CN116217228A - 一种钙钛矿型材料Sr6-2xNb2+2xO11+3x的制备方法 - Google Patents

一种钙钛矿型材料Sr6-2xNb2+2xO11+3x的制备方法 Download PDF

Info

Publication number
CN116217228A
CN116217228A CN202310164387.3A CN202310164387A CN116217228A CN 116217228 A CN116217228 A CN 116217228A CN 202310164387 A CN202310164387 A CN 202310164387A CN 116217228 A CN116217228 A CN 116217228A
Authority
CN
China
Prior art keywords
powder
namely
grinding
hours
presintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310164387.3A
Other languages
English (en)
Inventor
李同同
徐军古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN202310164387.3A priority Critical patent/CN116217228A/zh
Publication of CN116217228A publication Critical patent/CN116217228A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种钙钛矿Sr6‑2xNb2+2xO11+3x材料的制备方法。(1)将纯度均为99.9%(重量百分比)以上的SrCO3、Nb2O5粉末按Sr6‑2xNb2+2xO11+3x(0.103≤x≤0.333)的计量比组成称量配料;(2)将步骤1原料放入玛瑙研钵中加无水乙醇研磨,制得混合粉末;在60℃的干燥箱中干燥12小时;(3)预烧结,将步骤2制得的粉末在1000℃下预烧6小时后,对其进行二次研磨;(4)造粒及压片,将步骤3处理后的粉体加入3到4滴的聚乙烯醇水溶液,造粒,过80~120目筛,用粉末压片机压制成圆柱状坯件;(5)烧结,将压完片后的样品升温至1350℃,煅烧10小时,保温结束后让其自然冷却。本发明制备的陶瓷制备工艺简单,有良好的电导率、化学稳定性好,在燃料电池领域有着极大的应用前景。

Description

一种钙钛矿型材料Sr6-2xNb2+2xO11+3x的制备方法
技术领域
发明属于无机材料与固体化学领域,具体涉及一种钙钛矿材料Sr6-2xNb2+2xO11+3x的制备方法。
背景技术
由于日益增长的能源需求和环境的恶化,发展更清洁、更高效、可持续的能源,以应对全球变暖的环境威胁和矿物燃料储备的有限性,是世界面临的一项重大挑战。目前,正在开发的比较有前途的能源转换和存储装置主要是燃料电池和锂离子电池,这些能源***的性能取决于其组成材料的性质,因此材料的创新与发展至关重要。固体氧化物燃料电池(SOFC)主要由离子导体电解质和发生电化学反应的两个电极(负极和正极)组成,开发中低温度离子导体电解质材料,并且提高其材料的化学稳定性,降低成本,提高耐用性。因此对材料的开发和选择仍是燃料电池得以广泛应用的关键所在。
对于具有ABO3-y型的缺氧型钙钛矿材料因其在固体氧化物燃料电池领域的潜在应用而受到广泛关注。铌酸锶基化合物在高温下主要是氧离子导电,在湿空气低温下是质子导电。基于此,本申请提出一种钙钛矿材料Sr6-2xNb2+2xO11+3x的制备方法。
发明内容
本发明的所要解决的技术问题是提供一种良好的导电性能的铌酸锶基钙钛矿材料,以及该陶瓷材料的制备方法。
制备的陶瓷材料的组成通式为Sr6-2xNb2+2xO11+3x,x的取值为(0.103≤x≤0.333)。
上述陶瓷材料的制备方法如下:
(1)称量,将SrCO3、Nb2O5粉末按照化学方程式严格计算配比,精准称量后,一般地,按制得约6g产物准备。
(2)混料,将原料混合均匀,放入玛瑙研钵中研磨,加入无水乙醇晾干后,加入少量粘结剂,使其充分混合、粉体细化,制得混合粉末。
(3)烘干,混合均匀过的样品放置在60℃或80℃的干燥箱中干燥12小时;
(4)预烧结,将干燥好的混合粉体置于氧化锆坩埚内,用玛瑙棒压实,使其致密化,加盖,在1000℃预烧6小时,自然冷却至室温后,得到预烧粉;
(5)二次研磨,将预烧粉放入玛瑙研钵,少量多次加入无水乙醇湿磨,使混料均匀;
(6)造粒及压片,对经过步骤(5)处理后的粉体加入质量分数为5%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的40%~50%,造粒,过80~120目筛,用粉末压片机压制成圆柱状坯件;
(7)烧结,将步骤(6)压完片后的样品加热升温至1350℃,煅烧10小时,待其保温结束后直接在空气中冷却使其快速降温,即得到锶酸铌基材料。
本发明制备的钙钛矿材料制备方法简单,而且纯度高、化学稳定性好,具有良好的导电性能,其是一种性能优良的陶瓷材料。
附图说明
图1是实施例1制备的Sr6-2xNb2+2xO11+3x(x=0.103)在干、湿气氛下的总电导率图。
图2是实施例2制备的Sr6-2xNb2+2xO11+3x(x=0.185)在干、湿气氛下的总电导率图。
图3是实施例3制备的Sr6-2xNb2+2xO11+3x(x=0.28)在干、湿气氛下的总电导率图。
图4是实施例4制备的Sr6-2xNb2+2xO11+3x(x=0.333)在干、湿气氛下的总电导率图。
图5是干燥气氛下的Sr6-2xNb2+2xO11+3x总电导率图。
图6是湿润气氛下的Sr6-2xNb2+2xO11+3x总电导率图。
图7是实施例1制备的Sr6-2xNb2+2xO11+3x(x=0.103)陶瓷材料在干燥氩气、湿润氩气气氛下550℃的复阻抗图。
图8是实施例1制备的Sr6-2xNb2+2xO11+3x(x=0.103)陶瓷材料在湿润氩气气氛下700℃的复阻抗图。
图9是实施例1制备的Sr6-2xNb2+2xO11+3x(x=0.103)陶瓷材料的XRD图。
具体实施方式
下面以具体实施例的方式做详细说明,实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:
本实施例1设计生成6g的目标产物Sr6-2xNb2+2xO11+3x(x=0.103)材料。首先称量纯度为99.99%的SrCO3 5.7435g、99.99%的Nb2O5 1.9686g 原料粉末。将两者混合均匀,放入玛瑙研钵中研磨,加入无水乙醇晾干后,加入少量粘结剂,使其充分混合、粉体细化,制得混合粉末。将混料均匀过的样品放置在60℃或80℃的干燥箱中干燥12小时;然后将干燥好的混合粉体置于氧化锆坩埚内,玛瑙棒压实,使其致密化,加盖,在1000℃预烧6小时,自然冷却至室温后,得到预烧粉;将预烧粉放入玛瑙研钵,少量多次加入无水乙醇湿磨,使混料均匀;加入质量分数为5%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的40%~50%,造粒,过80~120目筛,用粉末压片机压制成圆柱状坯件;将圆柱状样品加热升温至1350℃,煅烧10小时,待其保温结束后直接在空气中冷却使其快速降温,即得到Sr5.794Nb2.206O11.309陶瓷材料。对烧结后的陶瓷选取其中一个样品研磨成粉末,采用Panalytical X 'pert Pro X射线衍射仪进行XRD测试表征。对烧结完的陶瓷样品选取一个样品表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至1mm厚,用酒精擦拭干净。对抛光后的陶瓷片上下表面涂覆厚度为0 .02mm的银浆,置于电阻炉中750℃保温60分钟,来去除有机物,用于接下来的阻抗测试。利用Solartron 1260/1287以及Bio-Logic VSP仪器进行电化学阻抗(EIS)测试,测试频率在107 ~ 10-1 Hz或106~ 10-1Hz之间。测试温度范围在400℃ ~ 800℃之间,每50℃测试一次,进行阻抗测试之前,在每个温度下保温30分钟,以保持温度稳定。
图1给出的是x=0.103时的陶瓷材料在干燥、湿润环境下的总电导率对比图。图7是实施案例1制备的Sr6-2xNb2+2xO11+3x(x=0.103)陶瓷材料在干燥氩气、湿润氩气气氛下550℃的复阻抗图。图8是实施案例1制备的Sr6-2xNb2+2xO11+3x(x=0.103)陶瓷材料在湿润氩气气氛下700℃的复阻抗图。图9是实施案例1制备的Sr6-2xNb2+2xO11+3x(x=0.103)陶瓷材料的XRD谱图。
实施例2:
本实施例的配料中,本实施例2设计生成6g的目标产物Sr6-2xNb2+2xO11+3x(x=0.185)材料。首先称量纯度为99.99%的SrCO3 5.5511g、99.99%的Nb2O5 2.10373g原料粉末。其他步骤与实施例1相同,制备成Sr5.63Nb2.37O11.555 陶瓷材料。图2给出的x=0.185时的陶瓷材料在干燥、湿润环境下的总电导率对比图。
实施例3:
本实施例的配料中,本实施例3设计生成6g的目标产物Sr6-2xNb2+2xO11+3x(x=0.28)材料。首先称量纯度为99.99%的SrCO3 5.33075g、99.99%的Nb2O5 2.25839g原料粉末。其他步骤与实施例1相同,制备成Sr5.44Nb2.56O11.84 陶瓷材料。图3给出的x=0.28时的陶瓷材料在干燥、湿润环境下的总电导率对比图。
实施例4:
本实施例的配料中,本实施例4设计生成6g的目标产物Sr6-2xNb2+2xO11+3x(x=0.333)材料。首先称量纯度为99.99%的SrCO3 5.20899 g、99.99%的Nb2O5 2.34385g原料粉末。其他步骤与实施例1相同,制备成Sr5.334Nb2.666O11.999 陶瓷材料。图4给出的x=0.333时的在干燥、湿润环境下的总电导率对比图。

Claims (6)

1.一种钙钛矿材料Sr6-2xNb2+2xO11+3x的制备方法,具体步骤为:
(1)称量,将SrCO3、Nb2O5粉末按照化学方程式严格计算配比,精准称量后,一般地,按制得约6g产物准备;
(2)混料,将原料混合均匀,放入玛瑙研钵中研磨,加入无水乙醇晾干后,加入少量粘结剂,使其充分混合、粉体细化,制得混合粉末;
(3)烘干,将混合均匀好的样品放置在60℃或80℃的干燥箱中干燥12小时;
(4)预烧结,将干燥好的混合粉体置于氧化锆坩埚内,玛瑙棒压实,使其致密化,加盖,在1000℃预烧6小时,自然冷却至室温后,得到预烧粉;
(5)二次研磨,将预烧粉放入玛瑙研钵,少量多次加入无水乙醇湿磨,使混料均匀;
(6)造粒及压片,对经过步骤(5)处理后的粉体加入质量分数为5%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的40%~50%,造粒,过80~120目筛,用粉末压片机压制成圆柱状坯件;
(7)烧结,将步骤(6)压完片后的样品加热升温至1350℃,煅烧10小时,待其保温结束后直接在空气中冷却使其快速降温,即得到该材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述的研磨具体操作是将称好的样品倒入玛瑙研钵中,加入无水乙醇,加入量以刚好没过粉体为宜;手动研磨至研钵内乙醇挥发完全;重复上述操作三次,使其混合均匀。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述的粘结剂采用质量浓度为 5% 的聚乙烯醇溶液,聚乙烯醇的添加量占粉末总质量的 3%。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述的研磨时间为30~40min。
5.根据权利要求1所述的制备方法,其特征在于,步骤(5)所述升温为均匀升温。
6.根据权利要求1所述的制备方法,其特征在于,步骤(6)所述升温的升温速率为5℃/min。
CN202310164387.3A 2023-02-25 2023-02-25 一种钙钛矿型材料Sr6-2xNb2+2xO11+3x的制备方法 Pending CN116217228A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310164387.3A CN116217228A (zh) 2023-02-25 2023-02-25 一种钙钛矿型材料Sr6-2xNb2+2xO11+3x的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310164387.3A CN116217228A (zh) 2023-02-25 2023-02-25 一种钙钛矿型材料Sr6-2xNb2+2xO11+3x的制备方法

Publications (1)

Publication Number Publication Date
CN116217228A true CN116217228A (zh) 2023-06-06

Family

ID=86572734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310164387.3A Pending CN116217228A (zh) 2023-02-25 2023-02-25 一种钙钛矿型材料Sr6-2xNb2+2xO11+3x的制备方法

Country Status (1)

