CN115073159B - 一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷及其低温含氧热压烧结制备方法 - Google Patents

一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷及其低温含氧热压烧结制备方法 Download PDF

Info

Publication number
CN115073159B
CN115073159B CN202210912495.XA CN202210912495A CN115073159B CN 115073159 B CN115073159 B CN 115073159B CN 202210912495 A CN202210912495 A CN 202210912495A CN 115073159 B CN115073159 B CN 115073159B
Authority
CN
China
Prior art keywords
ceramic
temperature
equal
tio
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210912495.XA
Other languages
English (en)
Other versions
CN115073159A (zh
Inventor
陈巧红
杨心怡
杨华斌
关士博
王雪婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202210912495.XA priority Critical patent/CN115073159B/zh
Publication of CN115073159A publication Critical patent/CN115073159A/zh
Application granted granted Critical
Publication of CN115073159B publication Critical patent/CN115073159B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2616Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing lithium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种具有高居里温度及高压电性能的铁酸铋‑钛酸钡陶瓷及其低温含氧热压烧结制备方法,所述陶瓷的组成通式为:(1‑u)BiFeO3uBaTiO3+1.0mol%MnCO3+xmol%(Bi0.5Na0.25Li0.25)TiO3+ymol%Ba(W1/2Cu1/2)O3+zmol%B2O3,其中u、xyz表示摩尔分数,(Bi0.5Na0.25Li0.25)TiO3、Ba(W0.5Cu0.5)O3及B2O3为低温烧结助剂,且0.20≤u≤0.45,0<x≤2.0,0≤y≤5.0,0≤z≤5.0。本方法通过添加烧结助剂,可在820℃‑920℃及25Mpa压力、在含氧气氛下条件下热压烧结成瓷。本发明降低了铁酸铋‑钛酸钡陶瓷的烧结温度、减少了Bi元素的挥发、提高了陶瓷的致密度和降低了陶瓷的介电损耗,获得了高压电性能、高居里温度及低介电损耗的无铅压电陶瓷。

Description

一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷及 其低温含氧热压烧结制备方法
技术领域
本发明涉及无铅压电陶瓷及低温热压烧结制备技术,涉及铁酸铋-钛酸钡陶瓷,尤其是一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷及其低温含氧热压烧结制备方法。
背景技术
压电陶瓷在航空航天、核电、石油化工、地质勘探、冶金、汽车燃油监控、3D打印、高温超声波应用等高技术领域具有广泛应用。目前在该领域内的应用主要以锆钛酸铅(PZT)及其改性的压电陶瓷体系为主,为了节约能源和降低生产成本,通过采用各种烧结助剂来降低陶瓷的烧结温度,同时多层压电陶瓷为了降低内电极成本,也希望获得更低的烧结温度。目前锆钛酸铅体系的烧结温度已经降到了950℃左右,但是在此温度下烧结制备多层压电陶瓷仍存在铅挥发问题,严重污染环境,因此压电陶瓷的无铅化具有重要的社会意义。
BiFeO3-BaTiO3陶瓷具有居里温度高、烧结温度低、无毒、钙钛矿结构的优异特性,然而在烧结过程中,由于BiFeO3与BaTiO3的烧结成瓷温度差太大,分别为830℃和1400℃,烧结温度过低则成瓷不充分,无法极化。烧结温度过高则Bi元素挥发严重。为了平衡化合价,Bi元素挥发会导致陶瓷中产生大量氧空位和晶格缺陷以及孔洞,使得该体系的介电损耗很高而无法极化,添加Mn元素掺杂改性后,有效的提高了该体系电阻率,降低了介电损耗,但介电损耗仍然偏高(≥5%),因此降低BiFeO3-BaTiO3陶瓷的介电损耗可以从降低烧结温和提高陶瓷致密度方面来开展工作。
公开号为CN102584195A的专利公开了一种铋基钙钛矿型无铅压电陶瓷及其低温制备方法,采用通过添加低温烧结助剂的固相合成烧结方法,成功将烧结温度降至900℃左右,但是铋元素的挥发和介电损耗偏高的问题仍然未得到解决。
热压烧结是一种常用的陶瓷制备方法,然而由于需要耐高温的热压模具,因此热压烧结需要在无氧保护气氛下烧结。在BiFeO3-BaTiO3体系陶瓷的制备过程中,由于该体系极易在烧结过程中产生氧空位,因此无法在无氧气氛下烧结。
发明内容
针对上述现有技术存在的问题,本发明提供一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷及其低温含氧热压烧结制备方法,以降低BiFeO3-BaTiO3体系陶瓷的烧结温度,减少Bi元素的挥发、提高该体系陶瓷的居里温度和高温温度稳定性,获得具有高压电性能、高居里温度、低介电损耗的BiFeO3-BaTiO3无铅压电陶瓷。
实现本发明目的的技术方案是:
一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷,所述陶瓷的组成通式为:
(1-u)BiFeO3-uBaTiO3+1.0mol%MnCO3+xmol%(Bi0.5Na0.25Li0.25)TiO3+ymol%Ba(W1/2Cu1/2)O3+zmol%B2O3,其中u、x、y和z表示摩尔分数,(Bi0.5Na0.25Li0.25)TiO3、Ba(W0.5Cu0.5)O3及B2O3为低温烧结助剂,且0.20≤u≤0.45,0<x≤2.0,0≤y≤5.0,0≤z≤5.0。
所述具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷的低温含氧热压烧结制备方法,包括如下步骤:
1)以分析纯Fe2O3、Bi2O3、Li2CO3、Na2CO3、TiO2和纳米BaTiO3粉末为原料,按照(1-u)BiFeO3-uBaTiO3+xmol%(Bi0.5Na0.25Li0.25)TiO3进行配料,其中0.20≤u≤0.45,0<x≤2.0,以无水乙醇为介质球磨24h,取出后在100℃烘干12h、200-250目过筛,放入高铝坩埚中压紧、加盖,以250℃/h的升温速率升温至750℃保温6h合成备用;
2)以分析纯BaCO3、WO3和CuO为原料,按照Ba(Cu1/2W1/2)O3化学式的比例配料,混合球磨24h,取出后烘干、200-250目过筛,放入高铝坩埚中压紧加盖,以250℃/h的升温速率升至850℃保温6h合成备用;
3)将步骤1)合成的(1-u)BiFeO3-uBaTiO3+xmol%(Bi0.5Na0.25Li0.25)TiO3及步骤2)合成的Ba(Cu1/2W1/2)O3粉末与B2O3及MnCO3按照(1-u)BiFeO3-uBaTiO3+1.0mol%MnCO3+xmol%(Bi0.5Na0.25Li0.25)TiO3+ymol%Ba(Cu1/2W1/2)O3+zmol%B2O3配料,其中0.20≤u≤0.45,0<x≤2.0,0≤y≤5.0,0≤z≤5.0,并以无水乙醇为介质,球磨24h后取出烘干、200-250目过筛备用;
4)将步骤3)合成的粉末放入热压烧结机中,采用氧化铝刚玉模具,直接在空气或纯氧气氛条件下,以5℃/min的速率升温至100℃,保温15min排除粉末中的水蒸气,再以20℃/min的升温速率快速升温至820℃-920℃的烧结温度后保持温度不变,并开始加压至25Mpa,保温保压30min后,断电、开水冷,快速冷却至室温;
5)将烧结后的样品根据需求切割成大小不同的陶瓷片,并打磨加工成两面光滑、厚度为0.5-1.0mm的薄片,披银电极;
6)将所烧制的压电陶瓷片在硅油中极化,极化电场6000V/mm,温度120℃,保温时间30min,保持电场并冷却至室温。
本发明采用氧化铝刚玉模具,同时在BiFeO3-BaTiO3粉末中添加烧结助剂Ba(W1/ 2Cu1/2)O3、(Bi0.5Na0.25Li0.25)TiO3、B2O3降低烧结温度,将该体系在纯氧气氛或含氧气氛条件下热压烧结,最低热压烧结温度降到了820℃,同时还利用(Bi0.5Na0.25Li0.25)TiO3的低容忍因子特性提高该体系的居里温度和高温温度稳定性,最终获得了具有高压电性能、高居里温度、低介电损耗的BiFeO3-BaTiO3无铅压电陶瓷。
本发明产生的积极效果是:
(1)本技术方案充分利用了Ba(Cu1/2W1/2)O3与(Bi0.5Na0.25Li0.25)TiO3的钙钛矿结构和低熔点的特性,与(1-u)BiFeO3-uBaTiO3形成良好的固溶体,同时通过添加低熔点的B2O3,在烧结过程中形成低温液相,大幅降低该体系的热压烧结温度至820℃,促进晶界移动和晶粒长大,获得晶粒生长均匀的压电陶瓷;另一方面,充分利用(Bi0.5Na0.25Li0.25)TiO3的低容忍因子的特性,提高了该体系的居里温度和高温稳定性;
(2)热压烧结为在一密闭的空间进行,可以有效的防止Bi元素的挥发,也会减少孔洞和氧空位的产生,同时热压提高了陶瓷的致密度,减少了晶格缺陷,有利于降低陶瓷的介电损耗;
(3)本热压烧结是在含氧气氛条件下完成,可以有效地避免BiFeO3-BaTiO3陶瓷在热压烧接过程中氧空位的产生,并且在降温时采用水冷强制快速降温,减少了降温阶段的时间,有利于减少中间相的产生。
本发明通过添加烧结助剂和热压工艺,成功地将(1-u)BiFeO3-uBaTiO3+1.0mol%MnCO3陶瓷的烧结温度从960℃降低至820℃-920℃,并在降低烧结温度的同时,将该体系的相对致密度从95%提高到了99%,获得了具有高居里温度、高压电性能及低介电损耗的压电陶瓷样品,其具有优异的压电性能和高温稳定性。实施例1制备的样品原位动态退极化测试结果表明,见附图1,本发明技术制备的压电陶瓷,使用温度范围可达到300℃以上,在最高温度点315℃时,其压电性能达到了498pC/N,与现有公开的技术对比,在如此高的温度下,尚未有压电性能超越300pC/N的压电陶瓷材料,因此本发明所制备的陶瓷,具有重大的突破性和创新性。
附图说明
图1为本发明实施例1制备的陶瓷的原位动态退极化曲线图。
具体实施方式
下面通过实施例和附图对本发明内容作进一步的阐述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷,所述陶瓷的化学式为:0.68BiFeO3-0.32BaTiO3+1.0mol%MnCO3+1.0mol%(Bi0.5Na0.25Li0.25)TiO3+2.5mol%B2O3+
3.0mol%Ba(Cu1/2W1/2)O3
所述陶瓷的低温含氧热压烧结制备方法包括如下步骤:
(1)以分析纯Fe2O3、Bi2O3、Li2CO3、Na2CO3、TiO2和纳米BaTiO3粉末为原料,按照0.68BiFeO3-0.32BaTiO3+1.0mol%(Bi0.5Na0.25Li0.25)TiO3进行配料,以无水乙醇为介质球磨24h,取出后在100℃烘干12h、200目过筛,放入高铝坩埚中压紧、加盖,以250℃/h的升温速率升温至750℃保温6h合成备用;
(2)以分析纯BaCO3、WO3和CuO为原料,按照Ba(Cu1/2W1/2)O3化学式的比例配料,混合球磨24小时,取出后烘干、200目过筛,放入高铝坩埚中压紧加盖,以250℃/h的升温速率升至850℃保温6h合成备用;
(3)将步骤(1)合成的0.68BiFeO3-0.32BaTiO3+1.0mol%(Bi0.5Na0.25Li0.25)TiO3及步骤(2)合成的Ba(Cu1/2W1/2)O3粉末与B2O3及MnCO3按照0.68BiFeO3-0.32BaTiO3+1.0mol%MnCO3+1.0mol%(Bi0.5Na0.25Li0.25)TiO3+3.0mol%Ba(Cu1/2W1/2)O3+2.5mol%B2O3配料,并以无水乙醇为介质,球磨24h后取出烘干、200目过筛备用;
(4)将步骤(3)合成的粉末放入热压烧结机中,采用氧化铝刚玉模具,直接在空气或纯氧气氛条件下,以5℃/min的升温速率升温至100℃,保温15min排除粉末中的水蒸气,再以20℃/min的升温速率升温至880℃的烧结温度后保温,同时逐渐加压至25Mpa,保温保压30min后,断电、开水冷,快速冷却至室温;
(5)将烧结后的样品根据需求切割成大小不同的陶瓷片,并打磨加工成两面光滑、厚度为1.0mm的薄片,薄片呈硬币形状或长方体形,披银电极;
(6)将所烧制的压电陶瓷片在硅油中极化,极化电场6000V/mm,温度120℃,保温时间30min,保持电场并冷却至室温。
性能测量结果如下:
d33(pC/N) Qm kp εr Tanδ(%) Tc(℃) Td(℃)
498 74 0.32 665 1.53 523 490
实施例1制备的样品原位动态退极化测试结果表明,见附图1,本发明技术制备的压电陶瓷,使用温度范围可达到300℃以上,在最高温度点315℃时,其压电性能达到了498pC/N。
实施例2:
一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷,所述陶瓷的化学式为:
0.70BiFeO3-0.30BaTiO3+1.0mol%MnCO3+2.0mol%Ba(Cu1/2W1/2)O3+2.5mol%B2O3+
1.5mol%(Bi0.5Na0.25Li0.25)TiO3
所述陶瓷的低温含氧热压烧结制备方法同实施例1,不同的是步骤(4)的烧结温度为870℃。
性能测量结果如下:
d33(pC/N) Qm kp εr Tanδ(%) Tc(℃) Td(℃)
466 68 0.34 647 1.38 556 525
实施例3:
一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷,所述陶瓷的化学式为:
0.65BiFeO3-0.35BaTiO3+1.0mol%MnCO3+1.0mol%Ba(Cu1/2W1/2)O3+2.5mol%B2O3+
1.0mol%(Bi0.5Na0.25Li0.25)TiO3
所述陶瓷的低温含氧热压烧结制备方法同实施例1,不同的是步骤(4)的烧结温度920℃。性能测量结果如下:
d33(pC/N) Qm kp εr Tanδ(%) Tc(℃) Td(℃)
418 50 0.28 781 1.95 473 445
实施例4:
一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷,所述陶瓷的化学式为:
0.75BiFeO3-0.25BaTiO3+1.0mol%MnCO3+2.0mol%Ba(Cu1/2W1/2)O3+1.0mol%B2O3+
1.0mol%(Bi0.5Na0.25Li0.25)TiO3
所述陶瓷的低温含氧热压烧结制备方法同实施例1,不同的是步骤(4)的烧结温度为820℃。
性能测量结果如下:
d33(pC/N) Qm kp εr Tanδ(%) Tc(℃) Td(℃)
407 39 0.31 583 0.96 590 545
上述实施例所列举的成分的上下限、区间取值以及工艺参数的上下限、区间取值都能实现本发明,在此不一一列举实施。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的保护范围由所附权利要求及其等同物限定。

Claims (7)

1.一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷,其特征在于,所述陶瓷的组成通式为:
(1-u)BiFeO3-uBaTiO3+1.0mol%MnCO3+xmol%(Bi0.5Na0.25Li0.25)TiO3+ymol%Ba(W1/ 2Cu1/2)O3+zmol%B2O3,其中u、x、y和z表示摩尔分数,(Bi0.5Na0.25Li0.25)TiO3、Ba(W0.5Cu0.5)O3及B2O3为低温烧结助剂,且0.20≤u≤0.45,0<x≤2.0,0<y≤5.0,0<z≤5.0。
2.权利要求1所述的具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷的低温含氧热压烧结制备方法,其特征在于,包括如下步骤:
1)以分析纯Fe2O3、Bi2O3、Li2CO3、Na2CO3、TiO2和纳米BaTiO3粉末为原料,按照(1-u)BiFeO3-uBaTiO3+xmol%(Bi0.5Na0.25Li0.25)TiO3进行配料,其中0.20≤u≤0.45,0<x≤2.0,以无水乙醇为介质球磨24h,取出后在100℃烘干12h、200-250目过筛,放入高铝坩埚中压紧、加盖,以250℃/h的升温速率升温至750℃保温6h合成备用;
2)以分析纯BaCO3、WO3和CuO为原料,按照Ba(Cu1/2W1/2)O3化学式的比例配料,混合球磨24h,取出后烘干、200-250目过筛,放入高铝坩埚中压紧加盖,以250℃/h的升温速率升至850℃保温6h合成备用;
3)将步骤1)合成的(1-u)BiFeO3-uBaTiO3+xmol%(Bi0.5Na0.25Li0.25)TiO3及步骤2)合成的Ba(Cu1/2W1/2)O3粉末与B2O3及MnCO3按照(1-u)BiFeO3-uBaTiO3+1.0mol%MnCO3+xmol%(Bi0.5Na0.25Li0.25)TiO3+ymol%Ba(Cu1/2W1/2)O3+zmol%B2O3配料,其中0.20≤u≤0.45,0<x≤2.0,0<y≤5.0,0<z≤5.0,并以无水乙醇为介质,球磨24h后取出烘干、200-250目过筛备用;
4)将步骤3)合成的粉末放入热压烧结机中,采用氧化铝刚玉模具,直接在空气或纯氧气氛条件下,以5℃/min的速率升温至100℃,保温15min排除粉末中的水蒸气,再以20℃/min的升温速率快速升温至820℃-920℃的烧结温度后保持温度不变,并开始加压至25Mpa,保温保压30min后,断电、开水冷,快速冷却至室温;
5)将烧结后的样品根据需求切割成大小不同的陶瓷片,并打磨加工成两面光滑、厚度为0.5-1.0mm的薄片,披银电极;
6)将所烧制的压电陶瓷片在硅油中极化,极化电场6000V/mm,温度120℃,保温时间30min,保持电场并冷却至室温。
3.根据权利要求1所述的具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷,其特征在于,所述陶瓷的化学式为:
0.68BiFeO3-0.32BaTiO3+1.0mol%MnCO3+1.0mol%(Bi0.5Na0.25Li0.25)TiO3+2.5mol%B2O3+3.0mol%Ba(Cu1/2W1/2)O3
4.权利要求3所述的具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷的低温含氧热压烧结制备方法,其特征在于,包括如下步骤:
(1)以分析纯Fe2O3、Bi2O3、Li2CO3、Na2CO3、TiO2和纳米BaTiO3粉末为原料,按照0.68BiFeO3-0.32BaTiO3+1.0mol%(Bi0.5Na0.25Li0.25)TiO3进行配料,以无水乙醇为介质球磨24h,取出后在100℃烘干12h、200目过筛,放入高铝坩埚中压紧、加盖,以250℃/h的升温速率升温至750℃保温6h合成备用;
(2)以分析纯BaCO3、WO3和CuO为原料,按照Ba(Cu1/2W1/2)O3化学式的比例配料,混合球磨24小时,取出后烘干、200目过筛,放入高铝坩埚中压紧加盖,以250℃/h的升温速率升至850℃保温6h合成备用;
(3)将步骤(1)合成的0.68BiFeO3-0.32BaTiO3+1.0mol%(Bi0.5Na0.25Li0.25)TiO3及步骤(2)合成的Ba(Cu1/2W1/2)O3粉末与B2O3及MnCO3按照0.68BiFeO3-0.32BaTiO3+1.0mol%MnCO3+1.0mol%(Bi0.5Na0.25Li0.25)TiO3+3.0mol%Ba(Cu1/2W1/2)O3+2.5mol%B2O3配料,并以无水乙醇为介质,球磨24h后取出烘干、200目过筛备用;
(4)将步骤(3)合成的粉末放入热压烧结机中,采用氧化铝刚玉模具,直接在空气或纯氧气氛条件下,以5℃/min的升温速率升温至100℃,保温15min排除粉末中的水蒸气,再以20℃/min的升温速率升温至880℃的烧结温度后保温,同时逐渐加压至25Mpa,保温保压30min后,断电、开水冷,快速冷却至室温;
(5)将烧结后的样品根据需求切割成大小不同的陶瓷片,并打磨加工成两面光滑、厚度为1.0mm的薄片,薄片呈硬币形状或长方体形,披银电极;
(6)将所烧制的压电陶瓷片在硅油中极化,极化电场6000V/mm,温度120℃,保温时间30min,保持电场并冷却至室温。
5.根据权利要求1所述的具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷,其特征在于,所述陶瓷的化学式为:
0.70BiFeO3-0.30BaTiO3+1.0mol%MnCO3+2.0mol%Ba(Cu1/2W1/2)O3+2.5mol%B2O3+1.5mol%(Bi0.5Na0.25Li0.25)TiO3
6.根据权利要求1所述的具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷,其特征在于,所述陶瓷的化学式为:
0.65BiFeO3-0.35BaTiO3+1.0mol%MnCO3+1.0mol%Ba(Cu1/2W1/2)O3+2.5mol%B2O3+1.0mol%(Bi0.5Na0.25Li0.25)TiO3
7.根据权利要求1所述的具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷,其特征在于,所述陶瓷的化学式为:
0.75BiFeO3-0.25BaTiO3+1.0mol%MnCO3+2.0mol%Ba(Cu1/2W1/2)O3+1.0mol%B2O3+1.0mol%(Bi0.5Na0.25Li0.25)TiO3
CN202210912495.XA 2022-07-30 2022-07-30 一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷及其低温含氧热压烧结制备方法 Active CN115073159B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210912495.XA CN115073159B (zh) 2022-07-30 2022-07-30 一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷及其低温含氧热压烧结制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210912495.XA CN115073159B (zh) 2022-07-30 2022-07-30 一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷及其低温含氧热压烧结制备方法

Publications (2)

Publication Number Publication Date
CN115073159A CN115073159A (zh) 2022-09-20
CN115073159B true CN115073159B (zh) 2023-09-26

Family

ID=83242407

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210912495.XA Active CN115073159B (zh) 2022-07-30 2022-07-30 一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷及其低温含氧热压烧结制备方法

Country Status (1)

Country Link
CN (1) CN115073159B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1541978A (zh) * 2003-11-07 2004-11-03 四川大学 钛酸铋钠锂钡锶钙系无铅压电陶瓷
JP2007031219A (ja) * 2005-07-28 2007-02-08 Toyota Motor Corp チタン酸ビスマスナトリウム−ジルコニウムチタン酸バリウム系無鉛圧電セラミック及びその製造方法
WO2008078703A1 (ja) * 2006-12-25 2008-07-03 Kyocera Corporation 圧電磁器および圧電素子
CN104387049A (zh) * 2014-11-27 2015-03-04 桂林电子科技大学 一种无铅压电陶瓷及其低温液相烧结制备方法
JP2015130505A (ja) * 2013-06-28 2015-07-16 セイコーエプソン株式会社 圧電材料の製造方法、圧電素子、液体噴射ヘッド、液体噴射装置、超音波センサー、圧電モーター及び発電装置
CN110128127A (zh) * 2019-07-01 2019-08-16 桂林电子科技大学 一种具有高压电性能及高温稳定性的铁酸铋-钛酸钡基无铅压电陶瓷及其制备方法
CN110128126A (zh) * 2019-07-01 2019-08-16 桂林电子科技大学 一种铁酸铋-钛酸钡-锌钛酸铋-铝酸铋高温无铅压电陶瓷及其制备方法
CN110128128A (zh) * 2019-07-01 2019-08-16 桂林电子科技大学 一种具有零温度系数及高温稳定性的铁酸铋-铝酸铋-锌钛酸铋高温压电陶瓷及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7959823B2 (en) * 2005-10-27 2011-06-14 Kyocera Corporation Piezoelectric ceramic composition and piezoelectric ceramic

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1541978A (zh) * 2003-11-07 2004-11-03 四川大学 钛酸铋钠锂钡锶钙系无铅压电陶瓷
JP2007031219A (ja) * 2005-07-28 2007-02-08 Toyota Motor Corp チタン酸ビスマスナトリウム−ジルコニウムチタン酸バリウム系無鉛圧電セラミック及びその製造方法
WO2008078703A1 (ja) * 2006-12-25 2008-07-03 Kyocera Corporation 圧電磁器および圧電素子
JP2015130505A (ja) * 2013-06-28 2015-07-16 セイコーエプソン株式会社 圧電材料の製造方法、圧電素子、液体噴射ヘッド、液体噴射装置、超音波センサー、圧電モーター及び発電装置
CN104387049A (zh) * 2014-11-27 2015-03-04 桂林电子科技大学 一种无铅压电陶瓷及其低温液相烧结制备方法
CN110128127A (zh) * 2019-07-01 2019-08-16 桂林电子科技大学 一种具有高压电性能及高温稳定性的铁酸铋-钛酸钡基无铅压电陶瓷及其制备方法
CN110128126A (zh) * 2019-07-01 2019-08-16 桂林电子科技大学 一种铁酸铋-钛酸钡-锌钛酸铋-铝酸铋高温无铅压电陶瓷及其制备方法
CN110128128A (zh) * 2019-07-01 2019-08-16 桂林电子科技大学 一种具有零温度系数及高温稳定性的铁酸铋-铝酸铋-锌钛酸铋高温压电陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ying Li 等."Enhancement in multiferroic and piezoelectric properties of BiFeO3–BaTiO3–Bi0.5Na0.5TiO3 lead-free ceramics with MnO2 addition by optimizing sintering temperature and dwell time".《Materials Research Bulletin》.2015,第92-99页. *

Also Published As

Publication number Publication date
CN115073159A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN110272270B (zh) 一种具有低介电损耗及高温稳定性的铁酸铋-钛酸钡基高温无铅压电陶瓷及其制备方法
CN109354492B (zh) 铋基无铅高储能密度陶瓷材料及其制备方法
CN107698252B (zh) 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法
JP5114730B2 (ja) 圧電セラミックスの製造方法
CN113929450B (zh) 一种高压电性能的CaBi4Ti4O15陶瓷的制备方法
CN111747740B (zh) 钐离子掺杂锆钛酸铅基高性能压电陶瓷及其制备方法
CN108546125B (zh) 一种面向高温环境应用的压电陶瓷材料及其制备方法
CN110128127B (zh) 一种具有高压电性能及高温稳定性的铁酸铋-钛酸钡基无铅压电陶瓷及其制备方法
CN114621004B (zh) 一种高储能密度的高熵陶瓷材料及其制备方法
CN113213929A (zh) 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法
CN111233465A (zh) 一种钛酸铋钠-钛酸钡无铅压电织构陶瓷及其制备方法
CN109553413B (zh) 一种织构化压电陶瓷及其制备方法和用途
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN107903055B (zh) 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
CN115073160B (zh) 一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷的热压烧结制备方法
CN111072065A (zh) 一种[111]取向的钛酸锶模板材料及其制备方法
CN113979748A (zh) 一种铌酸钠钾基无铅压电陶瓷及其制备方法
CN103880416B (zh) 钛酸铋钠基无铅压电陶瓷的低温烧结制备方法
CN115073159B (zh) 一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷及其低温含氧热压烧结制备方法
CN112457011A (zh) 扬声器用四元系压电陶瓷及其制备方法
CN107021754B (zh) 分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷及其制备方法
CN109456055A (zh) 一种高击穿高极化钛酸铋钠陶瓷材料、制备方法及应用
CN115321980A (zh) 一种铌酸钾钠(knn)基无铅压电陶瓷的制备方法
CN115093212B (zh) 一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷及其低温液相烧结制备方法
CN103159475B (zh) B位复合Bi基化合物组成的无铅压电陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant