CN114956826A - 一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法 - Google Patents

一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法 Download PDF

Info

Publication number
CN114956826A
CN114956826A CN202210748957.9A CN202210748957A CN114956826A CN 114956826 A CN114956826 A CN 114956826A CN 202210748957 A CN202210748957 A CN 202210748957A CN 114956826 A CN114956826 A CN 114956826A
Authority
CN
China
Prior art keywords
powder
tinbcrwta
entropy
ceramic
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210748957.9A
Other languages
English (en)
Other versions
CN114956826B (zh
Inventor
战再吉
董梦昆
曹海要
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN202210748957.9A priority Critical patent/CN114956826B/zh
Publication of CN114956826A publication Critical patent/CN114956826A/zh
Application granted granted Critical
Publication of CN114956826B publication Critical patent/CN114956826B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法,属于高熵碳化物陶瓷技术领域,所述高熵陶瓷为单相面心立方结构的陶瓷;所述制备方法包括:S1:将一种金属和四种碳化物原料粉末混合均匀,得到混合粉末A;S2:将混合粉末A放入导热性能良好的石墨模具中进行固相反应烧结,得到高熵陶瓷(TiNbCrWTa)Cx。本发明选用Ti粉和Cr3C2粉相结合,既降低了烧结过程的烧结温度,又保证了高熵碳化物的碳源来源,还有利于各元素的扩散,使最终产物有着较高的致密度和均匀性,最终形成具有单相的固溶体,制备的高熵陶瓷具有优异的机械、物理和化学性能。

Description

一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法
技术领域
本发明涉及一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法,属于高熵碳化物陶瓷技术领域。
背景技术
与金属材料相比,陶瓷材料因优异的机械、物理和化学性能,例如力学性能上的高硬度、强度和耐磨性,化学性能上的高温稳定性、低的导热率和导电性而引起了广泛的研究兴趣。过渡金属碳化物是一类具有高熔点和优异的力学性能的化合物材料,这类材料在机械、航空和冶金等方面具有广泛的应用。“高熵”概念的出现提供了新的材料设计理论,成为材料研究领域的热点之一,随着高熵合金十几年的深入发展,“高熵”的概念开始扩展到过渡金属碳化物领域。
在现有技术中,根据使用原材料的类别,高熵碳化物块体的制备方法分为以金属碳化物为原料的碳化物加工法、以金属氧化物和石墨为原料进行碳热还原反应的氧化工艺、以金属粉末和石墨为原料的元素法。但研究表明碳化物加工法所需温度较高,且最终产物的相对密度较低;采用碳热还原制备的高熵碳化物由于碳粉的不规则形貌使其不易分散,进而影响均匀性和致密性,且容易残留氧元素;采用元素法制备由于金属粉末和碳粉粒径差异较大,导致元素分布不均匀,因而会影响产物的均匀性。对高熵碳化物烧结工艺和结构性能的影响主要是碳源,因此需要从原料粉末的碳源入手,进一步改进高熵碳化物陶瓷的制备工艺。
发明内容