Country Link
CN (1) CN116217228A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105819856A (zh) * 2016-03-14 2016-08-03 陕西师范大学 铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法
CN106910926A (zh) * 2017-04-07 2017-06-30 桂林理工大学 一种固体电解质材料及其制备方法
CN106966723A (zh) * 2017-04-07 2017-07-21 桂林理工大学 铌酸盐快离子导体及其制备方法
CN110511026A (zh) * 2019-07-24 2019-11-29 桂林理工大学 一种x8r型陶瓷电容器介质材料及其制备方法
CN111302798A (zh) * 2020-02-25 2020-06-19 西安工业大学 一种氧化镧掺杂改性的铌酸钾钠基透明陶瓷及其制备方法
US20230033147A1 (en) * 2021-07-28 2023-02-02 University Of South Carolina Bilayer ceramic interconnect

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105819856A (zh) * 2016-03-14 2016-08-03 陕西师范大学 铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法
CN106910926A (zh) * 2017-04-07 2017-06-30 桂林理工大学 一种固体电解质材料及其制备方法
CN106966723A (zh) * 2017-04-07 2017-07-21 桂林理工大学 铌酸盐快离子导体及其制备方法
CN110511026A (zh) * 2019-07-24 2019-11-29 桂林理工大学 一种x8r型陶瓷电容器介质材料及其制备方法
CN111302798A (zh) * 2020-02-25 2020-06-19 西安工业大学 一种氧化镧掺杂改性的铌酸钾钠基透明陶瓷及其制备方法
US20230033147A1 (en) * 2021-07-28 2023-02-02 University Of South Carolina Bilayer ceramic interconnect

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAN-RONG LI ET AL.: "Interstitial Oxygen in Perovskite-Related Sr6–2xNb2+2xO11+3x", 《CHEM. MATER.》, vol. 20, no. 8, pages 2737 *

Similar Documents

Publication Publication Date Title
Pang et al. Systematic evaluation of cobalt-free Ln0. 5Sr0· 5Fe0· 8Cu0· 2O3− δ (Ln= La, Pr, and Nd) as cathode materials for intermediate-temperature solid oxide fuel cells
CN100511788C (zh) 一种固体氧化物燃料电池复合阴极及其制备方法
CN110165236A (zh) 一种双层氧化物固态电解质的制备方法及其应用
CN110165292B (zh) 一种改性nasicon型固态电解质片及其制备方法
CN108649236A (zh) 一种中低温固体氧化物燃料电池的空气极材料及制备方法
CN103208634A (zh) 用于中低温质子传输固体氧化物燃料电池的复合阴极材料
KR101892909B1 (ko) 프로톤 전도성 산화물 연료전지의 제조방법
CN104409742A (zh) 一种BaCoO3-δ基B位Bi2O3和Nb2O5共掺杂的固体氧化物燃料电池阴极材料及其制备方法与应用
CN100583516C (zh) 一种a、b位共掺杂钛酸锶固体氧化物燃料电池阳极材料
CN103121834A (zh) 一种β”-氧化铝固体电解质陶瓷及其制备方法
CN112573574A (zh) 一种通过调控锂空位含量制备石榴石型固态电解质的方法
CN111584882B (zh) 一种新型结构的固体氧化物燃料电池及其制备方法
WO2024000951A1 (zh) 一种质子陶瓷燃料电池阴极材料及其制法与应用
CN101222060A (zh) 一种中低温固体氧化物燃料电池阴极材料
CN115196960B (zh) 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法
CN106887626A (zh) 中温固体氧化物燃料电池复合电解质及其制备方法
CN111403752A (zh) 一种低温固体氧化物燃料电池复合阴极材料及其单体燃料电池的制备方法
CN106159288B (zh) 一种抗积碳的Ni基阳极材料、制备方法和用途
CN116217228A (zh) 一种钙钛矿型材料Sr6-2xNb2+2xO11+3x的制备方法
CN116639727A (zh) 一种改性钒酸铋基氧离子导体材料及其制备方法
CN101794885A (zh) 钙铁石结构中温固体氧化物燃料电池阴极材料
CN108598540A (zh) 固体氧化物燃料电池及其制备方法
CN108695533A (zh) 一种有机无机复合电解质及其制备方法
JP2002053374A (ja) 固体電解質型燃料電池の空気極用及び集電体原料用複合酸化物、その製造方法、並びに固体電解質型燃料電池
CN101944617B (zh) 中温固体氧化物燃料电池复合阴极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination