CN115196960B - 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法 - Google Patents

一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN115196960B
CN115196960B CN202210745912.6A CN202210745912A CN115196960B CN 115196960 B CN115196960 B CN 115196960B CN 202210745912 A CN202210745912 A CN 202210745912A CN 115196960 B CN115196960 B CN 115196960B
Authority
CN
China
Prior art keywords
energy storage
ceramic material
density
ferroelectric ceramic
titanate based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210745912.6A
Other languages
English (en)
Other versions
CN115196960A (zh
Inventor
刘辉
孙正
罗华杰
陈骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202210745912.6A priority Critical patent/CN115196960B/zh
Publication of CN115196960A publication Critical patent/CN115196960A/zh
Application granted granted Critical
Publication of CN115196960B publication Critical patent/CN115196960B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种兼具高储能密度、高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法,属于电介质储能陶瓷材料技术领域;其化学组成为0.5(Bi0.5Na0.5)TiO3‑(0.5‑x)BaTiO3‑xBaHfO3(0.04≤x≤0.12)。方法包括:以BNT为基体,通过掺杂引入BT和BH合成三元固溶体,然后采用固相反应法合成。本发明所制得的钛酸铋钠基弛豫铁电陶瓷材料的最大击穿场强达到800kV/cm,储能密度能够达到12.7J/cm3,储能效率稳定在84%以上,且在700kV/cm的电场下,储能密度达到89%。此外,其制备工艺简单,成本低廉,对环境友好,可以实现大规模生产。

Description

一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛 豫铁电陶瓷材料及其制备方法
技术领域
本发明属于电介质储能陶瓷材料领域,具体涉及一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法。
背景技术
近年来,储能陶瓷以功率密度高、温度稳定性好等优点在脉冲功率等领域发挥着越来越重要的作用,其中,铅基电容器以其极高的击穿场强和储能密度而成为过去该研究领域的热点,但是随着环境污染等问题日益严重,发展无铅陶瓷电容器已成为必然趋势。目前,无铅储能陶瓷发展的最大制约因素是击穿场强小、储能密度低,难以顺应当前元器件小型化、集成化的发展趋势。
在无铅储能陶瓷中,钛酸铋钠体系因具有较高自发极化强度而受到广泛关注。但其剩余极化强度大,击穿场强低,导致储能效率和储能密度低,制约了它的应用范围。针对于此,现阶段主要通过掺杂等方式合成钛酸铋钠固溶体,提高其储能密度及储能效率,从而使其能更好地满足实际应用的需求。
发明内容
本发明要解决的技术问题是提供一种钛酸铋钠基弛豫铁电陶瓷材料及其制备方法,其兼具高储能密度、高功率密度和高效率。
为解决上述技术问题,本发明提供如下技术方案:
第一方面,提供一种兼具高储能密度、高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料,其化学组成为0.5(Bi0.5Na0.5)TiO3-(0.5-x)BaTiO3-xBaHfO3(0.04≤x≤0.12)。
优选地,0.06≤x≤0.10,x具体例如可以为0.06、0.07、0.08、0.09、0.10。
更优选地,x=0.08。
在上述优选x方案下,其储能密度能够达到12.7J/cm3,储能效率能够达到89%,且最大击穿场强可以达到800kV/cm。这主要是因为通过BaTiO3(BT) 和BaHfO3(BH)的掺杂,使(Bi0.5Na0.5)TiO3(BNT)实现了室温下由铁电体向弛豫铁电体的转变,电畴由宏观尺度变为纳米尺度,剩余极化减小,提高了储能效率。且该组分的晶粒尺度较小,致密度较高,使其具有更高的击穿场强。
第二方面,提供第一方面所述的钛酸铋钠基弛豫铁电陶瓷材料的制备方法,包括:以BNT为基体,通过掺杂引入BT和BH合成三元固溶体,然后采用固相反应法合成。
其中,优选地,具体采用以下步骤:
S1、按照0.5(Bi0.5Na0.5)TiO3-(0.5-x)BaTiO3-xBaHfO3化学计量比称取Bi2O3、Na2CO3、BaCO3、TiO2、HfO2,与乙醇混合进行球磨,然后进行烘干、研磨、一次煅烧以及冷却;
S2、将S1煅烧后得到的样品滴加粘结剂进行造粒、压片,然后烧结;
S3、将S2烧结得到的陶瓷片进行打磨,并在上下表面涂覆银浆,然后进
行二次煅烧,冷却后即可得到一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料。
其中,优选地,S1中所述球磨的时间为12-24h。
S1中所述乙醇的用量可以根据所采用容器的体积和研磨均匀情况进行自由选择,只要利于研磨均匀即可,且乙醇在后续处理过程中也会逐渐蒸发掉。
其中,优选地,S1中所述一次煅烧的条件包括:温度为600~900℃,时间为1-3h。
其中,优选地,S2中所述粘结剂为PVA和PVB中的一种。
优选地,所述粘结剂与S1煅烧后得到的样品的用量质量比为1:5-15。
其中,优选地,S2中所述烧结的条件包括:温度为1100~1300℃,时间为1-3h。
其中,优选地,S3中所述二次煅烧的条件包括:温度为500~800℃,时间为0.5-3h。
本发明的上述技术方案的有益效果如下:
本发明通过掺杂引入BaTiO3(BT)和BaHfO3(BH)合成钛酸铋钠基三元固溶体,提供了一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料,即0.5(Bi0.5Na0.5)TiO3-(0.5-x)BaTiO3-xBaHfO3(BNT-BT-BH)弛豫铁电陶瓷,其储能密度可以达到12.7J/cm3,储能效率可以达到89%,最大击穿场强能够达到800kV/cm,超过了报道的绝大多数储能陶瓷的性能,可广泛的应用于移动通信、医疗卫生、国防军事等脉冲功率电子***。该材料成本低廉,制备方法简单,对环境友好,使用寿命长,可大规模生产,有利于促进其相关应用,有望替代其他的储能陶瓷。
附图说明
图1为实施例1制得的钛酸铋钠基弛豫铁电陶瓷的SEM图片;
图2为实施例1制得的钛酸铋钠基弛豫铁电陶瓷的电滞回线;
图3为实施例1制得的钛酸铋钠基弛豫铁电陶瓷的储能特性随电场强度的变化曲线。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
实施例1:
利用本发明制备0.5(Bi0.5Na0.5)TiO3-0.42BaTiO3-0.08BaHfO3。按照化学剂量比称取2.9123克Bi2O3,0.6624克Na2CO3,4.9335克BaCO3,3.6740克TiO2, 0.8420克HfO2并倒入球磨罐中,加入乙醇球磨24h。将球磨后的样品依次进行烘干、研磨处理,然后放入马弗炉中设置温度为850℃煅烧2h。冷却后,将样品倒入研钵中,滴加适量PVA粘结剂(粘结剂与样品的用量质量比为1:10) 研磨1h,研磨均匀,倒入
Figure SMS_1
的模具中,压制成片,然后放入马弗炉中设置温度为1150℃烧结2h。冷却后将陶瓷片厚度打磨至50μm,在其上下表面涂覆银浆,然后在550℃煅烧1h。冷却后即可得到一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料。
图1为本实施例制得的钛酸铋钠基弛豫铁电陶瓷的SEM图片,从图中可以看出,该陶瓷晶粒尺寸在1μm左右,且致密度较高,这决定了本材料具有较高的击穿场强,进而使其有较大的储能密度。
图2为本实施例制得的钛酸铋钠基弛豫铁电陶瓷室温下的单极电滞回线,从图中可以看出,该陶瓷电滞回线细长,且最大电场强度可以达到800kV/cm。
图3为本实施例制得的钛酸铋钠基弛豫铁电陶瓷储能特性随电场强度的变化曲线,从图中可以看出,该陶瓷储能密度在800kV/cm的电场中可以达到 12.7J/cm3;储能效率可以稳定在84%以上,且在700kV/cm的电场下,储能效率最大可以达到89%,此数据已经超过了之前所报道的绝大部分储能陶瓷材料。
实施例2:
利用本发明制备0.5(Bi0.5Na0.5)TiO3-0.40BaTiO3-0.10BaHfO3。按照化学剂量比称取2.9123克Bi2O3,0.6624克Na2CO3,4.9335克BaCO3,3.5942克TiO2, 1.0525克HfO2并倒入球磨罐中,加入乙醇球磨24h。将球磨后的样品依次进行烘干、研磨处理,然后放入马弗炉中设置温度为850℃煅烧2h。冷却后,将样品倒入研钵中,滴加适量PVA粘结剂(粘结剂与样品的用量质量比为1:10) 研磨1h,研磨均匀,倒入
Figure SMS_2
的模具中,压制成片,然后放入马弗炉中设置温度为1150℃烧结2h。冷却后将陶瓷片厚度打磨至50μm,在其上下表面涂覆银浆,然后在550℃煅烧1h。冷却后即可得到一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料。
实施例3:
利用本发明制备0.5(Bi0.5Na0.5)TiO3-0.38BaTiO3-0.12BaHfO3。按照化学剂量比称取2.9123克Bi2O3,0.6624克Na2CO3,4.9335克BaCO3,3.5143克TiO2, 1.2629克HfO2并倒入球磨罐中,加入乙醇球磨24h。将球磨后的样品依次进行烘干、研磨处理,然后放入马弗炉中设置温度为850℃煅烧2h。冷却后,将样品倒入研钵中,滴加适量PVA粘结剂(粘结剂与样品的用量质量比为1:10) 研磨1h,研磨均匀,倒入
Figure SMS_3
的模具中,压制成片,然后放入马弗炉中设置温度为1150℃烧结2h。冷却后将陶瓷片厚度打磨至50μm,在其上下表面涂覆银浆,然后在550℃煅烧1h。冷却后即可得到一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (1)

1.一种兼具高储能密度、高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料,其特征在于,其化学组成为0.5(Bi0.5Na0.5)TiO3-0.42BaTiO3-0.08BaHfO3,其制备步骤为:
按照化学剂量比称取2.9123克Bi2O3,0.6624克Na2CO3,4.9335克BaCO3,3.6740克TiO2,0.8420克HfO2并倒入球磨罐中,加入乙醇球磨24h,将球磨后的样品依次进行烘干、研磨处理,然后放入马弗炉中设置温度为850℃煅烧2h,冷却后,将样品倒入研钵中,滴加适量PVA粘结剂研磨1h,粘结剂与样品的用量质量比为1:10,研磨均匀,倒入
Figure FDA0004191655190000011
的模具中,压制成片,然后放入马弗炉中设置温度为1150℃烧结2h,冷却后将陶瓷片厚度打磨至50μm,在其上下表面涂覆银浆,然后在550℃煅烧1h,冷却后即可得到一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料。/>
CN202210745912.6A 2022-06-29 2022-06-29 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法 Active CN115196960B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210745912.6A CN115196960B (zh) 2022-06-29 2022-06-29 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210745912.6A CN115196960B (zh) 2022-06-29 2022-06-29 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115196960A CN115196960A (zh) 2022-10-18
CN115196960B true CN115196960B (zh) 2023-05-26

Family

ID=83578870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210745912.6A Active CN115196960B (zh) 2022-06-29 2022-06-29 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115196960B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116444265B (zh) * 2023-04-18 2024-04-16 北京科技大学 一种具有优异储能性能及环境稳定性的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150126A (ja) * 2008-11-18 2010-07-08 Ngk Insulators Ltd 圧電/電歪セラミックス組成物、圧電/電歪セラミックスの焼結体、圧電/電歪素子、圧電/電歪セラミックス組成物の製造方法及び圧電/電歪素子の製造方法
CN106187168A (zh) * 2016-07-13 2016-12-07 西安电子科技大学 一种低损耗高储能密度钛酸铋钠基陶瓷的制备方法
CN109516800B (zh) * 2018-12-14 2021-04-27 陕西科技大学 一种高储能性能介质陶瓷、制备方法及其应用
CN109942292B (zh) * 2019-04-12 2021-09-07 中南大学 一种钛酸铋钠基透明陶瓷材料及其制备方法和应用
CN110451955B (zh) * 2019-08-14 2022-02-08 清华大学 钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法

Also Published As

Publication number Publication date
CN115196960A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
CN112174664A (zh) 一种新型高储能、高效率的铌酸钠基陶瓷材料及其制备方法
CN111978082B (zh) 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN110540423A (zh) 钛酸铋钠基高储能密度和功率密度陶瓷及制备方法和应用
CN112919903B (zh) 高效电容器用钛酸锶铋基无铅陶瓷材料及其制备方法
CN113582667B (zh) 一种可低温共烧的高储能反铁电陶瓷材料及其制备方法和应用
CN112919907B (zh) 一种储能效率加强高储能无铅铁电陶瓷材料及其制备方法
CN115196960B (zh) 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法
CN111704463B (zh) 电介质陶瓷材料及其制备方法
CN102674832A (zh) 一种钛酸钡基无铅含铋弛豫铁电陶瓷材料及制备方法
CN115448716A (zh) 一种钛酸钡基储能陶瓷材料及其制备方法
CN111170735B (zh) 一种高电能存储效率的陶瓷材料及其制备方法
CN114031396B (zh) 一种有效降低反铁电陶瓷材料烧结温度的制备方法
CN114716248A (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
CN106064942A (zh) 高居里温度无铅snkbt压电陶瓷及其制备方法
CN113929458A (zh) 一种高效高储能铌酸钠基陶瓷材料及其制备方法
CN111217604B (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷的制备方法
CN115368132B (zh) 一种钛酸钡基陶瓷材料及制备方法
CN109251029B (zh) 一种温度稳定型微波介质陶瓷材料及其制备方法
CN112979306B (zh) 一种制备铁电储能陶瓷的方法
CN114671681B (zh) 一种兼具高储能密度,高功率密度和高效率的钛酸钡基弛豫铁电陶瓷材料及其制备方法
CN116444264B (zh) 一种具有优异储能性能及环境稳定性的钛酸铋钾钠基弛豫铁电陶瓷材料及其制备方法
CN109516800B (zh) 一种高储能性能介质陶瓷、制备方法及其应用
CN116444265B (zh) 一种具有优异储能性能及环境稳定性的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法
CN115010493B (zh) 一种高熵焦绿石介电陶瓷材料及其制备方法与应用
CN112028624B (zh) 一种bnt基储能陶瓷材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant