CN114591082A - 一种pzt-pnn-psn-pmn压电陶瓷及其制备方法 - Google Patents

一种pzt-pnn-psn-pmn压电陶瓷及其制备方法 Download PDF

Info

Publication number
CN114591082A
CN114591082A CN202210411261.7A CN202210411261A CN114591082A CN 114591082 A CN114591082 A CN 114591082A CN 202210411261 A CN202210411261 A CN 202210411261A CN 114591082 A CN114591082 A CN 114591082A
Authority
CN
China
Prior art keywords
temperature
sintering
pnn
piezoelectric ceramic
psn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210411261.7A
Other languages
English (en)
Inventor
卢远豪
廖文湧
何兴晨
李涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan University of Technology
Original Assignee
Dongguan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan University of Technology filed Critical Dongguan University of Technology
Priority to CN202210411261.7A priority Critical patent/CN114591082A/zh
Publication of CN114591082A publication Critical patent/CN114591082A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于压电陶瓷技术领域,具体涉及一种PZT‑PNN‑PSN‑PMN压电陶瓷及其制备方法,其技术要点如下:陶瓷粉末的分子式为Pb0.92Sr0.08(Zr0.48Ti0.520.96‑x(Ni1/3Nb2/3x(Sb1/2Nb1/20.03(Mg1/3Nb2/30.01O3,0.15<x<0.25。本发明提供的PZT‑PNN‑PSN‑PMN压电陶瓷及其制备方法,通过低熔沸点金属和高熔沸点金属的掺杂量对预烧结和烧结过程中的升温速率和保温时间进行精确计算和控制,在避免低熔沸点金属挥发逸出的情况下,保证了晶粒尺寸的均匀性,提高了由于Ni的掺杂降低的体积密度,有效提高三元压电陶瓷的介电常数和压电常数。

Description

一种PZT-PNN-PSN-PMN压电陶瓷及其制备方法
技术领域
本发明属于压电陶瓷技术领域,具体涉及一种PZT-PNN-PSN-PMN压电陶瓷及其制备方法。
背景技术
压电陶瓷具有良好的机械能和电能转换能力,广泛应用于超声传感、压电致动器、压电变电器等各个领域。随着电子器件的微型化、智能化发展,对压电陶瓷的性能提出了越来越高的要求,如高压电常数、高介电常数和高机电耦合系数等。为了满足上述要求,压电制动器和压电泵等电器通常采用叠层结构,然而叠层对压电陶瓷的压电常数和介电常数的要求更高。
现有技术中通常采用三元甚至四元压电陶瓷,虽然提高了压电陶瓷的压电常数,但是过多种类的金属掺杂,容易造成晶体缺陷或体积密度下降等问题,严重制约了三元或四元压电陶瓷的推广和应用。
有鉴于上述现有压电陶瓷存在的缺陷,本发明人基于从事此类材料多年丰富经验及专业知识,配合理论分析,加以研究创新,开发出一种PZT-PNN-PSN-PMN压电陶瓷及其制备方法。
发明内容
本发明的第一个目的是提供一种PZT-PNN-PSN-PMN压电陶瓷,通过在B位引入Ni的掺杂,使钙钛矿结构中出现三方相,形成三方相和四方相在准同形相界共存,形成三方相和四方相的耦合,提高了准同形相界的极化率,进而大幅提高了三元压电陶瓷的压电常数和介电常数。
本发明的上述技术目的是通过以下技术方案得以实现的:
本发明提供的PZT-PNN-PSN-PMN压电陶瓷,陶瓷粉末的分子式为Pb0.92Sr0.08(Zr0.48Ti0.52)0.96-x(Ni1/3Nb2/3)x(Sb1/2Nb1/2)0.03(Mg1/3Nb2/3)0.01O3,0.15<x<0.25。
进一步的,陶瓷粉末的分子式为Pb0.92Sr0.08(Zr0.48Ti0.52)0.76(Ni1/3Nb2/3)0.2(Sb1/ 2Nb1/2)0.03(Mg1/3Nb2/3)0.01O3。陶瓷粉末的平均粒径为50μm。
本发明的第二个目的是提供一种PZT-PNN-PSN-PMN压电陶瓷的制备方法,具有同样的技术效果。
本发明提供的一种PZT-PNN-PSN-PMN压电陶瓷的制备方法,具体包括如下操作步骤:
具体包括如下操作步骤:
S1、将原料放入球磨机中球磨均匀得到混合粉末;
S2、将混合粉末压片后预烧结;
S3、对预烧结后的材料再次球磨;
S4、将再次球磨后的粉末与粘结剂搅拌均匀压片成型;
S5、排胶;
S6、烧结得到压电陶瓷。
进一步的,粘结剂是聚乙二醇。
进一步的,步骤S2中的预烧结温度为800~900℃。
进一步的,步骤S2中预烧结时间为180~300min。
进一步的,步骤S5中排胶的温度为500~600℃。
进一步的,步骤S6中的烧结温度为1200~1400℃。
进一步的,步骤S6中,烧结方式为先以5~7℃/min的升温速率,将烧结的温度升至1000℃;再以2℃/min的升温速率将烧结温度升至1200~1400℃;再以2℃/min的降温速率将温度降至1000℃,最后自然冷却。
进一步的,步骤S2中的预烧结的方式,先以V1的升温速率,将预烧结的温度升至800~900℃,保温时间为t1;再以V2的降温速率将温度降至400℃,最后自然冷却至室温;其中,V1的计算模型如下:
Figure BDA0003603804010000031
其中,V1为预烧结的升温速率,单位为℃/min;
T为预烧结的保温温度,单位为℃;
t1为保温时间,单位是min;
t为预烧结从升温到冷却至室温的总时长,单位是min;
a为常数,是所述压电陶瓷中Ni、Mg的掺杂量与PNN和PMN中Nb的掺杂量的比值。
由于Mg和Ni的熔沸点比其他金属更低,在预烧结过程中,若升温速率过快,会导致Ni和Mg在未与其他金属掺杂前就逸出,一方面造成晶格缺陷,另一方面导致Ni和Mg的掺杂量减小,压电陶瓷中的三方相较少,难以与四方相耦合,无法达到提高压电常数和介电常数的目的;若预烧结的升温速率过低,则会导致金属之间的掺杂性能差,造成晶粒尺寸不均匀,体积密度降低,同样影响压电陶瓷的电学性能。
本发明中,采用压电陶瓷中Ni和Mg的掺杂量与PNN和PMN中高熔沸点的Nb的掺杂量同时对升温速率进行控制,精确计算出最为合适的升温速率,使Ni和Mg在挥发前就与其他金属形成掺杂,进而牢牢锁住Ni和Mg,既保证了预烧结过程中金属掺杂的有效性,又避免了由于温度过高而导致的Ni和Mg的流失。
进一步的,V2的计算模型为:V1·a=V2
本发明中,采用上述公式对降温速率进行控制,与自然冷却相比,给体系一个温度骤降的过程,进一步保证了晶粒的尺寸均匀,同时避免气孔率过高。
进一步的,在步骤S6中,烧结的保温时间为:
Figure BDA0003603804010000041
其中,S1为步骤S6中烧结的保温时间,单位为min;
S为步骤S6中烧结过程从升温直至降温至室温的时间总长度,单位为min;
T1为步骤S6中保温的温度,单位为℃;
V3为步骤S6中烧结温度升至1000℃的升温速率;b为常数,是压电陶瓷中Sr、Ni、Mg的总掺量与Nb的总掺量的比值。
在烧结过程中,过长的保温时间会导致Ni、Mg和Sr等低熔沸点的金属的挥发,进而导致钙钛矿结构的骨架坍塌,并导致三方相向四方相转化;而保温时间过短,则会导致物料的扩算系数降低,离子和空位无法得到充分的扩算,颗粒无法完成重排,降低了密度。
尤其是在本发明中,Ni的半径小于Zr和Ti,在烧结和掺杂过程中,会使陶瓷的晶粒尺寸减小,造成晶粒尺寸大小不均匀,出现不规则的气孔,虽然本发明中已经添加了Mg掺杂来改善晶粒尺寸,但是若保温时间过短,依然会导致体积密度降低。
因而,在本发明中,通过Sr、Mg、Ni与Nb的掺杂量对保温时间进行精确控制,既能够保证晶粒的尺寸均一,降低气孔率,同时还能够保证钙钛矿的晶体骨架不坍塌,保持良好的压电常数和介电常数。
进一步的,步骤S6中的烧结方式为振荡压力烧结。采用振荡烧结的技术,可以增加致密度,缩短烧结时间,从而提升压电材料的品质。
综上所述,本发明具有以下有益效果:
本发明提供的PZT-PNN-PSN-PMN压电陶瓷及其制备方法,通过低熔沸点金属和高熔沸点金属的掺杂量对预烧结和烧结过程中的升温速率和保温时间进行精确计算和控制,在避免低熔沸点金属挥发逸出的情况下,保证了晶粒尺寸的均匀性,提高了由于Ni的掺杂降低的体积密度,有效提高三元压电陶瓷的介电常数和压电常数。
附图说明:
图1为本发明实施例1~4压电陶瓷的XRD图;
图2为本发明实施例1~4的电学性能图。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,对依据本发明提出的一种PZT-PNN-PSN-PMN压电陶瓷及其制备方法,其具体实施方式、特征及其功效,详细说明如后。
下述实施例中,如无特殊说明,所使用的实验方法均为常规方法,所使用的材料等均可从化学试剂公司购买。
材料均从北京浩克科技有限公司购买,具体如下,纯度99.9%的Pb3O4、纯度99.9%的SrCO3、纯度99.99%的NiO、纯度99.9%的Nb2O5、纯度99.99%的Sb2O3、纯度99.9%的MgO、纯度99.9%的ZrO2和纯度99.9%的TiO2
实施例1:一种PZT-PNN-PSN-PMN压电陶瓷及其制备方法
本实施例提供的压电陶瓷,分子式为Pb0.92Sr0.08(Zr0.48Ti0.52)0.76(Ni1/3Nb2/3)0.2(Sb1/2Nb1/2)0.03(Mg1/3Nb2/3)0.01O3
其制备方法如下:
以Pb3O4、SrCO3、NiO、Nb2O5、Sb2O3、MgO、ZrO2和TiO2为原料,按照Pb0.92Sr0.08(Zr0.48Ti0.52)0.76(Ni1/3Nb2/3)0.2(Sb1/2Nb1/2)0.03(Mg1/3Nb2/3)0.01O3称量,具体包括如下操作步骤:
S1、将原料放入球磨机中,使用直径为5mm、10mm、15mm和20mm的氧化锆球作为研磨介质,以去离子水作为研磨分散剂,利用球磨机正、反交替运行,研磨28h得到混匀粉体;将粉体干燥过100目筛;
S2、将混合粉末压片后预烧结,预烧结温度是880℃,升温速率为15℃/min;
S3、对预烧结后的材料再次球磨,同样使用直径为5mm、10mm、15mm和20mm的氧化锆球作为研磨介质,以去离子水作为研磨分散剂,利用球磨机正、反交替运行,研磨28h得到混匀粉体;将粉体干燥过100目筛;
S4、将再次球磨后的粉末与聚乙二醇搅拌均匀,压片成型,聚乙二醇的加入量为粉体质量的6%;
S5、排胶,排胶温度为580℃,排胶时间为4h;
S6、烧结:在马弗炉中以6℃/min升温至1000℃,然后以2℃/min升温至1280℃保温2h,再以2℃/min降温至1000℃,最后随炉冷却。
实施例2:一种PZT-PNN-PSN-PMN压电陶瓷及其制备方法
本实施例提供的压电陶瓷,分子式为Pb0.92Sr0.08(Zr0.48Ti0.52)0.76(Ni1/3Nb2/3)0.2(Sb1/2Nb1/2)0.03(Mg1/3Nb2/3)0.01O3
其制备方法如下:
以Pb3O4、SrCO3、NiO、Nb2O5、Sb2O3、MgO、ZrO2和TiO2为原料,按照Pb0.92Sr0.08(Zr0.48Ti0.52)0.76(Ni1/3Nb2/3)0.2(Sb1/2Nb1/2)0.03(Mg1/3Nb2/3)0.01O3称量,具体包括如下操作步骤:
S1、将原料放入球磨机中,使用直径为5mm、10mm、15mm和20mm的氧化锆球作为研磨介质,以去离子水作为研磨分散剂,利用球磨机正、反交替运行,研磨28h得到混匀粉体;将粉体干燥过100目筛;
S2、将混合粉末压片后预烧结,预烧结温度是880℃,预烧结时长为300min,升温速率为V1,保温60min后,以V2的降温速率将温度降至400℃,随炉冷却至室温;
S3、对预烧结后的材料再次球磨,同样使用直径为5mm、10mm、15mm和20mm的氧化锆球作为研磨介质,以去离子水作为研磨分散剂,利用球磨机正、反交替运行,研磨28h得到混匀粉体;将粉体干燥过100目筛;
S4、将再次球磨后的粉末与聚乙二醇搅拌均匀,压片成型,聚乙二醇的加入量为粉体质量的6%;
S5、排胶,排胶温度为580℃,排胶时间为4h;
S6、烧结:在马弗炉中以6℃/min升温至1000℃,然后以2℃/min升温至1280℃保温2h,再以2℃/min降温至1000℃,最后随炉冷却。
Figure BDA0003603804010000071
其中,V1为预烧结的升温速率,单位为℃/min;
T为预烧结的保温温度,单位为℃;
t1为保温时间,单位是min;
t为预烧结从升温到冷却至室温的总时长,单位是min;
a为常数,是压电陶瓷中Ni、Mg的掺杂量与PNN和PMN中Nb的掺杂量的比值;
V2为预烧结的降温速率,单位为℃/min。
计算可知,V1=3.76℃/min,V2=3.57℃/min。
实施例3:一种PZT-PNN-PSN-PMN压电陶瓷及其制备方法
本实施例提供的压电陶瓷,分子式为Pb0.92Sr0.08(Zr0.48Ti0.52)0.71(Ni1/3Nb2/3)0.25(Sb1/2Nb1/2)0.03(Mg1/3Nb2/3)0.01O3
其制备方法如下:
以Pb3O4、SrCO3、NiO、Nb2O5、Sb2O3、MgO、ZrO2和TiO2为原料,按照Pb0.92Sr0.08(Zr0.48Ti0.52)0.76(Ni1/3Nb2/3)0.2(Sb1/2Nb1/2)0.03(Mg1/2Nb1/2)0.01O3称量,具体包括如下操作步骤:
S1、将原料放入球磨机中,使用直径为5mm、10mm、15mm和20mm的氧化锆球作为研磨介质,以去离子水作为研磨分散剂,利用球磨机正、反交替运行,研磨28h得到混匀粉体;将粉体干燥过100目筛;
S2、将混合粉末压片后预烧结,预烧结温度是880℃,预烧结时长为300min,升温速率为V1,保温60min后,以V2的降温速率将温度降至400℃,随炉冷却至室温;
S3、对预烧结后的材料再次球磨,同样使用直径为5mm、10mm、15mm和20mm的氧化锆球作为研磨介质,以去离子水作为研磨分散剂,利用球磨机正、反交替运行,研磨28h得到混匀粉体;将粉体干燥过100目筛;
S4、将再次球磨后的粉末与聚乙二醇搅拌均匀,压片成型,聚乙二醇的加入量为粉体质量的6%;
S5、排胶,排胶温度为580℃,排胶时间为4h;
S6、烧结:在马弗炉中以6℃升温至1000℃,然后以2℃/min升温至1280℃保温时间为S1,再以2℃/min降温至1000℃,最后随炉冷却,烧结总时长为600min。
Figure BDA0003603804010000081
其中,V1为预烧结的升温速率,单位为℃/min;
T为预烧结的保温温度,单位为℃;
t1为保温时间,单位是min;
t为预烧结从升温到冷却至室温的总时长,单位是min;
a为常数,是压电陶瓷中Sr、Ni、Mg的掺杂量与PNN和PMN中Nb的掺杂量和Zr的掺杂量的比值;
V2为预烧结的降温速率,单位为℃/min;
在步骤S6中,烧结的保温时间为:
Figure BDA0003603804010000091
其中,S1为步骤S6中烧结的保温时间,单位为min;
S为步骤S6中烧结过程从升温直至降温至室温的时间总长度,单位为min;
T1为步骤S6中保温的温度,单位为℃;
V3为步骤S6中烧结温度升至1000℃的升温速率;b为常数,是压电陶瓷中Sr、Ni、Mg的总掺量与Nb的总掺量的比值。
计算可知,V1=3.76℃/min,V2=3.57℃/min;S1=169min。
实施例4:一种PZT-PNN-PSN-PMN压电陶瓷及其制备方法
本实施例提供的压电陶瓷,分子式为Pb0.92Sr0.08(Zr0.48Ti0.52)0.71(Ni1/3Nb2/3)0.25(Sb1/2Nb1/2)0.03(Mg1/3Nb2/3)0.01O3
其制备方法如下:
以Pb3O4、SrCO3、NiO、Nb2O5、Sb2O3、MgO、ZrO2和TiO2为原料,按照Pb0.92Sr0.08(Zr0.48Ti0.52)0.71(Ni1/3Nb2/3)0.25(Sb1/2Nb1/2)0.03(Mg1/3Nb2/3)0.01O3称量,具体包括如下操作步骤:
S1、将原料放入球磨机中,使用直径为5mm、10mm、15mm和20mm的氧化锆球作为研磨介质,以去离子水作为研磨分散剂,利用球磨机正、反交替运行,研磨28h得到混匀粉体;将粉体干燥过100目筛;
S2、将混合粉末压片后预烧结,预烧结温度是880℃,预烧结时长为300min,升温速率为V1,保温60min后,以V2的降温速率将温度降至400℃,随炉冷却至室温;
S3、对预烧结后的材料再次球磨,同样使用直径为5mm、10mm、15mm和20mm的氧化锆球作为研磨介质,以去离子水作为研磨分散剂,利用球磨机正、反交替运行,研磨28h得到混匀粉体;将粉体干燥过100目筛;
S4、将再次球磨后的粉末与聚乙二醇搅拌均匀,压片成型,聚乙二醇的加入量为粉体质量的6%;
S5、排胶,排胶温度为580℃,排胶时间为4h;
S6、烧结:在马弗炉中以6℃升温至1000℃,然后以2℃/min升温至1280℃保温时间为S1,再以2℃/min降温至1000℃,最后随炉冷却,烧结总时长为600min。
Figure BDA0003603804010000101
其中,V1为预烧结的升温速率,单位为℃/min;
T为预烧结的保温温度,单位为℃;
t1为保温时间,单位是min;
t为预烧结从升温到冷却至室温的总时长,单位是min;
a为常数,是压电陶瓷中Ni、Mg的掺杂量与PNN和PMN中Nb的掺杂量的比值;
V2为预烧结的降温速率,单位为℃/min;
在步骤S6中,烧结的保温时间为:
Figure BDA0003603804010000111
其中,S1为步骤S6中烧结的保温时间,单位为min;
S为步骤S6中烧结过程从升温直至降温至室温的时间总长度,单位为min;
T1为步骤S6中保温的温度,单位为℃;
V3为步骤S6中烧结温度升至1000℃的升温速率;b为常数,是压电陶瓷中Sr、Ni、Mg的总掺量与Nb的总掺量的比值。
计算可知,V1=3.66℃/min,V2=1.83℃/min;S1=144min。
性能测试:
对实施例1~4得到的压电陶瓷进行压电常数、介电常数进行测试,测试结果如下:
表一
Figure BDA0003603804010000112
根据实施例1和实施例2的XRD图对比可知,本发明中,采用压电陶瓷中Ni和Mg的掺杂量与PNN和PMN中高熔沸点的Nb的掺杂量同时对升温速率进行控制,精确计算出最为合适的升温速率,使Ni和Mg在挥发前就与其他金属形成掺杂,进而牢牢锁住Ni和Mg,既保证了预烧结过程中金属掺杂的有效性,又避免了由于温度过高而导致的Ni和Mg的流失。
根据实施例2和实施例3的XRD图和电学性能图对比可知,本发明通过Sr、Mg、Ni与Nb的掺杂量对保温时间进行精确控制,既能够保证晶粒的尺寸均一,降低气孔率,同时还能够保证钙钛矿的晶体骨架不坍塌,保持良好的压电常数和介电常数。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例展示如上,但并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

1.一种PZT-PNN-PSN-PMN压电陶瓷,其特征在于,所述陶瓷粉末的分子式为Pb0.92Sr0.08(Zr0.48Ti0.52)0.96-x(Ni1/3Nb2/3)x(Sb1/2Nb1/2)0.03(Mg1/3Nb2/3)0.01O3,0.15<x<0.25。
2.前述的PZT-PNN-PSN-PMN压电陶瓷的制备方法,其特征在于,以Pb3O4、SrCO3、NiO、Nb2O5、Sb2O3、MgO、ZrO2和TiO2为原料,通过球磨工艺研磨混匀粉体,过筛后烧结得到,其中各组分配比按照Pb0.92Sr0.08(Zr0.48Ti0.52)0.96-x(Ni1/3Nb2/3)x(Sb1/2Nb1/2)0.03(Mg1/3Nb2/3)0.01O3,0.15<x<0.25称量。
3.根据权利要求2所述的一种PZT-PNN-PSN-PMN压电陶瓷的制备方法,其特征在于,具体包括如下操作步骤:
S1、将原料放入球磨机中球磨均匀得到混合粉末;
S2、将混合粉末压片后预烧结;
S3、对预烧结后的材料再次球磨;
S4、将再次球磨后的粉末与粘结剂搅拌均匀压片成型;
S5、排胶;
S6、烧结得到所述压电陶瓷。
4.根据权利要求3所述的一种PZT-PNN-PSN-PMN压电陶瓷的制备方法,其特征在于,所述步骤S2中的预烧结温度为800~900℃。
5.根据权利要求4所述的一种PZT-PNN-PSN-PMN压电陶瓷的制备方法,其特征在于,所述步骤S2中预烧结时间为180~300min。
6.根据权利要求3所述的一种PZT-PNN-PSN-PMN压电陶瓷的制备方法,其特征在于,所述步骤S6中的烧结温度为1200~1400℃。
7.根据权利要求3所述的一种PZT-PNN-PSN-PMN压电陶瓷的制备方法,其特征在于,所述步骤S6中,烧结方式为先以5~7℃/min的升温速率,将烧结的温度升至1000℃;再以2℃/min的升温速率将烧结温度升至1200~1400℃;再以2℃/min的降温速率将温度降至1000℃,最后自然冷却。
8.根据权利要求3所述的一种PZT-PNN-PSN-PMN压电陶瓷的制备方法,其特征在于,所述步骤S2中的预烧结的方式,先以V1的升温速率,将预烧结的温度升至800~900℃,保温时间为t1;再以V2的降温速率将温度降至400℃,最后自然冷却至室温;其中,V1的计算模型如下:
Figure FDA0003603804000000021
其中,V1为预烧结的升温速率,单位为℃/min;
T为预烧结的保温温度,单位为℃;
t1为保温时间,单位是min;
t为预烧结从升温到冷却至室温的总时长,单位是min;
a为常数,是所述压电陶瓷中Ni、Mg的掺杂量与PNN和PMN中Nb的掺杂量的比值。
9.根据权利要求8所述的一种PZT-PNN-PSN-PMN压电陶瓷的制备方法,其特征在于,所述V2的计算模型为:V1·a=V2
10.根据权利要求7所述的一种PZT-PNN-PSN-PMN压电陶瓷的制备方法,其特征在于,在所述步骤S6中,烧结的保温时间为:
Figure FDA0003603804000000031
其中,S1为步骤S6中烧结的保温时间,单位为min;
S为步骤S6中烧结过程从升温直至降温至室温的时间总长度,单位为min;
T1为步骤S6中保温的温度,单位为℃;
V3为步骤S6中烧结温度升至1000℃的升温速率;b为常数,是压电陶瓷中Sr、Ni、Mg的总掺量与Nb的总掺量的比值。
CN202210411261.7A 2022-04-19 2022-04-19 一种pzt-pnn-psn-pmn压电陶瓷及其制备方法 Pending CN114591082A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210411261.7A CN114591082A (zh) 2022-04-19 2022-04-19 一种pzt-pnn-psn-pmn压电陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210411261.7A CN114591082A (zh) 2022-04-19 2022-04-19 一种pzt-pnn-psn-pmn压电陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN114591082A true CN114591082A (zh) 2022-06-07

Family

ID=81821647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210411261.7A Pending CN114591082A (zh) 2022-04-19 2022-04-19 一种pzt-pnn-psn-pmn压电陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN114591082A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115490512A (zh) * 2022-09-19 2022-12-20 大富科技(安徽)股份有限公司 5g微波介质陶瓷材料及其制备方法、微波介质陶瓷器件

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147682A (ja) * 1990-10-09 1992-05-21 Sumitomo Metal Ind Ltd 圧電材料
JPH04270121A (ja) * 1990-12-27 1992-09-25 Murata Mfg Co Ltd 圧電性磁器組成物
JPH04342462A (ja) * 1990-12-27 1992-11-27 Murata Mfg Co Ltd 圧電性磁器組成物
CN101265090A (zh) * 2008-04-21 2008-09-17 天津大学 锶、钡掺杂铌锑锆钛酸铅系压电陶瓷及制备方法
CN102295456A (zh) * 2011-06-15 2011-12-28 中国科学院上海硅酸盐研究所 一种pmn-pzt基透明电光陶瓷材料及其制备方法
CN103360069A (zh) * 2013-07-17 2013-10-23 肇庆捷成电子科技有限公司 锆钛酸铅b位铌锑复合取代改性的压电陶瓷及其制备方法
CN105622097A (zh) * 2015-12-21 2016-06-01 贵州振华红云电子有限公司 耐高温压电陶瓷及其制备方法
CN108249919A (zh) * 2017-12-27 2018-07-06 贵州振华红云电子有限公司 Psn-pzt压电陶瓷片及其制备方法
CN109437895A (zh) * 2018-11-26 2019-03-08 中国电子科技集团公司第四十六研究所 一种锆钛酸铅-铌镁酸铅压电陶瓷的制备方法
CN109503157A (zh) * 2018-12-17 2019-03-22 贵州振华红云电子有限公司 一种高致密度高压电常数的压电陶瓷
CN111362695A (zh) * 2020-03-18 2020-07-03 广州凯立达电子股份有限公司 一种锆钛酸铅压电陶瓷及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147682A (ja) * 1990-10-09 1992-05-21 Sumitomo Metal Ind Ltd 圧電材料
JPH04270121A (ja) * 1990-12-27 1992-09-25 Murata Mfg Co Ltd 圧電性磁器組成物
JPH04342462A (ja) * 1990-12-27 1992-11-27 Murata Mfg Co Ltd 圧電性磁器組成物
CN101265090A (zh) * 2008-04-21 2008-09-17 天津大学 锶、钡掺杂铌锑锆钛酸铅系压电陶瓷及制备方法
CN102295456A (zh) * 2011-06-15 2011-12-28 中国科学院上海硅酸盐研究所 一种pmn-pzt基透明电光陶瓷材料及其制备方法
CN103360069A (zh) * 2013-07-17 2013-10-23 肇庆捷成电子科技有限公司 锆钛酸铅b位铌锑复合取代改性的压电陶瓷及其制备方法
CN105622097A (zh) * 2015-12-21 2016-06-01 贵州振华红云电子有限公司 耐高温压电陶瓷及其制备方法
CN108249919A (zh) * 2017-12-27 2018-07-06 贵州振华红云电子有限公司 Psn-pzt压电陶瓷片及其制备方法
CN109437895A (zh) * 2018-11-26 2019-03-08 中国电子科技集团公司第四十六研究所 一种锆钛酸铅-铌镁酸铅压电陶瓷的制备方法
CN109503157A (zh) * 2018-12-17 2019-03-22 贵州振华红云电子有限公司 一种高致密度高压电常数的压电陶瓷
CN111362695A (zh) * 2020-03-18 2020-07-03 广州凯立达电子股份有限公司 一种锆钛酸铅压电陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RYU ET AL.: "Effect of heating rate on the sintering behavior and the piezoelectric properties of lead zirconate titanate ceramics", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
杨坚 等: "烧结温度和升温速率对Pb(Sb1/3Mn2/3)0.05Zr0.47Ti0.48O3压电陶瓷性能的影响", 《人工晶体学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115490512A (zh) * 2022-09-19 2022-12-20 大富科技(安徽)股份有限公司 5g微波介质陶瓷材料及其制备方法、微波介质陶瓷器件
CN115490512B (zh) * 2022-09-19 2023-10-20 大富科技(安徽)股份有限公司 5g微波介质陶瓷材料及其制备方法、微波介质陶瓷器件

Similar Documents

Publication Publication Date Title
JP5557572B2 (ja) セラミクス、圧電素子および圧電素子の製造方法
CN109574656A (zh) 一种高储能钛酸铋钠-钛酸锶基介质材料及其制备方法
CN101805185B (zh) 一种制备铌镁酸铅钛酸铅弛豫铁电陶瓷的方法
CN110776311B (zh) 一种热压烧结制备钙钛矿型复合氧化物高熵陶瓷的方法
CN111747740B (zh) 钐离子掺杂锆钛酸铅基高性能压电陶瓷及其制备方法
JP5710077B2 (ja) 圧電セラミックスの製造方法、圧電セラミックス、および圧電素子
CN107216130A (zh) 一种pht‑pnn压电陶瓷材料的制备方法
CN114591082A (zh) 一种pzt-pnn-psn-pmn压电陶瓷及其制备方法
CN106673643A (zh) 一种(Bi0.5Na0.5)1‑xSrxTiO3体系无铅弛豫铁电体的制备方法
CN110357624B (zh) 高介电常数玻璃料改性锆酸锶掺杂铌酸钾钠无铅透明陶瓷材料及其制备方法
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
TW202243296A (zh) 壓電積層體、壓電積層體的製造方法、濺鍍靶材及濺鍍靶材的製造方法
CN113773078A (zh) 一种大功率型压电陶瓷材料及其制备方法
CN115849905A (zh) 一种高温压电陶瓷材料、制备方法及应用
CN111704461B (zh) 一种高居里点低温共烧压电陶瓷配方及制备方法
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN114249592A (zh) 硬性压电陶瓷材料的制备方法
CN113880574A (zh) 一种基于pzt-5型陶瓷晶片堆叠烧结方法
CN113800904A (zh) 一种高能量低损耗的BNT-SBT-xSMN陶瓷材料及其制备方法
JP2006256925A (ja) 圧電セラミックス用焼結助剤および圧電セラミックス
CN116082034B (zh) 一种高储能特性的钛酸铋钠基高熵陶瓷材料及其制备方法和应用
CN114560695B (zh) 一种高储能密度和高储能效率的复合陶瓷材料制备方法
KR101110365B1 (ko) 압전 세라믹스 제조방법
CN115073159B (zh) 一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷及其低温含氧热压烧结制备方法
JP2007258597A (ja) 圧電体の分極方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220607