CN1331496A - 多孔膜和使用多孔膜的电池隔板 - Google Patents

多孔膜和使用多孔膜的电池隔板 Download PDF

Info

Publication number
CN1331496A
CN1331496A CN01124839A CN01124839A CN1331496A CN 1331496 A CN1331496 A CN 1331496A CN 01124839 A CN01124839 A CN 01124839A CN 01124839 A CN01124839 A CN 01124839A CN 1331496 A CN1331496 A CN 1331496A
Authority
CN
China
Prior art keywords
perforated membrane
weight
membrane
molecular weight
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN01124839A
Other languages
English (en)
Inventor
星田大次郎
高桥勉
山田武
筱原泰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of CN1331496A publication Critical patent/CN1331496A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • B29C67/202Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored comprising elimination of a solid or a liquid ingredient
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0658PE, i.e. polyethylene characterised by its molecular weight
    • B29K2023/0683UHMWPE, i.e. ultra high molecular weight polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2091/00Use of waxes as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249986Void-containing component contains also a solid fiber or solid particle

Abstract

本发明提供了一种多孔膜,它是通过熔融捏和一种重均分子量至少5×105的高分子量聚烯烃、一种重均分子量至多2×104的热塑性树脂和微粒,将捏和的物质模塑成一种片材,和随后拉伸该片材而得到的。这种多孔膜能够被容易且简单地制备,并具有高的冲孔强度,因此能够有利地用作电池的隔板,特别是锂蓄电池的隔板。

Description

多孔膜和使用多孔膜的电池隔板
本发明涉及通过拉伸一种捏和热塑性树脂与微粒得到的片材而制成的多孔膜,一种使用这种多孔膜的电也用的隔板,和一种使用这种隔板的电池。
到目前为止,已发现聚烯烃多孔膜可用于多种场合,如卫生材料,医用材料,和在电池中使用的隔板,并且按照它们的应用要求具有各种性能。
一种公知的制备多孔膜的方法是通过单轴地或双轴地拉伸一种含与微粒混合的聚烯烃的片材来制备薄膜。由这种方法制备这种多孔膜的一个实例是,通过拉伸一种由熔融模塑含聚烯烃、填料(微粒)和三酸甘油酯的组合物而制备的膜或片材而得到(日本专利特许公开No.SHO 62-10141)。然而,这种多孔膜用作锂蓄电池的隔板时强度不足。
日本专利特许公开No.HEI 9—157423公开了一种由以下方法制备的多孔膜:通过熔体挤出,将一种含高分子量的聚乙烯树脂和增塑剂的树脂组合物模塑成一种膜;冷却该膜;和除去该膜中所含的增塑剂;随后进行拉伸。在该方法中,使用一种有机溶剂来萃取增塑剂是必要的,因此步骤数量的增加使该方法变得复杂。
本发明的目的是提供一种能被容易地和简单地制备的、具有高强度的多孔膜,一种使用这种膜的电池用的隔板,和一种使用这种隔板的电池。
为了解决上述问题,本发明的发明人已深入地进行了研究,并发现一种由以下方法制备的多孔膜具有高的冲孔强度和优越的离子渗透性:熔融捏和一种高分子量的聚烯烃、一种低分子量的热塑性树脂和微粒;将捏和物质模塑成片材;和拉伸该片材。
因此,本发明涉及一种多孔膜,它是通过熔融捏和一种重均分子量不小于5×105的高分子量聚烯烃、一种重均分子量至多为2×104的热塑性树脂和微粒;将捏和物质模塑成一种片材;和随后拉伸该片材而得到的。
本发明还涉及一种复合多孔膜,它具有一种包括上述的多孔膜和一种耐热树脂的多孔膜的结构。
本发明中使用的高分子量聚烯烃具有至少为5×105的重均分子量,优选在1×106和15×106的范围内。如果重均分子量小于5×105,将不能得到具有高弹性模量和高强度的多孔膜,而它们是高分子量聚烯烃的特点。虽然没有对重均分子量的上限进行特别限制,但是重均分子量超过15×106的聚烯烃被制成片材时,具有较差的模塑性。
这种高分子量聚烯烃的实例包括乙烯、丙烯、1-丁烯、4-甲基-1-戊烯和1-己烯的高分子量均聚物或共聚物。其中,主要成分为乙烯的高分子量聚乙烯是优选的。
在本发明中使用的热塑性树脂具有至多为2×104的重均分子量,优选的是与前述的高分子量聚烯烃相容。
与高分子量聚烯烃相容的树脂是指一种树脂,它提供一种通过用捏和机,例如,Laboplasto研磨机(由Toyo Seiki Seisaku-Sho,Ltd生产),在200℃和90r.p.m.下,以7∶3至3∶7的比例,熔融捏和一种高分子量聚烯烃和该树脂10分钟而制备的树脂组合物,当通过DSC测量时,具有单峰的熔点,或通过熔融捏和上述两种物质来提供一种树脂组合物,当该组合物被压模并拉伸成膜时,提供一种由视觉观察是均匀的膜。
热塑性树脂是一种具有至多为2×104的重均分子量的热塑性树脂,优选该重均分子量至多为1×104。更优选地,热塑性树脂是一种具有至多为2×104的重均分子量的低分子量聚烯烃。在这样的低分子量聚烯烃中,具有至多为2×104的重均分子量的低分子量聚乙烯是优选的,因为它显示出与高分子量聚烯烃优良的相容性。更优选的是一种分枝数量可与使用的高分子量聚烯烃的分枝数量相差不多的低分子量聚乙烯,因为它显示出与高分子量聚烯烃更优良的相容性。具体地说,适用的是这样一种低分子量聚乙烯,它与高分子量聚烯烃的密度差在±0.02g/cm3以内,更优选地是在±0.01g/cm3以内。如果热塑性树脂具有大于2×104的重均分子量,它显示出与高分子量聚烯烃较低的相容性。
应该注意到,对于高分子量聚烯烃和热塑性树脂的量,优选地,高分子量聚烯烃的量以重量计为30%到90%,热塑性树脂的量以重量计为70%到10%,更优选地,高分子量聚烯烃的量以重量计为60%到80%,热塑性树脂的量以重量计为40%到20%。
如果高分子量聚烯烃的量以重量计大于90%,生产的薄膜不均匀,或者模塑是不可能进行的。如果其量以重量计小于30%,则不能产生高强度,而它是高分子量聚烯烃的特征。
有时,在不降低相容性的这样一种范围内,以重量计,基于具有至多2×104的重均分子量的100%热塑性树脂,可以包含以重量计至多70%数量的除高分子量聚烯烃和具有至多为2×104的重均分子量的热塑性树脂以外的热塑性树脂。这种热塑性树脂通常具有大于2×104和小于5×105的分子量,并且线性低分子量聚乙烯可作为实例。
高分子量聚烯烃、低分子量热塑性树脂或其它树脂的分子量可通过GPC测量方法来测定,依据聚苯乙烯换算重均分子量。例如,在140℃下,用邻二氯苯作溶剂,可以实施这种测量方法。
在本发明中使用的微粒具有至多3μm的平均粒径,优选至多1μm,更优选至多0.5μm。优选地,微粒的平均粒径至少为0.02μm。如果微粒的平均粒径小于0.02μm,将这种微粒填入树脂是困难的,此外,通过拉伸的孔的开放变得不充分。这里使用的术语“平均粒径”是指,由通过激光散射法测定的颗粒尺寸分布计算的平均粒径,激光散射测量分散在空气中的初始颗粒直径。
在本发明中使用的微粒是无机或有机微粒,统称作填料。
无机微粒的实例包括碳酸钙、滑石、粘土、高岭土、硅石、水滑石、硅藻土、碳酸镁、碳酸钡、硫酸钙、硫酸镁、硫酸钡、氢氧化铝、氢氧化镁、氧化钙、氧化镁、二氧化钛、氧化铝、云母、沸石、玻璃粉和氧化锌,其中特别优选地是碳酸钙和硫酸钡,因为它们能提供直径比较小的颗粒并且具有较低的水含量。如果水含量低,用于非水电池隔板的多孔膜的使用在电池的性能方面引起的不利影响较小。
公知的树脂颗粒可用作有机微粒。优选树脂的实例包括以下两种或多种物质的均聚物或共聚物:苯乙烯、乙烯酮、丙烯腈、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸缩水甘油酯、丙烯酸缩水甘油酯和丙烯酸甲酯,以及密胺、脲等的缩聚树脂。
在本发明中使用的微粒适宜是水溶性的。按照要求,水溶性微粒容易通过用中性的、酸性的或碱性的水溶液洗涤来除去。在上述有机或无机颗粒中的水溶性颗粒没有被特别限定,只要它们在中性、酸性或碱性水溶液的任何一个中是可溶的就可以。它们的实例是滑石粉、粘土、高岭土、硅藻土、碳酸钙、碳酸镁、碳酸钡、硫酸镁、氧化钙、氢氧化镁、氢氧化钙、氧化锌和硅石,并且优选碳酸钙。
在本发明中使用的微粒优选经表面处理,以提高它们对于高分子量聚烯烃和热塑性树脂的可分散性,以促进与该树脂的界面剥离,或防止从外部吸收水。表面处理剂的例子包括高级脂肪酸,如硬脂酸和月桂酸,及它们的金属盐。
以体积计总量为100份的高分子量聚烯烃、热塑性树脂和微粒中的微粒比例以体积计优选为15到50份,更优选为以体积计25到35份,尽管它取决于使用的微粒的种类或微粒的表面处理条件。如果微粒的比例以体积计小于15份,在拉伸后孔的开放有时可能是不充分的,因此,膜阻力增加。另一方面,如果微粒的比例以体积计大于50份,树脂的连续性被破坏,因此,由于拉伸很可能断裂,另外,膜的强度可能降低。
本发明中使用的树脂中可以混入常用的添加剂(抗静电剂、增塑剂、润滑剂、抗氧化剂和成核剂),除非对本发明的目的有不良影响。
按照本发明,膜阻力用式(1)来定义:
膜阻力(sec·μm2/100cc)=td2……(1)
其中,t表示按照Gurley值(sec/100cc)表示的气体传输速度,d表示由泡点法测定的孔径(μm)。
膜阻力较低表示离子渗透性更好。
在多孔膜被单独地用作电池的隔板的情况下,它的膜阻力优选至多为5sec.μm2/100cc,尽管这取决于多孔膜的材料。
使用具有良好的离子渗透性的隔板的电池有优异的载荷特性,如下所述。载荷特性是当将大的电流应用于电池时能放出的电容量与当将微弱的电流应用于电池时能够放出的电容量的比值。当电池是如锂电池一类的蓄电池时,要求优异的载荷性能。
本发明的多孔膜可以具有层合的聚烯烃、聚胺酯等的多孔层的结构。
本发明的多孔膜是通过熔融捏和一种重均分子量至少为5×105的高分子量聚烯烃、一种重均分子量至多为2×104的热塑性树脂和微粒,将捏和的物质模塑成一种片材和随后拉伸该片材而得到的。
例如,使用Henschel混合机、超级混合机(supermixer)、滚筒型(turrbler-type)混合机或类以的混合机,将一种含高分子量聚烯烃和热塑性树脂的组合物与微粒和如必要与如脂肪酯一类的拉伸助剂以及其它添加剂混合,然后,使用单或双螺杆挤出机将混合物捏和并造粒。随后,使用公知的模塑机将粒料熔融并成型为片材,如配有T-模头等的挤出成型机或配有圆柱型模头的吹胀成型机。也可以不造粒而直接成型为片材。在温度高于室温并低于树脂的软化点的温度下,通过公知的方法,如滚压或拉幅,至少将薄膜单轴地拉伸,以使树脂和微粒之间的界面剥离,这样就形成了多孔膜。拉伸可以单步进行,或分成多步进行。如果必要,在拉伸后可以进行热处理,以稳定孔的形状。
本发明的复合膜具有包括本发明的多孔膜和耐热树脂的层合结构。除多孔膜的特性外,复合膜具有加热时收缩小的特性。根据需要,复合膜还可以进一步层合以聚烯烃或聚氨酯的多孔层。
耐热树脂的多孔膜可以含有无机微粉。基于100重量份耐热树脂,无机微粉的量以重量计优选是1到1500份,以重量计更优选是5到100份。无机微粉的粒径优选为小于耐热树脂多孔膜的厚度。初始颗粒的平均粒径优选为1.0μm或更小,更优选为0.5μm或更小。无机微粉的实例合适地包括氧化铝、硅石、二氧化钛、氧化锆和碳酸钙,并非仅限于此。它们可单独被使用,或以两种或多种的混合物形式使用。另外,可通过控制外加无机微粉的多孔耐热树脂膜的空隙百分比来提高离子渗透性。
作为形成耐热多孔膜的耐热树脂,从按照JIS K 7207、在18.6kg/cm2的载荷下测量的载荷挠曲温度为100℃或更高的那些耐热树脂中选择的耐热树脂是优选的。
为了在高温下的更苛刻条件下使用时保证安全,本发明的耐热树脂更优选地是至少一种选自那些载荷挠曲温度为200℃或更高的耐热树脂。
载荷挠曲温度为100℃或更高的树脂的例子包括聚酰亚胺、聚酰胺酰亚胺、芳族聚酰胺、聚碳酸酯、聚缩醛、聚砜、聚苯基硫化物、聚醚醚酮、芳香族聚酯、聚醚砜、聚醚酰亚胺等。载荷挠曲温度为200℃或更高的树脂的例子包括聚酰亚胺、聚酰胺酰亚胺、芳族聚酰胺、聚醚砜、聚醚酰亚胺等。另外,特别优选选自聚酰亚胺、聚酰胺酰亚胺和芳族聚酰胺的树脂作耐热树脂。
而且,本发明中的耐热树脂优选地具有20或更大的极限氧指数。极限氧指数是放入玻璃管中的试样能连续燃烧的最小氧气浓度。由于在高温下,氧气可以从阴极材料中产生,因此优选耐热多孔层除耐热外是阻燃的。这种树脂的例子包括上述的耐热树脂。
至于本发明复合多孔膜的生产方法,作为实例的是一种用粘合剂或通过热熔合来粘附多孔膜及耐热树脂的多孔膜的方法,和一种在作为基层的多孔膜上涂敷含耐热树脂的溶液、并从耐热树脂膜除去溶剂,以生产本发明的复合多孔膜的方法。