本发明的目的是提供一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法,选用Ti粉和Cr3C2粉相结合,既能够降低烧结过程的烧结温度,又能够保证高熵碳化物的碳源来源,制备的高熵陶瓷具有优异的机械、物理和化学性能。
为了实现上述目的,本发明采用的技术方案是:
一种(TiNbCrWTa)Cx高熵陶瓷,所述高熵陶瓷为单相面心立方结构的陶瓷,包括以下原子比的单质和碳化物:23%的Ti,23%的NbC,23%的WC,23%的TaC,其余为Cr3C2
一种(TiNbCrWTa)Cx高熵陶瓷的制备方法,包括以下步骤:
S1:将一种金属和四种碳化物原料粉末混合均匀,得到混合粉末A;
S2:通过真空热压烧结技术,将混合粉末A放入导热性能良好的石墨模具中进行固相反应烧结,得到高熵陶瓷(TiNbCrWTa)Cx
本发明技术方案的进一步改进在于:所述原料粉末分别为Ti粉、NbC粉、Cr3C2粉、WC粉和TaC粉,各粉末纯度均高于99.5%。
本发明技术方案的进一步改进在于:所述原料粉末按金属等原子配比,各原料粉末的比例为Ti:NbC:Cr3C2:WC:TaC=3:3:1:3:3。
本发明技术方案的进一步改进在于:所述步骤S1的具体步骤为:
S11:将各原料粉末按照等金属原子比进行称量;
S12:把S11称量的原料粉末装入玛瑙球磨罐中,球粉比为6:1,采用真空硅脂密封球磨罐,并向球磨罐中充入氩气;
S13:采用行星式球磨机进行球磨,转速为200r/min,球磨时间10h。
本发明技术方案的进一步改进在于:所述Ti粉的粒度为45μm,NbC粉的粒度为4μm,Cr3C2粉的粒度为1μm,WC粉的粒度为1μm,TaC粉的粒度为4μm。
本发明技术方案的进一步改进在于:所述S2石墨模具的内壁及与粉末接触的位置均设有石墨纸。
本发明技术方案的进一步改进在于:所述步骤S2的固相反应烧结过程先采用10MPa的预压力,然后逐渐升压,并采用30MPa保压,在烧结过程中石墨模具的真空度始终保持低于1.8×10-2Pa。
本发明技术方案的进一步改进在于:所述步骤S2中固相反应烧结温度为1350~1650℃,升温速率为10℃/min,保温时间2h;烧结结束后,随炉冷却到室温,取出样品。
由于采用了上述技术方案,本发明取得的技术效果有:
本发明选用Ti粉和Cr3C2粉相结合,既降低了烧结过程的烧结温度,又保证了高熵碳化物的碳源来源,还有利于各元素的扩散,使最终产物有着较高的致密度和均匀性,最终形成具有单相的固溶体,制备的高熵陶瓷具有优异的机械、物理和化学性能。
本发明使用金属单质Ti,同时使用的NbC、Cr3C2、WC、TaC粉末可作为高熵碳化物陶瓷中的碳源,能够有效控制高熵碳化物的碳含量和形成,更有利于元素之间的扩散,制备的高熵陶瓷综合性能好。
本发明制备的高熵陶瓷(TiNbCrWTa)Cx为单相面心立方结构的陶瓷,致密性好、硬度高,应用价值高。
附图说明
图1为本发明制备的(TiNbCrWTa)Cx高熵碳化物陶瓷的XRD图;
图2为本发明制备的(TiNbCrWTa)Cx高熵碳化物陶瓷的SEM和EDS图;
图3为本发明制备的(TiNbCrWTa)Cx陶瓷硬度随烧结温度变化曲线。
具体实施方式
下面结合附图及具体实施例对本发明做进一步详细说明:
一种(TiNbCrWTa)Cx高熵陶瓷为单相面心立方结构。
所述(TiNbCrWTa)Cx高熵陶瓷的制备方法,包括以下步骤:
S1、制备混合粉末A
S11:将各原料粉末按照等金属原子比进行称量,所述原料粉末分别为Ti粉、NbC粉、Cr3C2粉、WC粉和TaC粉,各粉末纯度均高于99.5%;所述Ti粉的粒度为45μm,NbC粉的粒度为4μm,Cr3C2粉的粒度为1μm,WC粉的粒度为1μm,TaC粉的粒度为4μm;
S12:把S11称量的原料粉末装入玛瑙球磨罐中,球粉比为6:1,采用真空硅脂密封球磨罐,并向球磨罐中充入氩气;
S13:采用行星式球磨机进行球磨,转速为200r/min,球磨时间10h。
S2、真空热压烧结制备高熵陶瓷(TiNbCrWTa)Cx
将混合粉末A放入导热性能良好的石墨模具中,并将石墨纸包覆在石墨模具的内壁和与粉末接触的位置。将石墨模具放入真空热压烧结炉中,抽真空使其低于1.8×10-2Pa;烧结温度设置为1350~1650℃,升温速度为10℃/min,在烧结过程中,烧结炉先采用10MPa的预压力,随后逐渐升压,温度升至烧结温度时控制压力到30MPa,并保温2h。
