CN1520380A - 在脉冲反应器中生产多元金属氧化物粉末的方法 - Google Patents

在脉冲反应器中生产多元金属氧化物粉末的方法 Download PDF

Info

Publication number
CN1520380A
CN1520380A CNA028063821A CN02806382A CN1520380A CN 1520380 A CN1520380 A CN 1520380A CN A028063821 A CNA028063821 A CN A028063821A CN 02806382 A CN02806382 A CN 02806382A CN 1520380 A CN1520380 A CN 1520380A
Authority
CN
China
Prior art keywords
metal oxide
require
oxide powder
aforesaid right
type reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028063821A
Other languages
English (en)
Other versions
CN1257100C (zh
Inventor
S��ʩ�ߴĶ�
S·雷姆克
B·穆勒
G·里德尔
S·安布罗修斯
B·达姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of CN1520380A publication Critical patent/CN1520380A/zh
Application granted granted Critical
Publication of CN1257100C publication Critical patent/CN1257100C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/241Stationary reactors without moving elements inside of the pulsating type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • B01J6/004Calcining using hot gas streams in which the material is moved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/16Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with particles being subjected to vibrations or pulsations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/40Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed subjected to vibrations or pulsations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/18Methods for preparing oxides or hydroxides in general by thermal decomposition of compounds, e.g. of salts or hydroxides
    • C01B13/185Preparing mixtures of oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/20Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • C01G29/006Compounds containing, besides bismuth, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • C04B35/4508Type 1-2-3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • C04B35/4525Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide also containing lead oxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0184Manufacture or treatment of devices comprising intermetallic compounds of type A-15, e.g. Nb3Sn
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0772Processes including the use of non-gaseous precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • B01J2208/00566Pulsated flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明涉及一种生产适于生产高温超导体的单组分多元金属氧化物粉末的方法。为此,将相应金属盐和/或金属氧化物和/或金属的混合物按所需化学计量比引入含有由无焰燃烧得到的脉冲气流的脉冲反应器中并将其部分或全部转变成多元金属氧化物。

Description

在脉冲反应器中生产多元金属氧化物粉末的方法
本发明涉及一种生产适于用作高温超导体前体的细碎的多元金属氧化物粉末,即包含多种元素的粉末的方法。
高温超导体材料(HTSC)为在化学纯度、均一性、确定的相组成和晶粒尺寸以及再生性方面具有高要求的多元氧化物。现有技术公开了一些生产相应的多相金属氧化物粉末的方法,由该粉末通过进一步加工可以生产高温超导体,例如通过压制、挤压和/或烧结生产疏松材料,或通过“管内粉末法(Pulver-in-Rohr-Verfahren)”生产线状或带状导体。
EP 117 059、EP 522 575、EP 285 392、EP 302 830、EP 912 450和US5,298,654描述了金属化合物如硝酸盐或氯化物的水溶液的共沉淀。这里,用草酸将水不溶性或微溶性金属草酸盐混合物从溶液中沉淀。这些方法的工业实施在共沉淀和在所得降解产物的处理或再利用中均具有高技术复杂性。喷雾干燥这类共沉淀产物(它们通常仅在“母液”中作为固体以低浓度(10%数量级)存在)从能量上讲是不利的。另外,挥发性产物可能在热脱水中通过逆反应形成,它们随废气而排放并因此以不可再现的方式影响随后产物的化学组成。
在其它方法中,将需要存在于超导体中的各元素的盐水溶液的混合物进行喷雾热解。
WO 89/02871描述了一种生产用作HTSC陶瓷前体的多元素金属氧化物粉末的方法,其中将金属混合盐溶液喷入加热至800-1100℃的管式炉中。在该方法中,一方面该管式炉的外部电加热意味着仅得到低能量输出,另一方面仅获得对该混合氧化物的较低转化率。
EP 371 211要求保护一种生产细碎的均匀陶瓷粉末的喷雾热解方法,其中借助可燃气体,优选氢气将包含待生产粉末的元素的化合物的溶液或悬浮体喷入该气体在其中燃烧的反应器中。喷雾液滴向氧化物粉末的转化在可测温度为1200-1300℃的火焰中进行。在使用硝酸盐溶液的情况下,必须假定高得多的温度作用于该液滴/颗粒体系。由于粉末一般还包含挥发性金属氧化物,例如Bi或Pb氧化物,它们以可变比例挥发,因此用该方法难以生产用于具有确定组成的高温超导体粉末。
DE 195 05 133描述了一种生产高度分散的氧化粉末的方法,其中将溶解的或液体化合物在氧气中的气溶胶在燃烧前加压供入裂化气反应器中。这里同样需要非常高的反应温度。
EP 681 989描述了其中将以所需化学计量比包含相应金属盐的混合物的水溶液的气溶胶在氢气/氧气焰中热解的方法。这里火焰温度保持为800-1100℃。这里必须避免气溶胶和该方法中所生产的粉末与碳或含碳化合物或材料接触。
总之,必须注意的是,生产高温超导体粉末的已知喷雾热解方法具有形成不需要的高温相的缺点。挥发性氧化物的蒸发可能导致化学计量变化或导致化学组成的再现性不足。这些方法导致对该混合氧化物的转化率不足或导致剩余硝酸盐含量高。在反应器壁上形成粗糙和坚硬的附聚物以及粉状沉积,并且它们必须经常除去,这可能使工厂操作中断,并经常导致形成坚硬的附聚物。此外,该有限的反应器几何尺寸意味着不能充分地按比例放大。
DD 245 674和DD 245 649描述了生产硅酸盐物质或单相氧化物的方法,其中将液体硅溶胶或液体或溶解的金属化合物与有机配体在脉冲炉式反应器中雾化并以脉冲燃烧方式热处理。该方法生产具有特定粒度、表面积和表面结构的高度分散硅胶或氧化物。
本发明的目的是提供一种生产多元,至少三元金属氧化物粉末的技术上和经济上有利的方法,该粉末适于用作高温超导体前体并且没有现有技术的缺点。
该目的根据本发明通过一种其中将包含至少三种选自Cu、Bi、Pb、Y、Tl、Hg、La、镧系元素和碱土金属的元素的相应金属盐和/或金属氧化物和/或金属的混合物以固体形式或以溶液或悬浮体形式按所需化学计量比引入含有由无焰燃烧得到的脉冲气流的脉冲反应器中并将其部分或全部转化成多元金属氧化物的方法来实现。
本发明方法的特征在于将相应金属盐、金属氧化物或金属的混合物引入脉冲反应器中并转变成多元金属氧化物,即包含多种元素的氧化物的事实。这里的金属或金属化合物以所需化学计量比使用,并包含至少三种,优选三种、四种或五种选自Cu、Bi、Pb、Y、Tl、Hg、La、镧系元素和碱土金属的元素。所得的包含多种元素的细碎金属氧化物粉末适于生产高温超导体陶瓷。
令人吃惊的是,尽管在该反应器中停留时间极短,但本发明方法得到了具有高转化率的多元氧化物。该方法呈现出对于靶相形成的高反应性和良好的组成再现性。根据本发明生产的颗粒具有小粒度且在生产过程中不形成粗糙或坚硬的附聚物。
该脉冲反应器的工作原理与吸音腔共振室的相同,由燃烧室、共振管和旋风分离器或粉末分离用过滤器组成。本发明脉冲反应器描述于图1中。该反应器包括燃烧室(1),在该燃烧室的废气侧连接有与该燃烧室相比流动截面显著减小的共振管(2)。该燃烧室基座装有一个或多个用于进燃烧气体的阀门。使用超细颗粒用的合适过滤器(3)使粉末与气流分离。
将进入燃烧室的燃烧气体混合物点火,由于该气体入口侧在压力过大的情况下基本被气动阀门密封,因此该混合物迅速燃烧并沿共振管方向产生压力波。流入该共振管的气体在燃烧室中产生真空,这意味着新鲜的气体混合物经由阀门流入并自点火。阀门因压力和真空而开关的过程以自调节方式周期性地进行。燃烧室中的脉冲无焰燃烧过程随着共振管中压力波的传播而释放出能量并在其中引起吸音振动。此类脉冲流的特征在于它呈高度湍流。该脉冲频率可以由该反应器几何尺寸设定并通过温度以目标方式改变。这对于本领域熟练技术人员根本不难。由无焰燃烧得到的气流优选以20-150Hz,特别优选30-70Hz脉冲。
关于共振管中的燃烧室压力和气体速率,它们存在非稳态条件,以确保特别强烈的传热,即从脉冲热气流向固体颗粒的能量传递非常迅速和充分。因此,根据本发明,在以毫秒计的非常短的停留时间内实现了相当显著的反应进程。令人吃惊的是,在这些条件下,甚至在多元物质体系的情况下可以高度形成确定的混合氧化物。有利的是,本发明方法可以按比例放大。
合适的燃料气体原则上是适于生产热气的任何气体。需要的话,这以含有氧气的混合物的形式使用。优选使用天然气和/或与空气混合,或需要的话与氧气混合的氢气。然而,也可以考虑例如丙烷或丁烷。与热解方法相反,例如在渗透反应器中,该燃烧空气因而还用作反应器中传质用载气。
可以将相应金属和/或金属化合物的混合物以固体形式,尤其是以粉末形式或以溶液或悬浮体形式引入反应器中。可以将待煅烧的固体物质混合物通过喷射器输送到该气流中,其中该脉冲的湍流导致该材料在反应空间中精细分布。将溶液或悬浮体以极细碎的形式通过一个或多个喷嘴,优选通过双组件喷嘴引入。因此反应物发生非常迅速的脱水或热分解,而且剩余的固体颗粒可以在热气流中反应,形成混合的氧化物。
在本发明方法的优选实施方案中,将混合物以相应金属的硝酸盐、乙酸盐、柠檬酸盐、乳酸盐、酒石酸盐、氯化物、氢氧化物、碳酸盐和/或草酸盐的盐水溶液或悬浮体形式引入。特别优选使用含有相同抗衡阴离子的相应金属盐溶液。
根据本发明,将混合物引入由无焰燃烧得到的脉冲反应器的热气流中。在通过热转化、氧化和/或还原的进一步反应过程中,这使得所存在的任何溶剂蒸发或燃烧,并形成金属盐或金属氧化物颗粒,它们随后全部或部分转变成多元金属氧化物。
在本发明方法中,可以将混合物直接引入脉冲反应器的燃烧室中或引入与燃烧室相连接的脉冲反应器共振管中。引入共振管中的优点在于使燃烧过程与化学固态反应分开。
无焰燃烧和湍流条件意味着在反应空间中存在均匀的温度分布,这意味着所引入原料进行同样的热处理。因此,在喷雾热解方法中,导致形成粗糙和坚硬的附聚物的局部过热和壁沉积得以避免。在脉冲反应器中,由脉冲燃烧得到的气流呈湍流,其湍流度在优选的实施方案中为稳态流的湍流度的5-10倍。脉冲反应器燃烧室中的气流温度优选高于650℃,尤其高于800℃。若燃烧室和需要的话,共振管具有陶瓷衬里,则本发明方法也可以在非常高的气流温度下进行,而这在使用其它方法时不能实现。
将反应器中生产的颗粒在合适的分离器中与气流分离,分离器的选择对本领域熟练技术人员根本不难,例如是气体旋风分离器、表面过滤器或静电过滤器。
在进入分离器之前,将该反应气冷却至必需的温度,这一点因过滤器类型而异。这通过热交换器和/或通过将冷却气体引入废气流中而进行。本发明方法的特别优点在于可以使用廉价的具有较大过滤器比表面积和生产效率的高性能悬浮物过滤器来代替热气过滤器。不含CO2的冷却气体的引入可以生产具有特别低剩余碳含量的粉末。在引入冷却气体的过程中,通过改变氧气分压,可以影响粉末的相组成。
在本发明方法的变体中,所用的相应金属或金属化合物的混合物还可以溶解盐和/或分散固体的形式包含掺杂剂。这些掺杂剂以少量,即至多该混合物的5重量%,优选至多1重量%加入该混合物中,以具体影响待生产的多元金属氧化物粉末的某些性能。例如,掺杂剂可以限制起联结中心作用的第二相的晶粒尺寸或者改进疏松材料的机械性能。术语“晶粒尺寸”意指粉末颗粒的结晶学上的均匀区的尺寸,而“联结中心”为超导体中磁通量的粘附中心(例如在非超导第二相上)。所用掺杂剂为一种或多种选自周期表第Ib族元素如Ag、IIb族元素如Zn、IVa族元素如Sn、IVb族元素如Zr和/或VIIb族元素如Mn的元素。
在本发明方法的另一变体中,在脉冲反应器中的反应之后,可以将金属氧化物粉末在500-960℃,优选550-800℃的温度下进行热后处理。根据粉末类型、所需相组成和应用对合适类型的后煅烧的选择对本领域熟练技术人员来说根本不难。特别优选在室、管、通道、带或旋转管式炉中以粉末床形式或以流化床形式进行后煅烧。这里,条件的设定应使得首先达到所需的相组成,其次不会因初级晶粒的烧结或熔化而形成坚硬的附聚物。需要的话,将粉末通过空气喷射磨机、磨料磨机、冲击研磨机或其它研磨机进行研磨。
根据本发明,优选其中相应金属或金属化合物选自下列组成之一的方法:Bi-EA-Cu、(Bi,Pb)-EA-Cu、Y-EA-Cu、(Y,SE)-EA-Cu、Tl-EA-Cu、(Tl,Pb)-EA-Cu或Tl-(Y,EA)-Cu,其中EA表示碱土金属元素,尤其是Ba、Ca和/或Sr,SE表示稀土金属。
在本发明方法中特别优选使用其中所用物质具有下列相应金属的摩尔比的混合物:
其中x=0.3,优选x=0.2的Bi(2.0+/-x)Sr(2.0+/-x)Ca(1.0+/-x)Cu(2.0+/-x)或其中y=0.3的Pb(0.3+/-y)Bi(1.7+/-y)Sr(2.0+/-y)Ca(2.0+/-y)Cu(3.0+/-y)或其中1<c<1.8且1.5<d<2.5的YcBadCu3
此外,本发明涉及一种通过本发明方法生产的细碎的多元金属氧化物粉末。在特别优选的实施方案中,根据本发明生产的金属氧化物粉末的平均晶粒尺寸,即粉末颗粒的结晶学上均匀区的平均尺寸<500nm。根据本发明,优选生产由下列组成之一组成的金属氧化物粉末:Bi-EA-Cu-O、(Bi,Pb)-EA-Cu-O、Y-EA-Cu-O、(Y,SE)-EA-Cu-O、Tl-EA-Cu-O、(Tl,Pb)-EA-Cu-O或Tl-(Y,EA)-Cu-O,其中EA表示碱土金属元素,尤其是Ba、Ca和/或Sr,SE表示稀土金属。
本发明同样还涉及根据本发明生产的金属氧化物粉末在生产高温超导体中的用途。
根据本发明生产的金属氧化物粉末例如可用于生产呈片状、盘状、环状、管状、棒状等形式的高温超导的中空或实心制品,这些制品可以用作电源或轴承组件。可以将粉末或压制棒用于生产镀银的高温超导金属线或条状导体。例如将金属线和条状导体用于电力电缆、电线、变压器、电动机和发电机线圈、磁铁、电源或轴承。此外,根据本发明生产的金属混合氧化物粉末可以用于生产涂敷方法用的靶或可以用于生产涂敷的条状导体。
本申请引入上下文中提到的所有申请、专利和出版物以及在2001年3月13日提交的相应申请DE 101 11 938.0的全部公开内容,以作为参考。
尽管没有进一步说明,但认为本领域熟练技术人员应能在最宽范围内利用上述说明。因此,本发明方法的优选实施方案和实施例应仅仅认为是绝对不起限制作用的说明性公开。
实施例1:
按化学计量Bi1.75Pb0.35Sr1.98Ca2.0Cu3Ox生产元素Bi、Pb、Sr、Ca和Cu的硝酸盐水溶液的混合物,其中该混合的硝酸盐溶液的总盐含量为40%。
脉冲反应器的几何尺寸由2.2的燃烧室长度与燃烧室直径之比和33的共振管长度与共振管直径之比来限定。将上述混合的硝酸盐溶液以气溶胶形式通过双组件喷嘴引入共振管的前部。燃料(氢气)量VH2和燃烧空气量VVL工艺参数根据以M喷雾的混合硝酸盐溶液进行选择,使得该共振管中建立700℃的所需反应温度:VH2=2.5kg/h;VVL=195kg/h;M=10kg/h。该共振管未端的燃烧气体包含16.9%O2、0.09%CO2和0.24%NO。
粉末的分离通过过滤器面积为24m2且最大表面温度为130℃的盒式过滤器来进行。
所生产的Bi1.75Pb0.35Sr1.98Ca2.0Cu3Ox粉末的性能如下:
—平均粒度为0.15μm;
—比表面积为9.4m2/g;
—残留硝酸盐含量为6.0%。
后煅烧在室炉中在810℃的温度下进行8小时,其中将多元金属氧化物粉末引入最大床深度为4cm的银舟皿中。样品的硝酸盐含量降低到<100ppm的值,并设定所生产的多元金属氧化物粉末的所需相组成。
实施例2:
将如实施例1所述的混合物沿轴向喷入脉冲反应器的燃烧室中。其中VH2=3.1kg/h;VVL=195kg/h;M=10kg/h,设定反应器的温度为900℃。燃烧气体包含14.6%O2、0.08%CO2和0.28%NO。所有其它参数对应于实施例1。
所生产的Bi1.75Pb0.35Sr1.98Ca2.0Cu3Ox粉末的性能如下:
—平均粒度为0.24μm;
—比表面积为8.4m2/g;
—残留硝酸盐含量为4.4%。
后煅烧在室炉中在800℃的温度下进行8小时,其中将多元金属氧化物粉末引入最大床浓度为4cm的银舟皿中,样品的硝酸盐含量降低到<100ppm的值,并设定所生产的多元金属氧化物粉末的所需相组成。
实施例3:
将对应于化学计量比Y1.5Ba2Cu3的元素Y、Ba和Cu的氯化物的混合物喷入如实施例1所述的反应器的燃烧室中。其中VH2=1.0kg/h;
VVL=75kg/h;M=3.0kg/h,设定反应器温度为900℃。
粉末性能如下:
—平均粒度为70nm;
—比表面积为12m2/g;
—残留氯化物含量为2.5%。
后煅烧在室炉中在710℃下进行4小时。这使残留氯化物含量降低到<50ppm,而该粉末的烧结反应性并未降低。

Claims (15)

1.一种生产适于用作高温超导体前体的细碎的多元金属氧化物粉末的方法,其特征在于将包含至少三种选自Cu、Bi、Pb、Y、Tl、Hg、La、镧系元素和碱土金属的元素的相应金属盐和/或金属氧化物和/或金属的混合物以固体形式或以溶液或悬浮体形式按所需化学计量比引入含有由无焰燃烧得到的脉冲气流的脉冲反应器中并将其部分或全部转变成多元金属氧化物。
2.根据权利要求1的方法,其特征在于所引入的混合物是硝酸盐、乙酸盐、柠檬酸盐、乳酸盐、酒石酸盐、氯化物、氢氧化物、碳酸盐和/或草酸盐的盐水溶液或悬浮体。
3.根据上述权利要求任一项的方法,其特征在于将所述混合物直接引入脉冲反应器的燃烧室中或引入与该燃烧室相连接的脉冲反应器共振管中。
4.根据上述权利要求任一项的方法,其特征在于在所述脉冲反应器中由无焰燃烧得到的气流以20-150Hz,尤其是30-70Hz脉冲。
5.根据上述权利要求任一项的方法,其特征在于在所述脉冲反应器中由无焰燃烧得到的气流呈湍流,其湍流度为稳态流的湍流度的5-10倍。
6.根据上述权利要求任一项的方法,其特征在于脉冲反应器燃烧室中的气流温度高于650℃,尤其高于800℃。
7.根据上述权利要求任一项的方法,其特征在于所述混合物包含一种或多种选自周期表第Ib族、尤其是Ag,第IIb族、尤其是Zn,第IVa族、尤其是Sn,第IVb族、尤其是Zr,以及第VIIb族、尤其是Mn的元素的溶解盐和/或分散固体形式的掺杂剂。
8.根据上述权利要求任一项的方法,其特征在于在所述脉冲反应器中的反应之后,将金属氧化物粉末在500-960℃,优选550-800℃的温度下进行热后处理。
9.根据权利要求8的方法,其特征在于所述热后处理在室、管、通道、带或旋转管式炉中或在流化床反应器中进行。
10.根据上述权利要求任一项的方法,其特征在于所用混合物包含选自如下元素的化合物:Bi-EA-Cu、(Bi,Pb)-EA-Cu、Y-EA-Cu、(Y,SE)-EA-Cu、Tl-EA-Cu、(Tl,Pb)-EA-Cu或Tl-(Y,EA)-Cu,其中EA表示碱土金属元素,尤其是Ba、Ca和/或Sr,SE表示稀土金属。
11.根据权利要求10的方法,其特征在于所述混合物中的化合物按下列元素摩尔比使用:
Bi(2.0+/-x)Sr(2.0+/-x)Ca(1.0+/-x)Cu(2.0+/-x),其中x=0.3,优选x=0.2,或
Pb(0.3+/-y)Bi(1.7+/-y)Sr(2.0+/-y)Ca(2.0+/-y)Cu(3.0+/y),其中y=0.3,或
YcBadCu3,其中1<c<1.8且1.5<d<2.5。
12.根据上述权利要求任一项的方法,其特征在于所生产的细碎金属氧化物粉末的平均晶粒尺寸<500nm。
13.细碎的多元金属氧化物粉末,由根据权利要求1-12任一项的方法生产。
14.根据权利要求13的金属氧化物粉末,其特征在于它们由下列组成之一组成:Bi-EA-Cu-O、(Bi,Pb)-EA-Cu-O、Y-EA-Cu-O、(Y,SE)-EA-Cu-O、Tl-EA-Cu-O、(Tl,Pb)-EA-Cu-O或Tl-(Y,EA)-Cu-O,其中EA表示碱土金属元素,优选Ba、Ca和/或Sr,SE表示稀土金属。
15.根据权利要求1-12中的一项或多项生产的金属氧化物粉末在生产高温超导体中的用途。
CNB028063821A 2001-03-13 2002-03-06 在脉冲反应器中生产多元金属氧化物粉末的方法 Expired - Fee Related CN1257100C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10111938.0 2001-03-13
DE10111938A DE10111938A1 (de) 2001-03-13 2001-03-13 Herstellung von Hochtemperatur-Supraleiter-Pulvern in einem Pulsationsreaktor

Publications (2)

Publication Number Publication Date
CN1520380A true CN1520380A (zh) 2004-08-11
CN1257100C CN1257100C (zh) 2006-05-24

Family

ID=7677222

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028063821A Expired - Fee Related CN1257100C (zh) 2001-03-13 2002-03-06 在脉冲反应器中生产多元金属氧化物粉末的方法

Country Status (10)

Country Link
US (1) US7358212B2 (zh)
EP (1) EP1370486B1 (zh)
JP (1) JP2004526653A (zh)
KR (1) KR20040012731A (zh)
CN (1) CN1257100C (zh)
AT (1) ATE490216T1 (zh)
AU (1) AU2002302391A1 (zh)
CA (1) CA2440613A1 (zh)
DE (2) DE10111938A1 (zh)
WO (1) WO2002072471A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372596C (zh) * 2005-01-13 2008-03-05 清华大学 一种燃煤排放可吸入颗粒物及其前驱体的脱除方法及装置
CN101511730B (zh) * 2006-09-07 2012-05-09 Sued-化学公司 制备纳米晶体混合金属氧化物的方法及由该方法获得的纳米晶体混合金属氧化物
CN101489667B (zh) * 2006-07-13 2012-09-12 南方化学股份公司 制备纳米晶体金属氧化物的方法
CN106986560A (zh) * 2016-01-20 2017-07-28 海城市后英经贸集团有限公司 一种垱设脉冲燃烧设施
CN109244229A (zh) * 2018-09-13 2019-01-18 安徽建筑大学 一种微电子超导材料及其制备方法
CN115414962A (zh) * 2022-09-22 2022-12-02 西北有色金属研究院 一种制备分子筛负载多元合金纳米颗粒材料的方法

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010036437A1 (en) * 2000-04-03 2001-11-01 Andreas Gutsch Nanoscale pyrogenic oxides
AU2003253400A1 (en) * 2002-12-23 2004-07-22 Universitat Tubingen Method for the production of nitrate-containing precursors for metal oxides and oxocuptrate superconductors
US7589046B2 (en) * 2003-06-04 2009-09-15 Basf Aktiengesellschaft Thermal treatment of the precursor material of a catalytically active material
DE10328342B4 (de) * 2003-06-24 2006-05-04 Graphit Kropfmühl AG Verfahren zur Herstellung von expandiertem Graphit, expandierter Graphit und Verwendung
DE102004041747A1 (de) * 2004-08-28 2006-03-02 Degussa Ag Indium-Zinn-Mischoxidpulver
DE102004044266A1 (de) * 2004-09-10 2006-03-30 Umicore Ag & Co. Kg Verfahren zur Herstellung alkalimetallhaltiger, mehrkomponentiger Metalloxidverbindungen und damit hergestellte Metalloxidverbindungen
DE102005002659A1 (de) * 2005-01-19 2006-07-27 Merck Patent Gmbh Verfahren zur Herstellung von Mischoxiden mittels Sprühpyrolyse
JP4799885B2 (ja) * 2005-03-14 2011-10-26 株式会社 赤見製作所 金属化合物粉末の製造法
DE102005061897A1 (de) * 2005-12-23 2007-06-28 Degussa Gmbh Verfahren zur Herstellung von pulverförmigen Feststoffen
JP5226658B2 (ja) * 2006-03-10 2013-07-03 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチ 向上した特性を有する高温超電導バルク体電流リードの製造方法及びそれによってつくられる超電導バルク体電流リード
JP5034314B2 (ja) * 2006-05-19 2012-09-26 住友大阪セメント株式会社 高屈折率透明粒子の製造方法と高屈折率透明粒子及び高屈折率透明複合体並びに発光素子
DE102006027133A1 (de) * 2006-06-12 2007-12-13 Merck Patent Gmbh Verfahren zur Herstellung von Granat-Leuchtstoffen in einem Pulsationsreaktor
DE102006027334A1 (de) * 2006-06-13 2008-01-10 Evonik Degussa Gmbh Verfahren zur Herstellung von Metalloxidpulvern
DE102006046806B4 (de) * 2006-06-14 2008-10-30 Ibu-Tec Advanced Materials Gmbh Verfahren zur Herstellung von beschichteten Partikeln und Verwendung eines thermischen Reaktors zur Durchführung des Verfahrens
DE102006039462B4 (de) * 2006-08-23 2010-02-18 Ibu-Tec Advanced Materials Ag Verfahren zur Herstellung von Partikeln
DE102006046803A1 (de) * 2006-09-29 2008-04-03 Ibu-Tec Gmbh & Co. Kg Verfahren und thermischer Reaktor zur Herstellung von Partikeln
DE102007003744A1 (de) 2007-01-19 2008-07-31 Ibu-Tec Advanced Materials Gmbh Verfahren und thermischer Reaktor zur Herstellung von Partikeln
DE102007059990A1 (de) 2007-12-13 2009-06-18 Süd-Chemie AG Verfahren zur Herstellung nanokristalliner Hydrotalcitverbindungen
DE102008006607B4 (de) 2008-01-30 2011-03-03 Ibu-Tec Advanced Materials Ag Verfahren zur Herstellung feinteiliger Partikel
DE102008017308B4 (de) * 2008-04-04 2014-09-25 Süd-Chemie Ip Gmbh & Co. Kg Verfahren zur Herstellung von nanokristallinen Bismut-Molybdänmischoxidkatalysatoren
DE102008020600B4 (de) * 2008-04-24 2010-11-18 Outotec Oyj Verfahren und Anlage zur Wärmebehandlung feinkörniger mineralischer Feststoffe
JP2011096394A (ja) * 2009-10-27 2011-05-12 Univ Of Fukui リチウムイオン二次電池正極活物質の製造方法
JP5289511B2 (ja) * 2011-06-24 2013-09-11 株式会社 赤見製作所 金属化合物粉末の製造法
CN103896576A (zh) * 2014-03-06 2014-07-02 北京英纳超导技术有限公司 一种改性铋系超导粉及其制备方法
EP2982435A1 (de) 2014-08-07 2016-02-10 Kronos International, Inc. Verfahren zur Herstellung eines kohlenstoffhaltigen Photokatalysators auf Basis von Titandioxid
CN104445356B (zh) * 2014-10-30 2016-06-29 东南大学 含铜金属复合氧化物光催化材料的制备方法
EP3053571B1 (en) 2015-02-05 2017-03-22 Dentsply DeTrey GmbH Process for the preparation of a particulate dental filler composition
DE102015003398B4 (de) 2015-03-18 2018-11-22 Dennert Poraver Gmbh Verfahren und Anlage zur Herstellung von Mikrohohlkugeln aus Glas und Verwendung eines Pulsationsreaktors
DE102017126365A1 (de) * 2017-11-10 2019-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Herstellung eines Zeoliths
DE102017126363A1 (de) * 2017-11-10 2019-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Herstellung eines Zeoliths
DE102017128719A1 (de) 2017-12-04 2019-06-06 Schott Ag Lithiumionenleitendes Verbundmaterial, umfassend wenigstens ein Polymer und lithiumionenleitende Partikel, und Verfahren zur Herstellung eines Lithiumionenleiters aus dem Verbundmaterial
DE102017128734A1 (de) 2017-12-04 2019-06-06 Schott Ag Verbundmaterial, umfassend wenigstens ein erstes Material und Partikel, wobei die Partikel einen negativen thermischen Ausdehnungskoeffizienten α aufweisen, und Klebematerial umfassend das Verbundmaterial
DE102019210282A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
DE102018211645A1 (de) * 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
DE102018211650A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
DE102018211652A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
DE102018211641A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung und Verfahren zur Herstellung von Partikeln
DE102018211628A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
DE102018211635A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
DE102018211639A1 (de) 2018-07-12 2020-01-16 Ibu-Tec Advanced Materials Ag Vorrichtung und Verfahren zur Herstellung von Partikeln
DE102019206727A1 (de) 2019-05-09 2020-11-12 Ibu-Tec Advanced Materials Ag Vorrichtung zur thermischen Behandlung eines Rohstoffs in einem pulsierenden Heißgasstrom
DE102019218690A1 (de) * 2019-12-02 2021-06-02 Ibu-Tec Advanced Materials Ag Vorrichtung zur Herstellung von Partikeln
EP4114797A1 (de) 2020-03-02 2023-01-11 IBU-tec advanced materials AG Verfahren zur thermischen behandlung eines batteriematerials in einem thermischen reaktor
EP4327927A1 (en) 2022-08-23 2024-02-28 IBU-tec advanced materials AG Method and reactor for thermal treatment of battery precursor material

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2606698B2 (ja) * 1987-03-23 1997-05-07 株式会社 半導体エネルギー研究所 超電導セラミツクスの作製方法
JP2630361B2 (ja) * 1987-03-27 1997-07-16 株式会社 半導体エネルギー研究所 超電導材料
JPH0649626B2 (ja) * 1987-08-27 1994-06-29 株式会社半導体エネルギ−研究所 酸化物超電導材料
US5106830A (en) * 1988-01-15 1992-04-21 University Of Arkansas High temperature superconductor system having the formula Tl-Ba-Cu-O
US5340796A (en) * 1988-02-12 1994-08-23 At&T Bell Laboratories Oxide superconductor comprising Cu, Bi, Ca and Sr
CA1341504C (en) * 1988-03-25 2006-04-11 Jun Akimitsu Substituted superconductive bi-sr-ca-cu oxide and bi-sr-ca-ln-cu oxide compositions
US5114702A (en) * 1988-08-30 1992-05-19 Battelle Memorial Institute Method of making metal oxide ceramic powders by using a combustible amino acid compound
US5348935A (en) * 1988-10-28 1994-09-20 The Regents Of The University Of California Highly oxidized superconductors
US4997808A (en) * 1988-12-27 1991-03-05 Eastman Kodak Company Superconductive ceramic oxide combination
US5306697A (en) * 1989-02-10 1994-04-26 University Of Houston - University Park Oriented grained Y-Ba-Cu-O superconductors having high critical currents and method for producing same
JP3205997B2 (ja) * 1990-09-21 2001-09-04 東レ株式会社 超電導体
US5204313A (en) * 1990-12-07 1993-04-20 Eastman Kodak Company Process of forming a high temperature superconductor on a metal substrate surface
GB9409660D0 (en) * 1994-05-13 1994-07-06 Merck Patent Gmbh Process for the preparation of multi-element metaloxide powders
US6027826A (en) * 1994-06-16 2000-02-22 The United States Of America As Represented By The Secretary Of The Air Force Method for making ceramic-metal composites and the resulting composites
JPH0881221A (ja) * 1994-09-13 1996-03-26 Furukawa Electric Co Ltd:The 酸化物超電導体およびその製造方法
US5919735A (en) * 1994-11-04 1999-07-06 Agency Of Industrial Science And Technology High temperature superconductor
DE19608841C1 (de) * 1996-03-07 1997-08-28 Heidelberger Zement Ag Verfahren zur Herstellung von Metakaolin aus kaolinitischem Ton
DE19614430C1 (de) 1996-04-12 1997-10-02 Pfeifer & Langen Verfahren zur Herstellung von Calciumoxid aus gefälltem Calciumcarbonat und Verwendungen
DE19742304C1 (de) 1997-09-25 1999-04-29 Hoechst Ag Verfahren zur Herstellung von Bi(Pb)SrCaCuO-haltigen Pulvern als Vorprodukt für Hochtemperatursupraleiter und deren Verwendung
AU2425099A (en) 1998-01-30 1999-08-16 Aventis Research & Technologies Gmbh & Co. Kg Method for producing oxidic powders with a low carbon and hydrogen content and their use as well as mixed oxides for high-temperature superconductors and high-temperature superconductors
US6540838B2 (en) * 2000-11-29 2003-04-01 Genus, Inc. Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US6200893B1 (en) * 1999-03-11 2001-03-13 Genus, Inc Radical-assisted sequential CVD
US6677278B1 (en) * 1999-07-30 2004-01-13 Merck Patent Gmbh Pb-Bi-Sr-Ca-Cu-oxide powder mix with enhanced reactivity and process for its manufacture
US6794339B2 (en) * 2001-09-12 2004-09-21 Brookhaven Science Associates Synthesis of YBa2CU3O7 using sub-atmospheric processing
KR100460841B1 (ko) * 2002-10-22 2004-12-09 한국전자통신연구원 플라즈마 인가 원자층 증착법을 통한 질소첨가 산화물박막의 형성방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372596C (zh) * 2005-01-13 2008-03-05 清华大学 一种燃煤排放可吸入颗粒物及其前驱体的脱除方法及装置
CN101489667B (zh) * 2006-07-13 2012-09-12 南方化学股份公司 制备纳米晶体金属氧化物的方法
CN101511730B (zh) * 2006-09-07 2012-05-09 Sued-化学公司 制备纳米晶体混合金属氧化物的方法及由该方法获得的纳米晶体混合金属氧化物
CN106986560A (zh) * 2016-01-20 2017-07-28 海城市后英经贸集团有限公司 一种垱设脉冲燃烧设施
CN109244229A (zh) * 2018-09-13 2019-01-18 安徽建筑大学 一种微电子超导材料及其制备方法
CN109244229B (zh) * 2018-09-13 2022-03-18 安徽建筑大学 一种微电子超导材料及其制备方法
CN115414962A (zh) * 2022-09-22 2022-12-02 西北有色金属研究院 一种制备分子筛负载多元合金纳米颗粒材料的方法
CN115414962B (zh) * 2022-09-22 2023-09-15 西北有色金属研究院 一种制备分子筛负载多元合金纳米颗粒材料的方法

Also Published As

Publication number Publication date
WO2002072471A2 (de) 2002-09-19
DE10111938A1 (de) 2002-09-26
CA2440613A1 (en) 2002-09-19
KR20040012731A (ko) 2004-02-11
DE50214795D1 (de) 2011-01-13
ATE490216T1 (de) 2010-12-15
US7358212B2 (en) 2008-04-15
EP1370486A2 (de) 2003-12-17
WO2002072471A3 (de) 2003-10-02
EP1370486B1 (de) 2010-12-01
CN1257100C (zh) 2006-05-24
US20040077481A1 (en) 2004-04-22
AU2002302391A1 (en) 2002-09-24
JP2004526653A (ja) 2004-09-02

Similar Documents

Publication Publication Date Title
CN1257100C (zh) 在脉冲反应器中生产多元金属氧化物粉末的方法
JP3850899B2 (ja) 多元素金属酸化物粉末の製造方法
CN100575300C (zh) 通过喷雾热解制备混合氧化物的方法
Prakash et al. Hexamethylenetetramine: a new fuel for solution combustion synthesis of complex metal oxides
CN101056818A (zh) 制备含碱金属的多组分金属氧化物化合物的方法及由此制备的金属氧化物化合物
CN1041614C (zh) 生产混合金属氧化物粉末的方法及由此法生产的混合粉末
US20100048379A1 (en) Process for the production of plasma sprayable yttria stabilized zirconia (ysz) and plasma sprayable ysz powder produced thereby
WO1991010620A1 (en) Ceramic precursor mixture and technique for converting the same to ceramic
Lorentzou et al. Aerosol spray pyrolysis synthesis of water-splitting ferrites for solar hydrogen production
CN111908922A (zh) 一种低温合成稀土铪酸盐高熵陶瓷粉体及制备方法
Stella et al. Effect of fuels on the combustion synthesis of NiAl2O4 spinel particles
JPH02137708A (ja) 多成分金属酸化物粒子の製造方法
CN100554144C (zh) 金属氧化物的制造方法
Li et al. Solid‐State Synthesis of LaCoO3 Perovskite Nanocrystals
CN1063155C (zh) 金属氧化物超细粉体的制备方法
Rao Chemical approaches to the design of oxide materials
Saitoh et al. Metal oxide powder synthesized with amorphous metal chelates
JPH01226723A (ja) 酸化物微粒子原料の合成法
JP2007290885A (ja) 無機物粒子の製造方法
JPH0572332B2 (zh)
Koparkar et al. Modern Synthesis Techniques for Metal Oxides I
Gurav et al. Phase evolution and gas-phase particle size distributions during spray pyrolysis of (Bi, Pb) Sr Ca Cu O and Ag(Bi, Pb) Sr Ca Cu O powders
CN118344148A (zh) 一种基于火焰喷雾热解技术的高熵氧化物纳米材料合成方法
JPH01176206A (ja) 複合酸化物前駆体の製造方法
Laine et al. Liquid-Feed Flame Spray Pyrolysis of Single and Mixed Phase Mixed-Metal Oxide Nanopowders

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060524