例如,对于后一方法,本发明的复合多孔膜可通过包括以下(a)-(e)步骤的力法来生产:
(a)制备种含耐热树脂和有机溶剂的溶液。基于100重量份耐热树脂,通过分散1-1500重量份的无机微粉,来制备一种稀浆溶液;
(b)通过在多孔膜上涂敷上述溶液或稀浆溶液,来制备一种涂层膜;
(c)将耐热树脂沉积在涂覆的膜上;
(d)从涂覆的膜上移除有机溶剂;
(e)将涂覆的膜干燥。
至于有机溶剂,通常使用极性有机溶剂。极性有机溶剂的例子包括N,N′-二甲基甲酰胺、N,N′-二甲基乙酰胺、N-甲基-2-吡咯烷酮或四甲基脲。
至于在多孔膜上沉积耐热树脂的方法,作为例子的是一种包括在控制湿度的气氛中保持多孔膜、沉积耐热树脂并在凝聚溶剂中浸渍多孔膜的方法。
至于凝聚溶剂,可以使用含水或醇类的溶液,没有限制。由于溶剂回收方法被简化,在工业上,适于使用含有极性有机溶剂的含水或醇类溶液。更优选地是含有极性有机溶剂的含水溶液。
而且,多孔膜也可浸渍在凝聚溶剂中,不需要通过在控制湿度的气氛中保持多孔膜来沉积耐热树脂。
另外,在耐热树脂(如芳族聚酰胺)一旦从溶液中沉积后不能被再溶解的情况下,耐热树脂可在蒸发部分或全部溶剂的同时被沉积,就是说,沉积过程和随后的溶剂移除过程可同时进行。
至于移除极性有机溶剂的方法,可将部分或全部的溶剂蒸发,或使用一种能溶解极性有机溶剂的溶剂,如水、含水溶液或醇类溶液,通过萃取来移除该溶剂。
在使用水移除极性有机溶剂的情况下,优选使用离子交换水。另外,在用浓度固定的含有极性有机溶剂的水溶液清洗后,进一步用水清冼在工业上也是优选的。
在移除极性有机溶剂后,进行干燥过程。在干燥过程中,通过加热蒸发来除去清冼用的溶剂。此时的干燥温度优选为低于多孔膜的热变形温度。
另外,说明了一个将对位芳香族聚酰胺(称作对芳族聚酰胺)用作耐热树脂的实例。
例如,在极性有机溶剂中,将2到10重量%的碱金属或碱土金属氯化物溶解其中,将0.94-0.99mol的对位取代的芳香族二羧酸二卤化物加到1.00mol的对位取代的芳香族二胺中。通过在-20℃到50℃的温度下进行缩聚作用,来制备由对芳族聚酰胺和有机溶剂组成的溶液,其中对芳族聚酰胺的浓度为1-10%,特性粘度通常为1.0到2.8dl/g。使用这种溶液,可通过上述的方法来得到具有多孔膜和对芳族聚酰胺多孔膜的层合结构的复合多孔膜。
对于对芳族聚酰胺,为移除溶剂和氯化物,可用与凝聚溶剂如水和甲醇相同的溶剂将它们洗除。在蒸发部分或全部溶剂和同时沉积聚合物后,氯化物也可通过一种如用水清冼的方法来移除。
用于本发明的电池的隔板包括上述多孔膜或复合多孔膜。考虑到离子渗透性,多孔膜或复合多孔膜的膜阻力优选为5或更小。
考虑到改善安全性,因其在加热时收缩率小而优选复合多孔膜。
在锂蓄电池或类似电池中,当将多孔膜用作隔板时,多孔膜优选具有5到50μm的厚度,更优选为10到50μm,进一步优选为10到30μm,因为要求它薄并有高强度。
对于电池隔板使用的多孔膜的空隙百分比,优选为30到80体积%,更优选为40到70体积%。当空隙百分比小于30体积%时,电解质的保有量将减少。当空隙百分比大于80体积%时,封闭层的强度将变得不足,并且封闭功能有时变坏。
多孔膜的厚度优选为5到50μm,更优选为10到50μm,进一步优选为10到30μm。当厚度小于5μm时,封闭功能将不充分,并且在卷绕过程中,可能短路。当厚度大于50μm时,包括耐热树脂层多孔膜的厚度变得太厚,以致不能得到高的电容量。
上述多孔膜的孔的尺寸优选为0.1μm或更小,更优选为0.08μm或更小。当孔的尺寸较小时,与具有相同透气度的多孔膜的膜阻力相比,该多孔膜的膜阻力变得较低。
在本发明的电池隔板用的复合多孔膜中,多孔膜的空隙百分比和孔的尺寸与上述多孔膜相同。至于多孔膜的厚度,复合多孔膜的总厚度优选为5到50μm,更优选为10到50μm,进一步优选为10到30μm。
耐热多孔层的空隙百分比优选为30到80体积%,更优选为40到70体积%。当该百分比小于30体积%时,电解质的保有量将不足,而当大于80体积%时,耐热多孔层的强度将变得不足。
耐热多孔层的厚度优选为0.5到10μm,更优选为1到5μm。当厚度小于3μm时,在加热时耐热多孔层有时不能抑制收缩,而当厚度大于10μm时,载荷特性可能变坏。
本发明的电池包括用于本发明电池的隔板。
在下面,将说明除隔板以外的其它元件,针对如锂电池一类的非水电解质蓄电池,但不受其限制。
作为非水电解质溶液,可以使用通过在有机溶剂中溶解锂盐来制备的非水电解质溶液,锂盐的例子包括:LiClO4、LiPF6、LiAsF6、LiSbF6、LiBF4、LiCF3SO3、LiN(SO2CF3)2和LiC(SO2CF3)3、Li2B10Cl10、低级脂肪族羧酸的锂盐、LiAlCl4等,它们可被单独使用,或两种或多种结合使用。其中,优选的是那些从含氟的组中选择的至少一个或多个,该组由LiPF6、LiAsF6、LiSbF6、LiBF4、LiCF3SO3、LiN(CF3SO2)2和LiC(CF3SO2)3构成。
非水电解质溶液使用的有机溶剂的例子包括:碳酸酯类,如碳酸亚丙酯、碳酸亚乙酯、碳酸二甲酯、碳酸二乙酯、乙基甲基碳酸酯、4-三氟甲基-1,3-二氧戊环-2-酮、1,2-二(甲氧基羰基氧基)乙烷;醚类,如1,2—二甲氧基乙烷、1,3-二甲氧基丙烷、五氟代丙基甲基醚、2,2,3,3-四氟代丙基二氟代甲基醚、四氢呋喃和2-甲基四氢呋喃;酯类,如甲酸甲酯、乙酸甲酯和γ-丁内酯;腈类,如乙腈和丁腈;酰胺类,如N,N—二甲基甲酰胺、N,N-二甲基乙酰胺;氨基甲酸酯类,如3-甲基-2-噁唑烷酮;含硫化合物类,如环丁砜、二甲基亚砜、1,3-丙烷砜;和含有氟化取代基的上述的有机溶剂。通常,将它们中的两个或多个混合使用。
其中,含碳酸酯的混合溶剂是优选的。环状碳酸酯和非环状碳酸酯的混合物或环状碳酸酯和醚的混合物是更优选的。
作为环状碳酸酯与非环状碳酸酯的混合溶剂,适合的是含有碳酸亚乙酯、碳酸二甲酯和碳酸乙基甲基酯的混合溶剂。
这种溶剂具有宽的操作温度范围和优异的载荷性能。并且,甚至当使用石墨材料,如天然石墨或人工石墨,作阳极的活性材料时,它几乎不分解。
作为阴极片,使用一种附载在集电器上的组合物,其中该组合物含阴极活性材料、导电物质和粘合剂。具体地说,它包括一种可用锂离子搀杂/未搀杂的作为阴极活性材料的物质,一种作为导电物质的含碳物质和一种作为粘合剂的热塑性树脂。
可用锂离子掺杂/未掺杂的物质的实例包括,含至少一种过渡金属如V、Mn、Fe、Co和Ni的锂的复合氧化物。其中,考虑到高平均放电电压,具有α-NaFeO2型结构的锂的层状复合氧化物如锂化二氧化镍和锂化二氧化钴作基体,和具有尖晶石型结构的锂的复合氧化物如锂锰尖晶石作基体,可作为优选的实例。
锂的复合氧化物也可以含有各种添加的元素。当使用锂化二氧化镍的复合物,以便以摩尔计,上述金属的至少一种占选自Ti,V,Cr,Mn,Fe,Co,Cu,Ag,Mg,Al,Ga,In和Sn的至少一种金属的摩尔数和在锂化二氧化镍中的镍的摩尔数之和的0.1-20%时,在大容量使用时的循环性能被改善,因此它是优选的。
作粘合剂的热塑性树脂的例子包括:聚偏氟乙烯、1,1-二氟乙烯的共聚物、聚四氟乙烯、四氟乙烯/六氟丙烯的共聚物、四氟乙烯/全氟烷基乙烯基醚的共聚物、乙烯/四氟乙烯的共聚物、1,1-二氟乙烯/六氟丙烯-四氟乙烯的共聚物、热塑性聚酰亚胺、聚乙烯、聚丙烯等。
作导电物质的含碳物质的例子包括:天然石墨、人工石墨、焦炭、炭黑等。导电物质可被单独使用,或也可呈两种的混合物来使用,例如,人工石墨和炭黑。
作为阳极板,可使用可用锂离子、锂金属或锂合金掺杂/未掺杂的物质。
可用锂离子掺杂/未掺杂的物质的例子包括:含碳物质,如天然石墨、人工石墨、焦炭、炭黑、热解碳、碳纤维和煅烧的有机聚合物;和硫属元素化合物,如氧化物或硫化物等。
具有石墨材料如天然石墨或人工石墨作主要成分的含碳物质是优选的,因为电位平台高,平均放电电压低,并且当与阴极结合时能得到高能量密度。
作为阳极集电极,可使用Cu、Ni、不锈钢等,但从难与锂、特别是在锂蓄电池中的锂形成合金并易于压制成薄片方面来说,Cu是优选的。
作为一种将含阳极活性材料的组合物附载在阳极集电极上的方法,其实例是一种加压压制法,和一种使用溶剂等制成浆糊,并在集电极上涂敷和干燥后压粘的方法等。
本发明电池的形状没有特别被限定,作为例子的是如纸型、币型、圆柱型和正方型。
实施例
下面,通过实施例和对比例的方式来更具体地描述本发明。本发明并不被限制到以下的实施例中。
在实施例和对比例中,多孔膜的性能根据下列各项来测定:
1.气体传输速度:根据JIS P8117来测定;
2.平均孔径:根据ASTM F316—86来测定;
3.膜厚度:根据JIS K7130来测定;
4.冲孔强度:当以200mm/min的速率将探针刺入用Φ12mm的清冼机(washer)固定的多孔膜部分时,测定形成的最大应力(gf),作为冲孔强度。在这种情况下,探针有Φ1mm的针杆直径和0.5R的针头。
5.收缩率:多孔膜或复合多孔膜被夹在特氟纶(Teflon)片材中间,并在任意温度下保持10分钟。通过下面给出的公式来计算收缩率:
收缩率=(L25-Lt)/L25×100
其中L25是25℃时,在TD方向上隔板的长度,Lt是在t℃保持10分钟后,在TD方向上隔板的长度。
6.对芳族聚酰胺的特性粘度:在30℃时,用毛细管粘度计测量96到98%的硫酸和在100ml的96到98%硫酸中溶解0.5克对芳族聚酰胺聚合物而得到的溶液的流出时间。然后,由测得的流出时间比,根据下面给出的公式来计算特性粘度:
特性粘度=1n(T/T0)/C[单位:dl/g]
其中,T和T0分别表示对芳族聚酰胺的硫酸溶液和硫酸的流出时间,C表示对芳族聚酰胺的硫酸溶液中的对芳族聚酰胺浓度(g/dl)。
实施例1
(多孔膜的制备)
使用Laboplasto研磨机(由Toyo Seiki Seisaku-Sho,Ltd生产)进行捏和。将70重量份的超高分子量聚乙烯粉末(由Mitsui Chemicals Inc.生产的“HI—ZEX MILLION 340M”:重均分子量为3,000,000;密度为0.93g/cm3)、30重量份的聚乙烯蜡粉(由Mitsui Chemicals Inc.生产的“Hi-wax 110P”:重均分子量为1,000;密度为0.92g/cm3)和0.05重量份的抗氧化剂(由SumitomoChemical Co.Ltd生产的“Irg1010”)均匀地混合在一起,然后,通过Laboplasto研磨机在200℃下捏和10分钟,随后从Laboplasto研磨机中取出均一熔融捏和的物质。此时的转速为60rpm。
接着,将以体积计70份这种捏和物质放入Laboplasto研磨机并熔融,然后,将以体积计30份的碳酸钙(由Shiraishi Calcium Co.生产的“Sta-vigotA15”:平均粒径为0.15μm)引入Laboplasto研磨机中,随后在200℃下捏和5分钟。在200℃下,用热压装置将得到的捏和物质成型为具有60到70μm厚度的片材,并且用冷压机将该片材固化。这样得到的片材被切割成适当的尺寸(大约8cm(宽)×Scm(长)),然后,使用Autograph(AGS—G,由Shimadzu Corporation生产)单轴地拉伸以开孔,这样提供一种多孔膜。这种拉伸是在100℃和拉伸速度为50mm/min下进行。得到的多孔膜在盐酸/乙醇溶液(盐酸∶乙醇=1∶1)中被浸渍以溶解碳酸钙。在溶解后,用乙醇清冼多孔膜并在60℃减压条件下干燥。这样得到的多孔膜的物理性能如表1所示,收缩率如表2所示。
此时,根据以下各项确认相容性。以1∶1的比例,使用超高分子量聚乙烯粉末和聚乙烯蜡粉,用与上述相同的方式制备捏和组合物,并用热压机,在给定的200℃温度下,将捏和物质加工成60—70μm厚的片材。在固化后,片材被切割成适当的尺寸,并使用Autograph在100℃下单轴地拉伸。得到的片材是均匀的,因此二者被确认为彼此相容。
实施例2
(对芳族聚酰胺溶液的合成)
在一个具有搅拌叶片、温度计、氮流入管和粉末入口的5升的可分离烧瓶中,合成聚对苯二甲酰对苯二胺(以下称为PPTA)。在充分干燥的烧瓶中,将在200℃下干燥2小时的272.65g氯化钙加入到4200gN-甲基-2-吡咯烷酮(以下称为NMP)中。然后,烧瓶被加热到100℃。在氯化钙完全溶解后,烧瓶被冷却至室温,加入132.91g对苯二胺(以下称为PPD)并被完全溶解。当该溶液被保持在20±2℃时,以大约5分钟的间隔,分10次加入243.32g对苯二酰氯(以下称为TPC)。为了熟化,将该溶液在20±2℃下保持1小时,然后,为了消除气泡,在减压下搅拌30分钟。得到的聚合物溶液表现出光学各向异性。一部分聚合物溶液被取样,将取自采样的聚合物溶液中的聚合物在水中重新沉淀。测到的这样得到的PPTA的特性粘度为1.97dl/g。
然后,在一个具有搅拌叶、温度计、氮流入管和粉末入口的500ml的可分离烧瓶中,加入100g这种聚合物溶液,并逐渐地加入NMP溶液。最后,制得了PPTA浓度为2.0重量%的PPTA溶液,并称之为“溶液A”。
(对芳族聚酰胺溶液的涂敷)
作为多孔膜,使用实施例1中的聚乙烯多孔膜。用刮条涂布机(间隙为200μm,由Tester Industries Co.Ltd.生产),将“溶液A”的类膜材料,它是耐热树脂溶液,涂布在放置于玻璃板上的多孔膜上。在30℃、湿度为65%的烘箱中原样保存3分钟后,PPTA被沉淀,并得到一种半透明的类膜材料。在30%NMP水溶液中,将类膜材料浸渍5分钟。在浸渍后,将沉淀的类膜材料被从玻璃板上分离。在用足够的离子交换水冲冼该材料后,将湿的类膜材料从水中取出,并且将游离水擦去。类膜材料被夹在尼龙片材中,并进一步夹在芳族聚酰胺制成的毡片中。在类膜材料被夹在尼龙片和芳族聚酰胺制成的毡片中间的状态下,把铝板放在上面,并将尼龙膜覆盖其上,尼龙膜和铝板用胶密封,并连接一根减压用的管子。将其整体放入加热烘箱中,在60℃下,减压干燥这种类膜材料,并得到一种复合膜。这样得到的多孔膜的物理性能如表1所示,收缩率如表2所示。
对比例1
Laboplasto研磨机温度被升至200℃,82重量份的LLDPE(由SumitomoChemical Co.Ltd.生产的“FS240A”:重均分子量为110,000),和18重量份的LDPE(由Sumitomo Chemical Co.Ltd.生产的“F208—1”:重均分子量为80,000)被引入Laboplasto研磨机。在这些PE被熔融后,相对于以体积计70份的PE,以体积计30份的水滑石(由Kyowa Chemical Industry Co.Ltd.生产的“DHT-4A”:平均粒径为0.4μm)和随后以重量计0.1份(以PE的重量为100份)的抗氧化剂(由Sumitomo Chemical Co.Ltd.生产的“Irg1010”)被引入到Laboplasto研磨机,接着,在100rpm下熔融捏和5分钟。用热压装置在200℃将得到的捏和物质成型为具有60到70μm厚的片材,并且用冷压机将该片材固化。这样得到的片材被切割成适当的尺寸,然后,使用Autograph单轴地拉伸以开孔,这样提供一种多微孔膜。这种拉伸是在30℃和拉伸速度为50mm/min下进行。这样得到的多孔膜的物理性能如表1所示。
对比例2
Laboplasto研磨机的温度被升至200℃,以体积计,70份的PP(由SumitomoChemical Co.Ltd.生产的“FS2011D”:重均分子量为410,000)被引入Laboplasto研磨机。在该PP被熔化后,以体积计30份的水滑石(由Kyowa Chemical IndustryCo.Ltd.生产的“DHT—4A”:平均粒径为0.4μm)和随后以重量计0.05份(以PP的重量为70份)的抗氧化剂(由Sumitomo Chemical Co.Ltd.生产的“Irg1010”)被引入到Laboplasto研磨机,接着,在100rpm下熔融捏和5分钟。用热压装置在200℃时将得到的捏和物质成型为具有60到70μm厚的片材,并且用冷压机将该片材固化。这样得到的片材被切割成适当的尺寸,然后,使用Autograph单轴地拉伸以开孔,这样提供一种多微孔膜。这种拉伸是在140℃和拉伸速度为50mm/min下进行。这样得到的多孔膜的物理性能如表1所示。
对比例3
Laboplasto研磨机温度被升至200℃,49重量份的超高分子量聚乙烯粉末(由Mitsui Chemicals Inc.生产的“HI—ZEX MILLION 340M”:重均分子量为3,000,000;密度为0.93g/cm3),34重量份的茂金属型LLDPE(由MitsuiChemicals Inc.生产的“SP4060”:重均分子量为70,000),17重量份的LDPE(由Sumitomo Chemical Co.Ltd.生产的“G808”:重均分子量为55,000),和0.05重量份的抗氧化剂(由Sumitomo Chemical Co.Ltd.生产的“Irg1010”)被引入Laboplasto研磨机,随后,在100rpm下熔融捏和5分钟。用热压装置在200℃时将得到的捏和物质成型为具有60到70μm厚的片材,并且用冷压机将该片材固化。这样得到的片材被切割成适当的尺寸,然后,使用Autograph在100℃单轴地拉伸,这样提供一种膜。在得到的片材中,观测到超高分子量聚乙烯不相容,并且保持为粉末状。
随后,以体积计,70份的这种捏和物质被投入Laboplasto研磨机并被熔融,然后将以体积计30份的碳酸钙(由Shiraishi Calcium Co.生产的“Sta-vigotA15”:平均粒径为0.15μm)引入Laboplasto研磨机,接着在200℃捏和5分钟。用热压装置在200℃时将得到的捏和物质成型为具有60到70μm厚的片材,并且用冷压机将该片材固化。这样得到的片材被切割成适当的尺寸,然后,使用Autograph单轴地拉伸以开孔,这样提供一种多孔膜。这种拉伸是在100℃和拉伸速度为50mm/min下进行。将得到的多孔膜在盐酸/乙醇溶液(盐酸∶乙醇=1∶1)中浸渍,以溶解碳酸钙。在溶解后,用乙醇清冼多孔膜并在60℃减压条件下干燥。这样得到的多孔膜的物理性能如表1所示。
对比例4
Laboplasto研磨机温度被升至200℃,70重量份的超高分子量聚乙烯粉末(由Mitsui Chemicals Inc.生产的“HI—ZEX MILLION 340M”:重均分子量为3,000,000;密度为0.93g/cm3),30重量份的聚乙烯蜡粉(由MitsuiChemicals Inc.生产的“Hi-wax110P”:重均分子量为1,000),和0.05重量份的抗氧化剂(由Sumitomo Chemical Co.Ltd.生产的“Irg1010”)被均匀地混合在一起,然后,用Laboplasto研磨机在200℃下捏和10分钟,随后从Laboplasto研磨机中取出均一的熔融捏和物质。用热压装置在200℃时将得到的捏和物质成型为具有60到70μm厚的片材,并且用冷压机将该片材固化。这样得到的片材被切割成适当的尺寸,然后,使用Autograph在100℃单轴地拉伸,这样得到的膜不是多孔膜。对比例5
Laboplasto研磨机温度被升至200℃,将70重量份的超高分子量聚乙烯粉末(由Mitsui Chemicals Inc.生产的“HI—ZEX MILLION 340M”:重均分子量为3,000,000;密度为0.93g/cm3),和0.05重量份的抗氧化剂(由SumitomoChemical Co.Ltd.生产的“Irg1010”)以粉末形式混合在一起,然后,用Laboplasto研磨机在200℃下捏和10分钟。
随后,基于以体积计70份的上述聚乙烯,以体积计30份的碳酸钙(由Shiraishi Calcium Co.生产的“Sta-vigot A15”:平均粒径为0.15μm)被引入Laboplasto研磨机,紧接着在200℃捏和5分钟。用热压装置在200℃时将得到的捏和物质成型为具有60到70μm厚的片材,并且用冷压机将该片材固化。即使进行充分的预热,也不能得到良好外观的片材。
                               表1
 膜厚度(μm)  气体传输速度(sec/100cc)   平均孔径(μm)       膜阻力(sec·μm2/100cc)  冲孔强度(gf)
实施例1    30      778     0.07         3.8    440
实施例2    32       -    <0.05         -    330
对比例1    28      390     0.30         35    197
对比例2    42       62     0.19         2.2    185
对比例3    61      688     0.11         8.3    385
对比例4    44    不可测    不可测       不可测    824
          表2
温度(℃) 收缩率(%)
实施例1 实施例2
 90  0  0
 100  0  0
 110  0  0
 120  0  0
 130  1.5  0
 140  4.5  0.6
 150  18.2  1.5
 160  21.2  3.0
本发明的多孔膜能够被容易且简单地制备,并具有高的冲孔强度,因此能够有利地用作电池的隔板,特别是锂蓄电池的隔板。

Claims (10)

1.一种多孔膜,它是通过熔融捏和一种重均分子量至少为5×105的高分子量聚烯烃、一种重均分子量至多为2×104的热塑性树脂和微粒,将捏和的物质模塑成一种片材,和随后拉伸该片材而得到的。
2.按照权利要求1的多孔膜,其中在高分子量聚烯烃和热塑性树脂的总量中,高分子量聚烯烃的量为30%到90重量%。
3.按照权利要求1或2的多孔膜,其中,热塑性树脂是聚乙烯。
4.按照权利要求1或2的多孔膜,其中,所述微粒为水溶性的。
5.按照权利要求4的多孔膜,其中,用水清冼拉伸后的膜,以移除微粒。
6.按照权利要求1或2的多孔膜,其中,由式(1)定义的膜阻力至多为5sec·μm2/100cc:
膜阻力(sec.μm2/100cc)=td2……(1)
其中,t表示以Gurley值(sec/100cc)表示的气体传输速度,d表示由泡点法测定的孔径(μm)。
7.一种复合多孔膜,具有一种包括在权利要求1或2中所述的多孔膜和耐热树脂的多孔膜的结构。
8.一种电池用的隔板,其中,隔板包括在权利要求1或2中所述的多孔膜。
9.一种电池用的隔板,其中,隔板包括在权利要求7中所述的复合多孔膜。
10.一种包括在权利要求8或9中所述的隔板的电池。
CN01124839A 2000-06-14 2001-06-14 多孔膜和使用多孔膜的电池隔板 Pending CN1331496A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP178006/2000 2000-06-14
JP2000178006 2000-06-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101251510A Division CN100572438C (zh) 2000-06-14 2001-06-14 多孔膜制备方法

Publications (1)

Publication Number Publication Date
CN1331496A true CN1331496A (zh) 2002-01-16

Family

ID=18679515

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2005101251510A Expired - Lifetime CN100572438C (zh) 2000-06-14 2001-06-14 多孔膜制备方法
CN01124839A Pending CN1331496A (zh) 2000-06-14 2001-06-14 多孔膜和使用多孔膜的电池隔板

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB2005101251510A Expired - Lifetime CN100572438C (zh) 2000-06-14 2001-06-14 多孔膜制备方法

Country Status (7)

Country Link
US (2) US20020034689A1 (zh)
EP (1) EP1168469B1 (zh)
KR (1) KR100912800B1 (zh)
CN (2) CN100572438C (zh)
CA (1) CA2350379C (zh)
DE (1) DE60128422T2 (zh)
TW (1) TWI315591B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212035B (zh) * 2006-12-29 2010-06-16 比亚迪股份有限公司 一种电池隔膜及其制备方法
CN101933179A (zh) * 2008-02-04 2010-12-29 住友化学株式会社 复合金属氧化物及钠二次电池
CN102132444A (zh) * 2008-08-27 2011-07-20 住友化学株式会社 电极活性物质及其制造方法
CN102307944A (zh) * 2009-02-06 2012-01-04 住友化学株式会社 树脂组合物、片材和多孔膜
CN102341238A (zh) * 2009-05-21 2012-02-01 旭化成电子材料株式会社 多层多孔膜
CN102471518A (zh) * 2009-08-06 2012-05-23 住友化学株式会社 多孔膜、电池用隔膜和电池
CN102516582A (zh) * 2011-12-21 2012-06-27 桂林电器科学研究院 多孔化聚酰亚胺薄膜的制造方法
US8597816B2 (en) 2007-06-19 2013-12-03 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
CN103608394A (zh) * 2011-05-04 2014-02-26 博里利斯股份公司 用于电气装置的聚合物组合物
CN104961905A (zh) * 2015-07-29 2015-10-07 深圳职业技术学院 一种高分子微纳米多孔膜及其制备方法及其应用
CN106910857A (zh) * 2015-12-22 2017-06-30 住友化学株式会社 电池用隔膜的制造方法以及电池用隔膜制造装置
WO2019210535A1 (zh) * 2018-05-04 2019-11-07 上海恩捷新材料科技股份有限公司 水处理多孔膜及其制备方法

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20015963U1 (de) * 2000-09-15 2001-10-18 Vb Autobatterie Gmbh Separator für Bleiakkumulatoren
JP5070660B2 (ja) * 2000-10-30 2012-11-14 住友化学株式会社 多孔性フィルム、電池用セパレータおよび電池
US7049361B2 (en) * 2001-03-14 2006-05-23 Sumitomo Chemical Company, Limited Polyolefin series resinfilm, composition for preparing the same, process for preparing the composition for preparing the same, and apparatus for preparing the same
JP5318307B2 (ja) 2001-03-30 2013-10-16 住友化学株式会社 ポリオレフィン系樹脂フィルム及びポリオレフィン系樹脂フィルム用組成物
JP3838492B2 (ja) 2001-12-26 2006-10-25 松下電器産業株式会社 非水電解質二次電池
US20030130932A1 (en) * 2002-01-08 2003-07-10 Wong Kwok D. Method of selling items using a computer and a communication network
US20030130911A1 (en) * 2002-01-08 2003-07-10 Wong Kwok D. Method of selling firearms using a computer and a communication network
JP4287622B2 (ja) 2002-06-28 2009-07-01 デュポン帝人アドバンスドペーパー株式会社 コーティングセパレータ、その製造方法およびそれを用いた電気電子部品
EP1464669B1 (en) * 2002-08-28 2016-11-30 Asahi Kasei Kabushiki Kaisha Polyolefin microporous membrane
KR100449765B1 (ko) * 2002-10-12 2004-09-22 삼성에스디아이 주식회사 리튬전지용 리튬메탈 애노드
EP1571175B1 (en) * 2002-11-29 2015-08-12 Zeon Corporation Process for producing polyether polymer composition, polyether polymer composition, and solid electrolyte film
EP1667252B1 (en) 2003-08-06 2011-06-22 Mitsubishi Chemical Corporation Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
EP1785451B8 (en) * 2004-08-30 2016-12-14 Asahi Kasei Kabushiki Kaisha Microporous polyolefin film and separator for storage cell
JP4384630B2 (ja) * 2004-12-23 2009-12-16 トーレ・サエハン・インコーポレーテッド 二次電池セパレータ用ポリエチレン微多孔膜及びその製造方法
WO2006068143A1 (ja) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池
WO2006106782A1 (ja) * 2005-03-31 2006-10-12 Matsushita Electric Industrial Co., Ltd. リチウム二次電池
US20090117453A1 (en) * 2005-06-24 2009-05-07 Tonen Chemical Corporation Multi-layer, microporous polyethylene membrane, and battery separator and battery using same
KR100686848B1 (ko) * 2005-10-11 2007-02-26 삼성에스디아이 주식회사 리튬 이차 전지
DE102006014691B3 (de) * 2006-03-28 2007-08-16 Vb Autobatterie Gmbh & Co. Kgaa Bleiakkumulator und Separator hierzu
JP4902455B2 (ja) 2006-08-01 2012-03-21 東レ東燃機能膜合同会社 ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
ATE533197T1 (de) 2006-09-20 2011-11-15 Asahi Kasei Chemicals Corp Mikroporöse polyolefinmembran und separator für batterie mit nichtwässrigem elektrolyt
JP5521266B2 (ja) * 2006-11-21 2014-06-11 住友化学株式会社 正極活物質用粉末および正極活物質
JP2008198506A (ja) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池
US8592089B2 (en) * 2007-05-15 2013-11-26 Amtek Research International, Llc In-situ pore generation in lead-acid battery separator using electrolyte-soluble pore former
WO2008149895A1 (ja) 2007-06-06 2008-12-11 Teijin Limited 非水系二次電池セパレータ用ポリオレフィン微多孔膜基材、その製造方法、非水系二次電池セパレータおよび非水系二次電池
JP5049680B2 (ja) 2007-07-12 2012-10-17 株式会社東芝 非水電解質電池及び電池パック
JP5347314B2 (ja) * 2007-10-30 2013-11-20 住友化学株式会社 非水電解質二次電池
KR100995074B1 (ko) * 2007-12-11 2010-11-18 삼성에스디아이 주식회사 비수계 리튬 이차전지용 세퍼레이터 및 이를 포함하는 비수계 리튬 이차전지
US8003204B2 (en) * 2007-12-26 2011-08-23 Sk Energy Co., Ltd. Microporous polyolefin multi layer film and preparing method thereof
KR101437852B1 (ko) 2007-12-26 2014-09-04 에스케이이노베이션 주식회사 다층 폴리올레핀계 미세다공막 및 그 제조방법
US10122014B2 (en) * 2008-02-04 2018-11-06 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
JP5309581B2 (ja) * 2008-02-04 2013-10-09 住友化学株式会社 正極活物質用粉末、正極活物質およびナトリウム二次電池
CN101933181A (zh) * 2008-02-04 2010-12-29 住友化学株式会社 钠二次电池
JP5361207B2 (ja) * 2008-02-20 2013-12-04 住友化学株式会社 多孔性フィルムを有するセパレータ
KR101439478B1 (ko) * 2008-05-16 2014-09-11 에스케이이노베이션 주식회사 2차 전지용 미세다공막
WO2010002012A1 (ja) * 2008-06-30 2010-01-07 住友化学株式会社 ナトリウム二次電池
JP5625390B2 (ja) 2009-03-13 2014-11-19 住友化学株式会社 複合金属酸化物、電極およびナトリウム二次電池
KR101825986B1 (ko) * 2009-03-19 2018-02-08 암테크 리서치 인터내셔널 엘엘씨 에너지 저장장치에서 사용하기 위한 자유지지 내열 미소공성 필름
KR101394622B1 (ko) 2009-04-06 2014-05-20 에스케이이노베이션 주식회사 물성과 고온 안정성이 우수한 폴리올레핀계 다층 미세다공막
KR101813295B1 (ko) 2009-11-11 2017-12-28 보레알리스 아게 중합체 조성물 및 중합체 조성물을 포함하는 전력 케이블
WO2011057928A1 (en) 2009-11-11 2011-05-19 Borealis Ag Crosslinkable polymer composition and cable with advantageous electrical properties
US9365708B2 (en) 2009-11-11 2016-06-14 Borealis Ag Cable and production process thereof
EP2499176B2 (en) 2009-11-11 2022-08-10 Borealis AG Power cable comprising a polymer composition comprising a polyolefin produced in a high pressure process
US9453805B2 (en) * 2010-01-19 2016-09-27 Celgard, Llc X-ray sensitive battery separators and related methods
KR101269207B1 (ko) 2010-01-25 2013-05-31 에스케이이노베이션 주식회사 내열성이 우수한 다층 다공막
JP5740118B2 (ja) * 2010-09-06 2015-06-24 株式会社Nttファシリティーズ 非水電解液電池
EP3591670A1 (en) 2010-11-03 2020-01-08 Borealis AG A polymer composition and a power cable comprising the polymer composition
US10304582B2 (en) 2011-05-04 2019-05-28 Borealis Ag Polymer composition for electrical devices
JP6069301B2 (ja) 2011-05-04 2017-02-01 ボレアリス エージー 電気デバイスのためのポリマー組成物
WO2013062990A2 (en) * 2011-10-28 2013-05-02 Lubrizol Advanced Materials, Inc. Polyurethane based membranes and/or separators for electrochemical cells
TWI482340B (zh) 2011-12-14 2015-04-21 Ind Tech Res Inst 鋰二次電池的電極模組
JP5585727B2 (ja) * 2012-03-12 2014-09-10 三菱レイヨン株式会社 多孔質膜の製造方法、および多孔質膜の乾燥装置
JP5708873B1 (ja) * 2013-10-28 2015-04-30 住友化学株式会社 積層多孔質フィルム、非水電解液二次電池用セパレータおよび非水電解液二次電池
KR102299957B1 (ko) * 2014-07-30 2021-09-08 에스케이이노베이션 주식회사 폴리올레핀계 다층 복합 다공막의 제조방법
JP6019205B1 (ja) 2015-11-30 2016-11-02 住友化学株式会社 非水電解液二次電池用積層セパレータ
JP6025956B1 (ja) 2015-11-30 2016-11-16 住友化学株式会社 非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池
JP6014743B1 (ja) 2015-11-30 2016-10-25 住友化学株式会社 非水電解液二次電池用セパレータおよびその利用
WO2018174871A1 (en) * 2017-03-22 2018-09-27 Daramic, Llc Improved separators, lead acid batteries, and methods and systems associated therewith
WO2019135532A1 (ko) * 2018-01-08 2019-07-11 주식회사 엘지화학 이차전지용 분리막 및 이를 적용한 전기화학소자

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472328A (en) * 1981-06-09 1984-09-18 Mitsubishi Chemical Industries, Ltd. Process for producing porous film or sheet
DE3363610D1 (en) * 1982-12-28 1986-06-26 Mitsui Petrochemical Ind Process for producing stretched articles of ultrahigh-molecular-weight polyethylene
US4726989A (en) * 1986-12-11 1988-02-23 Minnesota Mining And Manufacturing Microporous materials incorporating a nucleating agent and methods for making same
US5230843A (en) * 1987-12-21 1993-07-27 Entek Manufacturing Inc. Process of forming microporous fibers and filaments
JPH01293102A (ja) * 1988-05-23 1989-11-27 Tokuyama Soda Co Ltd 微多孔性中空糸膜及びその製造方法
US5641565A (en) * 1991-07-05 1997-06-24 Asahi Kasei Kogyo Kabushiki Kaisha Separator for a battery using an organic electrolytic solution and method for preparing the same
US5308904A (en) * 1991-07-23 1994-05-03 Mitsubishi Kasei Corporation Resin composition, porous film or sheet
DE69320927T2 (de) * 1992-12-21 1999-02-18 Mitsubishi Chem Corp Poröse(r) Film oder Folie, Batterie-Separator und Lithium-Batterie
CA2181421C (en) * 1995-07-18 2007-02-13 Tsutomu Takahashi Para-oriented aromatic polyamide porous film
JPH09104775A (ja) * 1995-10-06 1997-04-22 Tonen Chem Corp ポリオレフィン微多孔膜の製造方法
JP3444712B2 (ja) * 1996-02-16 2003-09-08 旭化成株式会社 電池セパレーターに適した微多孔膜
US5922492A (en) * 1996-06-04 1999-07-13 Tonen Chemical Corporation Microporous polyolefin battery separator
US6059860A (en) * 1996-06-21 2000-05-09 3M Innovative Properties Company Sorptive articles
US6015764A (en) * 1996-12-27 2000-01-18 Kimberly-Clark Worldwide, Inc. Microporous elastomeric film/nonwoven breathable laminate and method for making the same
US6080507A (en) * 1998-04-13 2000-06-27 Celgard Inc. Trilayer battery separator
US5992492A (en) * 1998-06-09 1999-11-30 Huang; Fu-Chuan Horizontal type thermo-shrinking film labeling machine
CN1134491C (zh) * 1999-02-19 2004-01-14 东燃化学株式会社 聚烯烃微多孔膜及其制造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212035B (zh) * 2006-12-29 2010-06-16 比亚迪股份有限公司 一种电池隔膜及其制备方法
US9029002B2 (en) 2007-06-19 2015-05-12 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
US8597816B2 (en) 2007-06-19 2013-12-03 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
CN101933179A (zh) * 2008-02-04 2010-12-29 住友化学株式会社 复合金属氧化物及钠二次电池
CN101933179B (zh) * 2008-02-04 2014-05-28 住友化学株式会社 复合金属氧化物及钠二次电池
CN102132444A (zh) * 2008-08-27 2011-07-20 住友化学株式会社 电极活性物质及其制造方法
CN102307944B (zh) * 2009-02-06 2014-07-09 住友化学株式会社 树脂组合物、片材和多孔膜
CN102307944A (zh) * 2009-02-06 2012-01-04 住友化学株式会社 树脂组合物、片材和多孔膜
CN102341238A (zh) * 2009-05-21 2012-02-01 旭化成电子材料株式会社 多层多孔膜
CN102341238B (zh) * 2009-05-21 2015-09-16 旭化成电子材料株式会社 多层多孔膜
US8900740B2 (en) 2009-05-21 2014-12-02 Asahi Kasei E-Materials Corporation Multilayer porous film
CN102471518B (zh) * 2009-08-06 2014-05-28 住友化学株式会社 多孔膜、电池用隔膜和电池
CN102471518A (zh) * 2009-08-06 2012-05-23 住友化学株式会社 多孔膜、电池用隔膜和电池
US9259900B2 (en) 2009-08-06 2016-02-16 Sumitomo Chemical Company, Limited Porous film, battery separator, and battery
CN103608394A (zh) * 2011-05-04 2014-02-26 博里利斯股份公司 用于电气装置的聚合物组合物
CN103608394B (zh) * 2011-05-04 2016-08-17 博里利斯股份公司 用于电气装置的聚合物组合物
CN102516582A (zh) * 2011-12-21 2012-06-27 桂林电器科学研究院 多孔化聚酰亚胺薄膜的制造方法
CN104961905A (zh) * 2015-07-29 2015-10-07 深圳职业技术学院 一种高分子微纳米多孔膜及其制备方法及其应用
CN106910857A (zh) * 2015-12-22 2017-06-30 住友化学株式会社 电池用隔膜的制造方法以及电池用隔膜制造装置
CN106910857B (zh) * 2015-12-22 2021-03-16 住友化学株式会社 锂离子二次电池用隔膜的制造方法以及制造装置
WO2019210535A1 (zh) * 2018-05-04 2019-11-07 上海恩捷新材料科技股份有限公司 水处理多孔膜及其制备方法

Also Published As

Publication number Publication date
KR20010112101A (ko) 2001-12-20
US20020034689A1 (en) 2002-03-21
CN100572438C (zh) 2009-12-23
CA2350379C (en) 2012-04-10
EP1168469A2 (en) 2002-01-02
TWI315591B (en) 2009-10-01
DE60128422T2 (de) 2008-01-17
DE60128422D1 (de) 2007-06-28
KR100912800B1 (ko) 2009-08-19
US20060055075A1 (en) 2006-03-16
EP1168469B1 (en) 2007-05-16
EP1168469A3 (en) 2003-08-06
CN1840575A (zh) 2006-10-04
CA2350379A1 (en) 2001-12-14

Similar Documents

Publication Publication Date Title
CN1331496A (zh) 多孔膜和使用多孔膜的电池隔板
JP5140896B2 (ja) 多孔質フィルムおよびそれを用いた電池用セパレータ
CN1222058C (zh) 用于电化学反应装置的固体电解质复合物
JP5286817B2 (ja) セパレータ
JP5493301B2 (ja) ナトリウム二次電池
CN1217432C (zh) 用于无水电解质二次电池的隔膜和无水电解质二次电池
JP5158027B2 (ja) ナトリウム二次電池
CN102307944B (zh) 树脂组合物、片材和多孔膜
US6143216A (en) Batteries with porous components
CN101031421A (zh) 聚烯烃微孔膜
CN1388993A (zh) 多组分复合膜及其制备方法
CN102471518A (zh) 多孔膜、电池用隔膜和电池
JP2010113804A (ja) 非水電解液二次電池
KR20180102408A (ko) 다공성 필름, 이를 포함하는 분리막 및 전기 화학 전지
KR102350556B1 (ko) 비수 전해액 이차 전지용 절연성 다공질층
KR20170029399A (ko) 다공성 필름의 제조 방법, 이로 제조된 다공성 필름, 및 이를 포함한 분리막 또는 전기화학 전지
JP2009211947A (ja) 電池セパレータ用多孔質フィルム及び該フィルムを備える電池
KR102350559B1 (ko) 비수 전해액 이차 전지용 절연성 다공질층
JP2010262785A (ja) 非水電解液電池用セパレータ及び非水電解液電池
WO2022163714A1 (ja) 蓄電デバイス用セパレータ、及びこれを含む蓄電デバイス
JP2019079809A (ja) 非水電解液二次電池用多孔質層
KR102587283B1 (ko) 다공성 필름의 제조 방법, 이로 제조된 다공성 필름, 및 이를 포함하는 이차전지 분리막 또는 이차전지
KR20230131145A (ko) 비수전해액 이차 전지용 세퍼레이터, 비수전해액 이차 전지용 부재, 비수전해액 이차 전지
JP2023129131A (ja) 非水電解液二次電池用セパレータ、非水電解液二次電池用部材、非水電解液二次電池
KR20230131146A (ko) 비수전해액 이차 전지용 세퍼레이터, 비수전해액 이차 전지용 부재, 비수전해액 이차 전지

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication