜电极及采用该膜电极的燃料电池
DE102009035546A1 (de) * 2009-07-31 2011-02-03 Bayer Materialscience Ag Elektrode und Elektrodenbeschichtung
WO2011078707A1 (en) * 2009-12-24 2011-06-30 John Abrahamson Improvements in lead-acid battery construction
WO2011136186A1 (ja) * 2010-04-26 2011-11-03 旭硝子株式会社 電極材料
US9337474B1 (en) 2010-05-20 2016-05-10 Halbert P. Fischel Electrodes for electrochemical cells
JPWO2012053561A1 (ja) * 2010-10-19 2014-02-24 旭硝子株式会社 電極材料及びその製造方法
DE102011083118A1 (de) * 2011-09-21 2013-03-21 Future Carbon Gmbh Gasdiffusionsschicht mit verbesserter elektrischer Leitfähigkeit und Gasdurchlässigkeit
DE102011115950A1 (de) * 2011-10-09 2013-04-11 Friedrich-Alexander-Universität Erlangen-Nürnberg Energiequelle zum Betrieb von Unterwasserschiffen
DE102013210679A1 (de) * 2013-06-07 2014-12-11 Bayer Materialscience Ag Verfahren zur Herstellung mehrwandiger Kohlenstoffnanoröhrchen, mehrwandiges Kohlenstoffnanoröhrchen und Kohlenstoffnanoröhrchenpulver
US10522856B2 (en) 2014-12-03 2019-12-31 Global Energy Science, Llc Electrochemical cells with mobile electrolyte
JP6671376B2 (ja) * 2014-12-22 2020-03-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 改質剤を含む炭素担持触媒及び炭素担持触媒の製造方法
KR101923466B1 (ko) * 2015-09-10 2018-11-30 주식회사 엘지화학 이차전지용 도전재 및 이를 포함하는 이차전지
KR101726823B1 (ko) * 2015-11-25 2017-04-13 한국과학기술연구원 고성능 탄소나노튜브/탄소 복합섬유의 제조방법 및 그로부터 제조되는 탄소나노튜브/탄소 복합섬유
EP4324577A1 (en) 2015-12-16 2024-02-21 6K Inc. Method of producing spheroidal dehydrogenated titanium alloy particles
EP3404728A4 (en) * 2016-01-15 2019-10-09 Zeon Corporation COMPOSITION FOR THERMOELECTRIC CONVERSION ELEMENT, PROCESS FOR PRODUCING CARBON NANOTUBES WHICH CARRY METAL NANOPARTICLES, MOLDED BODY FOR THERMOELECTRIC CONVERSION ELEMENT AND METHOD FOR PRODUCING THE SAME, AND THERMOELECTRIC CONVERSION ELEMENT
DE102016203936A1 (de) 2016-03-10 2017-09-28 Volkswagen Aktiengesellschaft Geträgertes Katalysatormaterial für eine Brennstoffzelle, Verfahren zu seiner Herstellung sowie Elektrodenstruktur und Brennstoffzelle mit einem solchen Katalysatormaterial
DE102016111981A1 (de) 2016-06-30 2018-01-04 Volkswagen Ag Verfahren zur Herstellung eines geträgerten Katalysatormaterials für eine Brennstoffzelle
CN107876796B (zh) * 2016-12-06 2020-04-14 西南石油大学 一种氨分解制氢钌基催化剂及其制备方法
CN106549167A (zh) * 2016-12-07 2017-03-29 黄河科技学院 一种质子交换膜燃料电池的电极催化剂
CN109530714A (zh) * 2018-11-19 2019-03-29 广州大学 一种复合电极材料及其制备方法和应用
CN109607513B (zh) * 2018-11-29 2022-05-31 中国科学院金属研究所 一种生长促进剂可控制备不含硫杂质的单壁碳纳米管方法
SG11202111576QA (en) 2019-04-30 2021-11-29 6K Inc Mechanically alloyed powder feedstock
CN110589805B (zh) * 2019-10-30 2021-02-19 山东大展纳米材料有限公司 一种电弧活化碳纳米管后经cvd制备碳气凝胶的装置及方法
JP2023512391A (ja) 2019-11-18 2023-03-27 シックスケー インコーポレイテッド 球形粉体用の特異な供給原料及び製造方法
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
CN111326726B (zh) * 2020-03-06 2021-06-18 厦门海麒新能源科技有限公司 一种单壁碳纳米管-硅碳复合材料及其制备方法和应用
EP4173060A1 (en) 2020-06-25 2023-05-03 6K Inc. Microcomposite alloy structure
CN111740113B (zh) * 2020-07-01 2021-07-16 中南大学 磷酸铁锂/碳纳米管复合正极材料的制备方法
AU2021349358A1 (en) 2020-09-24 2023-02-09 6K Inc. Systems, devices, and methods for starting plasma
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
CN115000446A (zh) * 2022-07-22 2022-09-02 上海电气集团股份有限公司 一种气体扩散层及其制备方法、膜电极、电池和应用
CN115262278B (zh) * 2022-08-01 2023-06-16 浙江科技学院 一种高匀度双层梯度孔碳纸原纸的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1418726A (zh) * 2002-12-12 2003-05-21 北方交通大学 碳纳米管载铂电极催化剂的制备方法
CN1472135A (zh) * 2002-07-29 2004-02-04 ����Sdi��ʽ���� 用于燃料电池的碳纳米管及其制备方法以及采用它的燃料电池
CN1632975A (zh) * 2003-12-22 2005-06-29 中国科学院大连化学物理研究所 质子交换膜燃料电池阴极电催化剂及其应用
CN1699151A (zh) * 2004-05-21 2005-11-23 龚平 一种生产碳纳米管的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4237661A (en) * 1978-06-21 1980-12-09 Adams George F Sr Support stand for use with an above ground pool
US6647562B1 (en) * 2000-06-19 2003-11-18 John Arout Method for making portable, strong, light-weight and easily assembled containing structures using interlocking panel members
TW525314B (en) * 2000-09-29 2003-03-21 Sony Corp Fuel cell and method for preparation thereof
US6408454B1 (en) * 2001-07-13 2002-06-25 Earl Hyde Folding wading pool and method for folding a pool
JP2004224651A (ja) 2003-01-24 2004-08-12 Hisanori Shinohara 2層カーボンナノチューブの製造法、2層カーボンナノチューブ、2層カーボンナノチューブ組成物および電子放出材料
US7531267B2 (en) 2003-06-02 2009-05-12 Kh Chemicals Co., Ltd. Process for preparing carbon nanotube electrode comprising sulfur or metal nanoparticles as a binder
KR100511363B1 (ko) * 2003-06-02 2005-08-31 (주)케이에이치 케미컬 금속입자를 접착제로 사용하는 탄소나노튜브 혹은탄소나노파이버 전극의 제조방법 및 이에 의해 제조된 전극
KR100552697B1 (ko) * 2003-11-13 2006-02-20 삼성에스디아이 주식회사 금속 산화물-탄소 복합체로 이루어진 촉매 담체 및 이를이용한연료전지
KR100708540B1 (ko) 2004-02-09 2007-04-18 (주)케이에이치 케미컬 Y-분지형 탄소나노튜브의 제조
US7867616B2 (en) * 2005-06-17 2011-01-11 Honda Motor Co., Ltd. Carbon single-walled nanotubes as electrodes for electrochromic glasses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472135A (zh) * 2002-07-29 2004-02-04 ����Sdi��ʽ���� 用于燃料电池的碳纳米管及其制备方法以及采用它的燃料电池
CN1418726A (zh) * 2002-12-12 2003-05-21 北方交通大学 碳纳米管载铂电极催化剂的制备方法
CN1632975A (zh) * 2003-12-22 2005-06-29 中国科学院大连化学物理研究所 质子交换膜燃料电池阴极电催化剂及其应用
CN1699151A (zh) * 2004-05-21 2005-11-23 龚平 一种生产碳纳米管的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
L.M.Ang et al..Decoration of activated carbon nanotubes with copper andnickel.Carbon38.2000,38363-372. *
Md. Shajahan et al..High growth of SWNTs and MWNTs from C2H2decomposition over Co-Mo/MgO catalysts.Carbon42.2004,422245-2253. *
Zhibin He et al..Electrodeposition of Pt-Ru nanoparticles on carbonnanotubes and their electrocatalytic properties for methanolelectrooxidation.Diamond and Related Materials13.2004,131764-1770. *
万淼等.钴/碳纳米管催化剂CVD法制备碳纳米管.材料科学与工程学报23 6.2005,23(6),887-890. *

Also Published As

Publication number Publication date
CN101024495A (zh) 2007-08-29
JP2007223891A (ja) 2007-09-06
JP4624368B2 (ja) 2011-02-02
US8283275B2 (en) 2012-10-09
US20100255402A1 (en) 2010-10-07
KR100745736B1 (ko) 2007-08-02

Similar Documents

Publication Publication Date Title
CN101024495B (zh) 碳纳米管、含它的担载催化剂及采用该催化剂的燃料电池
US7351444B2 (en) Low platinum fuel cell catalysts and method for preparing the same
Reddy et al. Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells
KR100728611B1 (ko) 연료전지용 전극 촉매 및 그의 제조 방법
US6485858B1 (en) Graphite nanofiber catalyst systems for use in fuel cell electrodes
US9502719B2 (en) Cathode catalysts for fuel cell application derived from polymer precursors
JP2007526616A (ja) 白金が少ない燃料電池、触媒およびその製造方法
US20130149632A1 (en) Electrode catalyst for a fuel cell, method of preparing the same, and membrane electrode assembly and fuel cell including the electrode catalyst
Choudhary et al. Addition of rhenium (Re) to Pt-Ru/f-MWCNT anode electrocatalysts for enhancement of ethanol electrooxidation in half cell and single direct ethanol fuel cell
KR101624641B1 (ko) 연료전지용 전극 촉매, 그 제조방법, 및 이 전극 촉매를 이용한 막 전극 접합체와 연료전지
JP2016003396A (ja) コアシェル電極触媒のための安定なコアとしての合金ナノ粒子の合成
US20160181621A1 (en) Non-pgm cathode catalysts for fuel cell application derived from heat treated heteroatomic amines precursors
Hu et al. Facile synthesis of synergistic Pt/(Co-N)@ C composites as alternative oxygen-reduction electrode of PEMFCs with attractive activity and durability
Choudhary et al. Enhancement of ethanol electrooxidation in half cell and single direct ethanol fuel cell (DEFC) using post-treated polyol synthesized Pt-Ru nano electrocatalysts supported on HNO3-functionalized acetylene black carbon
Chang et al. Investigations of a platinum–ruthenium/carbon nanotube catalyst formed by a two-step spontaneous deposition method
KR20130067476A (ko) 연료 전지용 전극 촉매, 이의 제조 방법, 및 이를 포함한 막 전극 접합체 및 연료 전지
Meku et al. Concentration gradient Pd-Ir-Ni/C electrocatalyst with enhanced activity and methanol tolerance for oxygen reduction reaction in acidic medium
US20210288334A1 (en) A bimetallic catalyst and fuel for use in a direct dimethyl ether fuel cell
JP2007042519A (ja) 燃料電池用触媒及びその製造方法並びに燃料電池用電極及び燃料電池
CN1954392A (zh) 低铂燃料电池、催化剂及其制备方法
KR102266661B1 (ko) 연료 전지용 담지 촉매 재료를 제조하기 위한 방법
Priya et al. Synthesis and characterization of Pt–Sn–Ce/MC ternary catalysts for ethanol oxidation in membraneless fuel cells
KR20060019851A (ko) 연료전지용 전극 및 이를 포함하는 연료전지 시스템
JP2008021610A (ja) Pefc型燃料電池及び触媒
de Souza et al. Fundamentals of catalytic activities, recent progress, and perspectives in the oxygen reduction reaction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100714

Termination date: 20171231