烧结过程结束后,烧结炉随炉冷却,达到室温后取出样品。
实施例1
一种(TiNbCrWTa)Cx高熵陶瓷为单相面心立方结构。
所述(TiNbCrWTa)Cx高熵陶瓷的制备方法,包括以下步骤:
S1、制备混合粉末A
选取所需要的混合粉末:准备初始粉末Ti粉、NbC粉、Cr3C2粉、WC粉和TaC粉,按金属等原子配比进行称量18g,摩尔比例为Ti:NbC:Cr3C2:WC:TaC=3:3:1:3:3。用天平分别称量1.43gTi粉,3.13gNbC粉,1.79g Cr3C2粉,5.86g WC粉和5.77gTaC粉,将这些粉末放置于玛瑙球磨罐中,按球粉比6:1加入108g玛瑙球,大球和小球的质量比为1:1,为防止混合粉末被氧化,向球磨罐中充入氩气,将玛瑙球磨罐放入行星式球磨机中混粉10h,转速200r/min。
S2、真空热压烧结制备高熵陶瓷(TiNbCrWTa)Cx
将混合粉末A放入导热性能良好的石墨模具中,并将石墨纸包覆在石墨模具的内壁和与粉末接触的位置。将石墨模具放入真空热压烧结炉中,抽真空使其低于1.8×10-2Pa。烧结温度设置为1450℃,升温速度为10℃/min,升温过程中分别在600℃、900℃、1250℃保温10min。在烧结过程中,烧结炉先采用10MPa的预压力,随后逐渐升压,温度至1450℃时控制压力到30MPa,并保温2h。
烧结过程结束后,烧结炉随炉冷却,达到室温后取出样品。按照后续实验所需尺寸,用线切割对圆饼状产物进行切割。在此工艺下制备的(TiNbCrWTa)Cx陶瓷的维氏硬度是1745HV0.5
实施例2:
一种(TiNbCrWTa)Cx高熵陶瓷为单相面心立方结构。
所述(TiNbCrWTa)Cx高熵陶瓷的制备方法,包括以下步骤:
S1、制备混合粉末A
选取所需要的混合粉末:准备少量初始粉末Ti粉、NbC粉、Cr3C2粉、WC粉和TaC粉,按金属等原子配比进行称量18g,比例为Ti:NbC:Cr3C2:WC:TaC=3:3:1:3:3。用天平分别称量1.43gTi粉,3.13gNbC粉,1.79g Cr3C2粉,5.86g WC粉和5.77gTaC粉,将这些粉末放置于玛瑙球磨罐中,按球粉比6:1加入108g玛瑙球,大球和小球的质量比为1:1,为防止混合粉末被氧化,向球磨罐中充入氩气;将玛瑙球磨罐放入行星式球磨机中混粉10h,转速200r/min。
S2、真空热压烧结制备高熵陶瓷(TiNbCrWTa)Cx
将混合粉末A放入导热性能良好的石墨模具中,并将石墨纸包覆在石墨模具的内壁与粉末接触的位置。将石墨模具放入真空热压烧结炉中,抽真空使其低于1.8×10-2Pa。烧结温度设置为1550℃,升温速度为10℃/min,升温过程中分别在600℃、900℃、1250℃保温10min。在烧结过程中,烧结炉先采用10MPa的预压力,随后逐渐升压,温度至1550℃时控制压力到30MPa,并保温2h。
烧结过程结束后,烧结炉随炉冷却,达到室温后取出样品。按照后续实验所需尺寸,用线切割对圆饼状产物进行切割。在此工艺下制备的(TiNbCrWTa)Cx陶瓷的维氏硬度是2214HV0.5
实施例3:
一种(TiNbCrWTa)Cx高熵陶瓷为单相面心立方结构。
所述(TiNbCrWTa)Cx高熵陶瓷的制备方法,包括以下步骤:
S1、制备混合粉末A
选取所需要的混合粉末:准备少量初始粉末Ti粉、NbC粉、Cr3C2粉、WC粉和TaC粉,按金属等原子配比进行称量18g,比例为Ti:NbC:Cr3C2:WC:TaC=3:3:1:3:3。用天平分别称量1.43gTi粉,3.13gNbC粉,1.79g Cr3C2粉,5.86g WC粉和5.77gTaC粉,将这些粉末放置于玛瑙球磨罐中,按球粉比6:1加入108g玛瑙球,大球和小球的质量比为1:1,为防止混合粉末被氧化,向球磨罐中充入氩气。将玛瑙球磨罐放入行星式球磨机中混粉10h,转速200r/min。
S2、真空热压烧结制备高熵陶瓷(TiNbCrWTa)Cx
将混合粉末放入导热性能良好的石墨模具中,并将石墨纸包覆在石墨模具的内壁和与粉末接触的位置。将石墨模具放入真空热压烧结炉中,抽真空使其低于1.8×10-2Pa。烧结温度设置为1650℃,升温速度为10℃/min,升温过程中分别在600℃、900℃、1250℃保温10min。在烧结过程中,烧结炉先采用10MPa的预压力,随后逐渐升压,温度至1650℃时控制压力到30MPa,并保温2h。
烧结过程结束后,烧结炉随炉冷却,达到室温后取出样品。按照后续实验所需尺寸,用线切割对圆饼状产物进行切割。在此工艺下制备的(TiNbCrWTa)Cx陶瓷的维氏硬度是2501HV0.5
图1为本发明实例1制备的(TiNbCrWTa)Cx高熵碳化物陶瓷,由图可知,图谱中主要为单一面心立方结构相的衍射峰,没有其他物质的衍射峰,说明制备的(TiNbCrWTa)Cx高熵碳化物陶瓷纯度很高。图2为本发明实例1制备的(TiNbCrWTa)Cx高熵碳化物陶瓷的SEM和EDS图,从SEM图中可以看出该材料有很高的致密度,几乎不存在气孔。EDS图可以看出各元素分布均匀,没有发生元素的偏聚。图3为本发明三个实例对应的硬度变化,可以发现,高熵陶瓷的硬度和温度成正比关系,在1450℃和1650℃之间硬度值有明显的变化是因为在此温度范围内材料的致密化程度大幅度增加,材料开始形成为单一固溶体相结构。
以上公开的本发明优选实例主要是用来阐明本发明的制备原理、材料的组织结构特征和本发明的优点。优选实例并没有详尽的叙述所有实验细节,不限制本发明作为唯一的具体的实施步骤。上述实例只是本发明的一些原理,在不脱离本发明的范围和精神的前提下还可做很多的修改和变化,各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。

Claims (9)

1.一种(TiNbCrWTa)Cx高熵陶瓷,其特征在于:所述高熵陶瓷为单相面心立方结构的陶瓷,包括以下原子比的单质和碳化物:23%的Ti,23%的NbC, 23%的WC,23%的TaC,其余为Cr3C2
2.一种制备权利要求1所述的(TiNbCrWTa)Cx高熵陶瓷的方法,其特征在于:包括以下步骤:
S1:将一种金属和四种碳化物原料粉末混合均匀,得到混合粉末A;
S2:通过真空热压烧结技术,将混合粉末A放入导热性能良好的石墨模具中进行固相反应烧结,得到高熵陶瓷(TiNbCrWTa)Cx
3.根据权利要求2所述的一种(TiNbCrWTa)Cx高熵陶瓷的制备方法,其特征在于:所述原料粉末分别为Ti粉、NbC粉、Cr3C2粉、WC粉和TaC粉,各粉末纯度均高于99.5%。
4.根据权利要求3所述的一种(TiNbCrWTa)Cx高熵陶瓷的制备方法,其特征在于:所述原料粉末按金属等原子配比,各原料粉末的比例为Ti:NbC:Cr3C2: WC:TaC=3:3:1:3:3。
5.根据权利要求4所述的一种(TiNbCrWTa)Cx高熵陶瓷的制备方法,其特征在于:所述步骤S1的具体步骤为:
S11:将各原料粉末按照等金属原子比进行称量;
S12:把S11称量的原料粉末装入玛瑙球磨罐中,球粉比为6:1,采用真空硅脂密封球磨罐,并向球磨罐中充入氩气;
S13:采用行星式球磨机进行球磨,转速为200r/min,球磨时间10h。
6.根据权利要求5所述的一种(TiNbCrWTa)Cx高熵陶瓷的制备方法,其特征在于:所述Ti粉的粒度为45μm,NbC粉的粒度为4μm,Cr3C2粉的粒度为1μm,WC粉的粒度为1μm,TaC粉的粒度为4μm。
7.根据权利要求2所述的一种(TiNbCrWTa)Cx高熵陶瓷的制备方法,其特征在于:所述S2石墨模具的内壁及与粉末接触的位置均设有石墨纸。
8.根据权利要求2所述的一种(TiNbCrWTa)Cx高熵陶瓷的制备方法,其特征在于:所述步骤S2的固相反应烧结过程先采用10MPa的预压力,然后逐渐升压,并采用30MPa保压,在烧结过程中石墨模具的真空度始终保持低于1.8×10-2Pa。
9.根据权利要求8所述的一种(TiNbCrWTa)Cx高熵陶瓷的制备方法,其特征在于:所述步骤S2中固相反应烧结温度为1350~1650℃,升温速率为10 ℃/min,保温时间2h;烧结结束后,随炉冷却到室温,取出样品。
CN202210748957.9A 2022-06-28 2022-06-28 一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法 Active CN114956826B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210748957.9A CN114956826B (zh) 2022-06-28 2022-06-28 一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210748957.9A CN114956826B (zh) 2022-06-28 2022-06-28 一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN114956826A true CN114956826A (zh) 2022-08-30
CN114956826B CN114956826B (zh) 2023-06-09

Family

ID=82967962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210748957.9A Active CN114956826B (zh) 2022-06-28 2022-06-28 一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN114956826B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115404384A (zh) * 2022-08-31 2022-11-29 燕山大学 一种高熵陶瓷-过渡金属结合的碳化钨基硬质复合材料及其制备方法
CN115403385A (zh) * 2022-09-13 2022-11-29 燕山大学 一种掺杂氧离子的高熵陶瓷及制备方法
CN116477951A (zh) * 2023-04-25 2023-07-25 中南大学 一种利用熔盐法制备Ta1/3Nb1/3Ti1/3C陶瓷纳米粉体的方法
CN116535215A (zh) * 2023-05-08 2023-08-04 中南大学 一种非化学计量比多元碳化物陶瓷的制备方法
CN116639980A (zh) * 2023-05-22 2023-08-25 中南大学 一种多元碳化物陶瓷涂层的制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090074604A1 (en) * 2007-09-19 2009-03-19 Industrial Technology Research Institute Ultra-hard composite material and method for manufacturing the same
KR20090033960A (ko) * 2007-10-02 2009-04-07 재단법인서울대학교산학협력재단 인성이 향상된 세라믹스, 그 제조방법, 인성이 향상된서멧트, 그 제조방법
CN109180189A (zh) * 2018-10-08 2019-01-11 中南大学 一种高熵碳化物超高温陶瓷粉体及其制备方法
AU2019101360A4 (en) * 2019-09-10 2019-12-19 Dalian University Of Technology High-entropy half-heusler thermoelectric material with low lattice thermal conductivity and preparation method thereof
CN111533559A (zh) * 2020-03-30 2020-08-14 东华大学 一种缺碳型高熵过渡金属碳化物陶瓷材料及其制备方法
KR102248760B1 (ko) * 2019-11-27 2021-05-04 서울시립대학교 산학협력단 접합 조성물 및 이를 이용한 접합 방법
CN112875704A (zh) * 2021-03-24 2021-06-01 北京科技大学 一种难熔金属碳化物固溶体粉末的低温制备方法
CN113004047A (zh) * 2021-02-07 2021-06-22 燕山大学 一种(CrZrTiNbV)N高熵陶瓷块体及其制备方法
CN113480315A (zh) * 2021-06-25 2021-10-08 燕山大学 一种高熵低硼化物陶瓷及其制备方法
RU2762897C1 (ru) * 2020-12-22 2021-12-23 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Способ получения порошка карбида высокоэнтропийного сплава со сферической формой частиц
CN113831133A (zh) * 2021-10-26 2021-12-24 燕山大学 一种非化学计量比高熵陶瓷及其制备方法
CN114349005A (zh) * 2022-01-14 2022-04-15 天津大学 一种高熵金属碳化物陶瓷粉体的制备方法
CN114605154A (zh) * 2022-03-31 2022-06-10 大连理工大学 一种基于金属预合金化的高熵陶瓷材料及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090074604A1 (en) * 2007-09-19 2009-03-19 Industrial Technology Research Institute Ultra-hard composite material and method for manufacturing the same
KR20090033960A (ko) * 2007-10-02 2009-04-07 재단법인서울대학교산학협력재단 인성이 향상된 세라믹스, 그 제조방법, 인성이 향상된서멧트, 그 제조방법
CN109180189A (zh) * 2018-10-08 2019-01-11 中南大学 一种高熵碳化物超高温陶瓷粉体及其制备方法
AU2019101360A4 (en) * 2019-09-10 2019-12-19 Dalian University Of Technology High-entropy half-heusler thermoelectric material with low lattice thermal conductivity and preparation method thereof
KR102248760B1 (ko) * 2019-11-27 2021-05-04 서울시립대학교 산학협력단 접합 조성물 및 이를 이용한 접합 방법
CN111533559A (zh) * 2020-03-30 2020-08-14 东华大学 一种缺碳型高熵过渡金属碳化物陶瓷材料及其制备方法
RU2762897C1 (ru) * 2020-12-22 2021-12-23 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Способ получения порошка карбида высокоэнтропийного сплава со сферической формой частиц
CN113004047A (zh) * 2021-02-07 2021-06-22 燕山大学 一种(CrZrTiNbV)N高熵陶瓷块体及其制备方法
CN112875704A (zh) * 2021-03-24 2021-06-01 北京科技大学 一种难熔金属碳化物固溶体粉末的低温制备方法
CN113480315A (zh) * 2021-06-25 2021-10-08 燕山大学 一种高熵低硼化物陶瓷及其制备方法
CN113831133A (zh) * 2021-10-26 2021-12-24 燕山大学 一种非化学计量比高熵陶瓷及其制备方法
CN114349005A (zh) * 2022-01-14 2022-04-15 天津大学 一种高熵金属碳化物陶瓷粉体的制备方法
CN114605154A (zh) * 2022-03-31 2022-06-10 大连理工大学 一种基于金属预合金化的高熵陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李工;崔鹏;张丽军;张梦迪;: "高熵合金研究现状", 燕山大学学报, no. 02 *
王达飞;刘宁;张晓玲;刘爱军;: "四元高熵碳化物陶瓷的组织和性能研究", 热处理, no. 02 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115404384A (zh) * 2022-08-31 2022-11-29 燕山大学 一种高熵陶瓷-过渡金属结合的碳化钨基硬质复合材料及其制备方法
CN115403385A (zh) * 2022-09-13 2022-11-29 燕山大学 一种掺杂氧离子的高熵陶瓷及制备方法
CN115403385B (zh) * 2022-09-13 2023-04-21 燕山大学 一种掺杂氧离子的高熵陶瓷及制备方法
CN116477951A (zh) * 2023-04-25 2023-07-25 中南大学 一种利用熔盐法制备Ta1/3Nb1/3Ti1/3C陶瓷纳米粉体的方法
CN116477951B (zh) * 2023-04-25 2024-04-09 中南大学 一种利用熔盐法制备Ta1/3Nb1/3Ti1/3C陶瓷纳米粉体的方法
CN116535215A (zh) * 2023-05-08 2023-08-04 中南大学 一种非化学计量比多元碳化物陶瓷的制备方法
CN116535215B (zh) * 2023-05-08 2023-12-19 中南大学 一种非化学计量比多元碳化物陶瓷的制备方法
CN116639980A (zh) * 2023-05-22 2023-08-25 中南大学 一种多元碳化物陶瓷涂层的制备方法
CN116639980B (zh) * 2023-05-22 2024-02-02 中南大学 一种多元碳化物陶瓷涂层的制备方法

Also Published As

Publication number Publication date
CN114956826B (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
CN114956826B (zh) 一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法
CN107620049B (zh) 一种无粘结相纯碳化钨靶材的制备方法
CN109161774A (zh) 由高熵合金作为粘结剂的硬质碳化钨合金及其制备方法
CN103589929B (zh) 金属陶瓷合金制备方法及其产品
CN110845237A (zh) 高熵陶瓷粉体及其制备方法和高熵陶瓷块体
CN110407213B (zh) 一种(Ta, Nb, Ti, V)C高熵碳化物纳米粉体及其制备方法
CN107473237B (zh) 一种二元钨硼化物超硬材料的制备方法
CN105400982B (zh) 通过氢化钛来制备石墨烯增强钛基纳米复合材料的方法
CN113480315B (zh) 一种高熵低硼化物陶瓷及其制备方法
CN113831133B (zh) 一种非化学计量比高熵陶瓷及其制备方法
CN115044794A (zh) 一种具有优异性能的Cu-(Y2O3-HfO2)合金及其制备方法
CN110106419A (zh) 一种制备钼铜复合材料的装置及方法
CN114058893A (zh) 一种AlCoCrFeNi作粘结剂的WC-Y2O3-ZrO2基体硬质合金的制备方法
CN107841669B (zh) 一种高导热活性复合封装材料及其制备方法
JP2023512126A (ja) バナジウムタングステン合金ターゲット素材の製造方法
CN109231990A (zh) 一种碳化钨-金刚石复合材料的制备方法
CN108515174A (zh) 一种抗高温氧化W-Cr-Ti复合材料及其制备方法
CN115255367B (zh) 一种镍铝合金溅射靶材及其热压制备方法
CN116178019B (zh) 一种无压包裹煅烧制备多孔max相陶瓷材料的方法
CN103846438A (zh) 一种制造高铝钛金属陶瓷复合靶材的方法
CN108817387B (zh) 一种具有高硬度和抗高温氧化性能的钨基复合材料的制备方法
CN107675021B (zh) 一种金属间化合物钛硅钼多孔材料及其制备方法
CN104211408A (zh) 一种硼碳氮化铝、钛(Ti, Al(B,C,N))陶瓷粉末材料及其制备方法
JP5308296B2 (ja) チタンシリコンカーバイドセラミックスの製造方法
CN114262834A (zh) 一种高温自润滑复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant