CN113621926A - 一种低应力类金刚石耐磨涂层及其制备方法 - Google Patents

一种低应力类金刚石耐磨涂层及其制备方法 Download PDF

Info

Publication number
CN113621926A
CN113621926A CN202110930166.3A CN202110930166A CN113621926A CN 113621926 A CN113621926 A CN 113621926A CN 202110930166 A CN202110930166 A CN 202110930166A CN 113621926 A CN113621926 A CN 113621926A
Authority
CN
China
Prior art keywords
diamond
transition layer
coating
metal
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110930166.3A
Other languages
English (en)
Inventor
贾鑫
黄鹭
孙淼
高思田
施玉书
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Metrology
Original Assignee
National Institute of Metrology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Metrology filed Critical National Institute of Metrology
Priority to CN202110930166.3A priority Critical patent/CN113621926A/zh
Publication of CN113621926A publication Critical patent/CN113621926A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not

Abstract

本发明属于耐磨涂层材料制备领域,具体涉及一种低应力类金刚石耐磨涂层及其制备方法。本发明提供的低应力类金刚石耐磨涂层,包括依次层叠的含金属过渡层、纳米金刚石过渡层和类金刚石涂层。本发明利用纳米金刚石过渡层与类金刚石涂层的近同质外延作用,增加类金刚石中碳元素的过饱和度,降低类金刚石涂层沉积难度,同时降低了类金刚石沉积过程中的残余应力,提高类金刚石涂层与纳米金刚石过渡层结合强度。而且,由于引入了纳米金刚石过渡层,在基体和类金刚石涂层之间形成桥梁作用,提升了类金刚石涂层的承载能力。

Description

一种低应力类金刚石耐磨涂层及其制备方法
技术领域
本发明属于耐磨涂层材料制备领域,具体涉及一种低应力类金刚石耐磨涂层及其制备方法。
背景技术
类金刚石(DLC)薄膜的结构是一种介于金刚石和石墨之间的非晶亚稳态结构,具有高硬度和高弹性模量、优异的减摩抗磨特性、高热导率、良好的光学透过性、低的介电常数、优异的物化惰性和生物兼容性,可广泛应用于机械、电子、光学和热学等领域。
目前,DLC薄膜的制备方法主要以气相沉积技术为主,在DLC薄膜沉积过程中会累积较高的残余应力,从而导致DLC薄膜与基体的结合强度较差,严重限制了DLC薄膜性能的发挥和其在工业上的应用。
发明内容
有鉴于此,本发明提供了一种低应力类金刚石耐磨涂层及其制备方法。本发明提供的低应力类金刚石耐磨涂层具有低应力,与基体的结合强度高。
为了实现以上目的,本发明提供一种低应力类金刚石耐磨涂层。
本发明提供了一种低应力类金刚石耐磨涂层,包括依次层叠的含金属过渡层、纳米金刚石过渡层和类金刚石涂层。
优选地,所述含金属过渡层的材质包括金属、金属氮化物和金属碳化物中的一种或多种。
优选地,所述低应力类金刚石耐磨涂层负载在基体上;所述低应力类金刚石耐磨涂层的含金属过渡层与所述基体接触。
优选地,所述含金属过渡层的厚度为0.1~3μm。
优选地,所述纳米金刚石过渡涂层中纳米金刚石的晶粒度为1~100nm;所述纳米金刚石过渡层的厚度为0.1~3μm。
优选地,所述类金刚石涂层的厚度1~10μm。
本发明还提供了上述技术方案所述的低应力类金刚石耐磨涂层的制备方法,包括以下步骤:
将含金属材料作为靶材,在基体表面进行第一磁控溅射,得到含金属过渡层;
以甲烷为碳源,在所述含金属过渡层表面进行微波辅助化学气相沉积,得到纳米金刚石过渡层;
以石墨为碳源,在所述纳米金刚石过渡层表面进行第二磁控溅射,得到所述低应力类金刚石耐磨涂层。
优选地,所述第一磁控溅射的条件包括:沉积功率为60~100W,本底真空≤1×10- 4Pa,氩气流量为50~80sccm,工作腔压为0.5~1Pa,时间为5~10min。
优选地,所述微波辅助化学气相沉积的条件包括:甲烷和氢气的体积比为0.05~0.15:1,氮气流量为1~1.5sccm,腔压为8~12kPa,功率为1.5~3kW,沉积温度为500℃~700℃,时间为30~60min。
优选地,所述第二磁控溅射的条件包括:沉积功率为300~500W,本底真空≤1×10-4Pa,氩气流量为50~80sccm,工作腔压为0.5~1Pa,时间为100~120min。
本发明提供了一种低应力类金刚石耐磨涂层,包括依次括依次层叠的含金属过渡层、纳米金刚石过渡层和类金刚石涂层。本发明中,纳米金刚石过渡层与类金刚石涂层具有近同质外延作用,增加类金刚石中碳元素的过饱和度,降低类金刚石涂层沉积难度,同时降低了类金刚石沉积过程中的残余应力,提高类金刚石涂层与纳米金刚石过渡层结合强度。而且,由于引入了纳米金刚石过渡层,在基体和类金刚石涂层之间形成桥梁作用,提升类金刚石涂层的承载能力。同时,虽然基体和纳米金刚石过渡层之间由于膨胀系数以及晶体结构的不同,导致两者的热失配度和晶格失配度较大,而含金属过渡层的添加能够有效缓解两者的热失配度和晶格失配度,从而降低沉积时的应力,提高界面结合强度。
附图说明
图1为本发明所述低应力类金刚石涂层制备方法的流程图。
具体实施方式
本发明提供了一种低应力类金刚石耐磨涂层,包括依次层叠的含金属过渡层、纳米金刚石过渡层和类金刚石涂层。
在本发明中,如无特殊说明,本发明所用原料均优选为市售产品。
本发明中,所述含金属过渡层的材质包括金属、金属碳化物和金属氮化物中的一种或多种,进一步优选为金属、金属碳化物或金属氮化物。在本发明中,所述金属优选包括Ti、Cr、W或Mo,进一步优选为Cr或W。在本发明中,所述金属氮化物优选包括TiN。在本发明中,所述金属碳化物优选包括TiC、CrC或WC,进一步优选为CrC或WC。
本发明中,所述含金属过渡层的厚度优选为0.1~3μm,进一步优选为1~3μm。
本发明中,所述纳米金刚石过渡层中纳米金刚石的晶粒度优选为1~100nm,进一步优选为10~90nm,更优选为10~40nm。本发明中,所述纳米金刚石过渡层的厚度优选为0.1~3μm,进一步优选为2~3μm。
本发明中,所述类金刚石涂层的厚度优选为1~10μm,进一步优选为1~4μm。
在本发明中,所述低应力类金刚石耐磨涂层优选负载在基体上;所述低应力类金刚石耐磨涂层的含金属过渡层与所述基体接触。在本发明中,所述基体的材质包括半导体或者金属;所述半导体优选包括硅衬底;所述金属优选包括铝合金、锰合金或合金钢。
本发明还提供了上述所述低应力类金刚石耐磨涂层的制备方法,包括以下步骤:
将含金属材料作为靶材,在基体表面进行第一磁控溅射,得到含金属过渡层;
以甲烷为碳源,在所述含金属过渡层表面进行微波辅助化学气相沉积,得到纳米金刚石过渡层;
以石墨为碳源,在所述纳米金刚石过渡层表面进行第二磁控溅射,得到所述低应力类金刚石耐磨涂层。
本发明将含金属材料作为靶材,在基体表面进行第一磁控溅射,得到含金属过渡层。
本发明中,所述含金属材料与上述技术方案所述的含金属过渡层的材质一致,此处不再赘述。
在本发明中,所述基体的材质优选与上述技术方案一致,在此不再赘述。
本发明中,所述第一磁控溅射前,优选对所述基体进行基体预处理。
本发明中,所述基体预处理优选包括以下步骤:将所述基体依次进行丙酮洗涤、无水乙醇洗涤、去离子水洗涤和风干。本发明对所述基体预处理的操作和参数没有特殊限定,采用本领域技术人员熟知的操作进行处理即可。
本发明中,所述基体预处理的目的在于去除基体表面的杂质。
本发明中,所述第一磁控溅射的条件优选包括:沉积功率为60~100W,进一步优选为80~100W,本底真空≤1×10-4Pa,氩气流量为50~80sccm,进一步优选为50~60sccm,工作腔压为0.5~1Pa,进一步优选为0.5~0.8Pa,时间为5~10min。
得到含金属过渡层后,本发明以甲烷为碳源,在所述含金属过渡层表面进行微波辅助化学气相沉积,得到纳米金刚石过渡层。
在本发明中,所述微波辅助化学气相沉积前,优选还包括将沉积有含金属过渡层的基体进行预处理,所述预处理优选包括依次进行等离子体处理和超声处理。
本发明中,所述等离子体处理的参数优选包括:等离子体包括氮等离子体、氧等离子体、氢等离子体或氟等离子体;氧气流量为10~40sccm;腔压为1~2kPa;施加电压为400V;电流为0.5~1.0A;处理时间为2~5min。
本发明中,所述等离子体处理可以使含金属过渡层形成有利于吸引纳米金刚石颗粒的表面电荷和化学基团。
本发明中,所述超声处理优选包括以下步骤:将等离子体处理后的沉积有含金属过渡层的基体置于纳米金刚石分散液中进行超声。
本发明中,所述纳米金刚石分散液的浓度优选为1~10g/L,进一步优选为1~5g/L;所述纳米金刚石分散液中纳米金刚石的粒径优选为1~100nm,进一步优选为10~100nm。
本发明中,所述超声的时间优选为5~10min。
本发明中,在纳米金刚石分散液中进行超声处理有利于在含金属过渡层表面引入纳米金刚石高密度晶种,从而在含金属过渡层形成高密度形核点,为后续纳米金刚石的沉积提供生长位点。
本发明中,所述微波辅助化学气相沉积条件优选包括:甲烷和氢气的体积比为0.05~0.15:1;氮气流量为1~1.5sccm,优选为1sccm;腔压为8~12kPa,优选为10kPa;功率为1.5~3kW,优选为2kW;沉积温度为500℃~700℃,优选为600℃;时间为30~60min。
在本发明中,利用微波辅助化学气相沉积的具体过程优选包括:
将超声后的负载有含金属过渡层的基体放入炉内,然后通入氢气,开启微波源,进行辉光放电,得到氢等离子体;然后于真空腔依次通入氮气和甲烷,调整真空腔压强,进行沉积。
本发明中,所述氢气自通入开始一直通入直至沉积结束;所述氮气至通入开始一直通入直至沉积结束。
在本发明中,所述氢气的流量优选为250~400sccm,进一步优选为300sccm。
得到纳米金刚石过渡涂层后,本发明以石墨为碳源,在所述纳米金刚石过渡层表面进行第二磁控溅射,得到所述低应力类金刚石耐磨涂层。
本发明中,所述第二磁控溅射的条件包括:功率优选为300~500W,优选为300~400W,本底真空优选≤1×10-4Pa,氩气流量优选为50~80sccm,优选为50~60sccm,工作腔压优选为0.5~1Pa,优选为0.5~0.8Pa,沉积时间优选为100~120min,优选为120min。
在本发明中,当不需要基体的时候,优选在第二磁控溅射后,将基体去除。
图1为所述低应力类金刚石涂层制备方法的流程图。从图1可得,本发明的反应流程为:将含金属材料在基体表面进行第一磁控溅射,得到沉积含金属过渡层的基体;将沉积有含金属过渡层的基体依次进行等离子体处理、超声处理;然后将超声处理后的沉积有含金属过渡层的基体进行微波辅助化学气相沉积,使得纳米金刚石过渡层沉积于含金属过渡层;然后将负载有纳米金刚石过渡层和含金属过渡层的基体进行第二磁控溅射,得到所述低应力类金刚石耐磨涂层。
下面结合实施例对本发明提供的低应力类金刚石耐磨涂层及其制备方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
(1)将轴承钢基体依次采用丙酮、无水乙醇及去离子水清洗,风干。
(2)以纯Cr靶材(纯度为99.99%)在轴承钢衬底表面进行第一磁控溅射,得到过渡层Cr层,所述Cr层的厚度为1μm,所述第一磁控溅射的条件为:沉积功率为100W,本底真空≤1×10-4Pa,氩气流量为50sccm,工作腔压为0.5Pa,时间10min。
(3)对轴承钢衬底表面镀制的Cr层依次进行等离子体处理和超声处理:所述等离子体处理条件包括:等离子体为氧等离子体,氧气流量为30sccm,腔压为1.5kPa,施加电压为400V,电流为1.0A,处理时间为2min;将沉积有Cr层的轴承钢衬底置于纳米金刚石分散液中进行超声;所述纳米金刚石分散液的浓度为1g/L,纳米金刚石的粒径为10nm,超声时间为5min。
(5)在Cr层的表面进行微波辅助化学气相沉积,得到纳米金刚石过渡涂层。
具体步骤:将超声后的负载有Cr层的基体放入炉内,然后通入氢气,开启微波源,进行辉光放电,得到氢等离子体;然后于真空腔依次通入氮气和甲烷,调整真空腔压强,进行沉积。
所述微波辅助化学气相沉积的参数为:氢气的流量为1sccm,氮气流量为1sccm,甲烷和氢气的体积比为0.05~0.15:1,功率为2kW,沉积温度为600℃,腔压为10kPa。
所述纳米金刚石过渡层的厚度为1μm。
(6)以石墨为靶材,在纳米金刚石过渡层表面进行第二磁控溅射,得到类金刚石涂层。第二磁控溅射条件为:沉积功率为300W,本底真空≤1×10-4Pa,氩气流量为50sccm,工作腔压0.5Pa,时间120min。
所述类金刚石涂层的厚度为2μm。
实施例2
(1)将轴承钢基体依次采用丙酮、无水乙醇及去离子水清洗,风干。
(2)以纯W靶材(纯度为99.99%)在轴承钢衬底表面进行第一磁控溅射,得到过渡层W层,所述Cr层的厚度为1μm,所述磁控溅射的条件为:沉积功率为100W,本底真空≤1×10-4Pa,氩气流量为50sccm,工作腔压0.5Pa,时间10min。
(3)对轴承钢衬底表面镀制的W层依次进行等离子体处理和超声处理,所述等离子体处理条件包括:等离子体为氧等离子体,氧气流量为30sccm,腔压为1.5kPa,施加电压为400V,电流为1.0A,处理时间为2min;将沉积有W层的轴承钢衬底置于纳米金刚石溶液中进行超声。所述纳米金刚石水溶液的浓度为5g/L,纳米金刚石粒径为20nm,超声时间为5min。
(4)在W层的表面进行微波辅助化学气相沉积,得到纳米金刚石过渡涂层。
具体步骤:将超声后的负载有W层的基体放入炉内,然后通入氢气,开启微波源,进行辉光放电,得到氢等离子体;然后于真空腔依次通入氮气和甲烷,调整真空腔压强,进行沉积。
所述微波辅助化学气相沉积的参数为:氢气的流量为1sccm,氮气流量为1sccm,甲烷和氢气的体积比为0.05~0.15:1,功率为2kW,沉积温度为600℃,腔压为10kPa。
所述纳米金刚石过渡层的厚度为3μm。
(5)以石墨为靶材,在纳米金刚石过渡层表面进行第二磁控溅射,得到类金刚石涂层。第二磁控溅射条件为:沉积功率为300W,本底真空≤1×10-4Pa,氩气流量为50sccm,工作腔压0.5Pa,时间120min。
所述类金刚石涂层的厚度为1.5μm。
实施例3
(1)将轴承钢基体依次采用丙酮、无水乙醇及去离子水清洗,风干。
(2)以纯WC靶材(纯度为99.99%)在轴承钢衬底表面进行第一磁控溅射,得到过渡层WC层,所述含金属过渡层WC层的厚度为2μm,所述磁控溅射的条件为:沉积功率为100W,本底真空≤1×10-4Pa,氩气流量为50sccm,工作腔压0.5Pa,时间10min。
(3)对轴承钢衬底表面镀制的WC层依次进行等离子体处理和超声处理,所述等离子体处理条件包括:等离子体为氧等离子体,氧气流量为30sccm,腔压为1.5kPa,施加电压为400V,电流为1.0A,处理时间为2min;将沉积有WC层的轴承钢衬底置于纳米金刚石溶液中进行超声。所述纳米金刚石水溶液的浓度为5g/L,纳米金刚石粒径为30nm,超声时间为5min。
(4)在WC层的表面进行微波辅助化学气相沉积,得到纳米金刚石过渡涂层。
具体步骤:将超声后的负载有WC层的基体放入炉内,然后通入氢气,开启微波源,进行辉光放电,得到氢等离子体;然后于真空腔依次通入氮气和甲烷,调整真空腔压强,进行沉积。
所述微波辅助化学气相沉积的参数为:氢气的流量为1sccm,氮气流量为1sccm,甲烷和氢气的体积比为0.05~0.15:1,功率为2kW,沉积温度为600℃,腔压为10kPa。
所述纳米金刚石过渡层的厚度为2μm。
(5)以石墨为靶材,在纳米金刚石过渡层表面进行第二磁控溅射,得到类金刚石涂层。第二磁控溅射条件为:沉积功率为300W,本底真空≤1×10-4Pa,氩气流量为50sccm,工作腔压0.5Pa,时间120min。
所述类金刚石涂层的厚度为2μm。
对比例1
(1)将轴承钢基体依次采用丙酮、无水乙醇及去离子水清洗,风干。
(2)采用磁控溅射发在轴承钢衬底表面沉积Cr层,所述Cr层的厚度为1μm,所述磁控溅射的条件为:沉积功率为100W,本底真空≤1×10-4Pa,氩气流量为50sccm,工作腔压0.5Pa,时间10min。
(3)对轴承钢衬底表面镀制的Cr层依次进行等离子体处理和超声处理,所述等离子体处理条件包括:等离子体为氧等离子体,氧气流量为30sccm,腔压为1.5kPa,施加电压为400V,电流为1.0A,处理时间为2min;将沉积有含金属过渡层的轴承钢衬底置于纳米金刚石溶液中进行超声。所述纳米金刚石水溶液的质量浓度为0.1%,纳米金刚石粒径为10nm,超声时间为5min。
(4)以石墨为靶材,在Cr层表面进行磁控溅射,得到类金刚石涂层。所述磁控溅射的条件为:沉积功率为300W,本底真空≤1×10-4Pa,氩气流量为50sccm,工作腔压0.5Pa,时间120min。
所述类金刚石涂层的厚度为2μm。
本发明还对实施例1~3和对比例1所得的耐磨涂层对基体的结合强度进行了测试,测试方式为:
测试方法采用WS-2005微划痕法,所用仪器压头为锥角为120°的金刚石压头,尖端半径0.2mm,以连续线性加载,每次加载2N,加载速度为0.5N/min。结果如表1所示。
表1实施例1~3及对比例1所得耐磨涂层与基体的结合强度测试结果
实施例1 实施例2 实施例3 对比例1
结合强度(N) 20 18 21 12
通过比较实施例1~3及对比例1可以发现:对比例1和实施例1区别仅仅在于,对比例1没有设置纳米金刚石过渡层,对比例1与基体的结合强度远小于实施例1,证明本发明提供的类金刚石耐磨涂层与基体具有良好的结合强度。
应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种低应力类金刚石耐磨涂层,其特征在于,包括依次层叠的含金属过渡层、纳米金刚石过渡层和类金刚石涂层。
2.根据权利要求1所述的低应力类金刚石耐磨涂层,其特征在于,所述含金属过渡层的材质包括金属、金属氮化物和金属碳化物中的一种或多种。
3.根据权利要求1所述的低应力类金刚石耐磨涂层,其特征在于,所述低应力类金刚石耐磨涂层负载在基体上;所述低应力类金刚石耐磨涂层的含金属过渡层与所述基体接触。
4.根据权利要求1~3任一项所述的低应力类金刚石耐磨涂层,其特征在于,所述含金属过渡层的厚度为0.1~3μm。
5.根据权利要求1~3任一项所述的低应力类金刚石耐磨涂层,其特征在于,所述纳米金刚石过渡涂层中纳米金刚石的晶粒度为1~100nm;所述纳米金刚石过渡层的厚度为0.1~3μm。
6.根据权利要求1~3任一项所述的低应力类金刚石耐磨涂层,其特征在于,所述类金刚石涂层的厚度1~10μm。
7.权利要求3~6任一项所述的低应力类金刚石耐磨涂层的制备方法,其特征在于,包括以下步骤:
以含金属材料作为靶材,在基体表面进行第一磁控溅射,得到含金属过渡层;
以甲烷为碳源,在所述含金属过渡层表面进行微波辅助化学气相沉积,得到纳米金刚石过渡层;
以石墨为碳源,在所述纳米金刚石过渡层表面进行第二磁控溅射,得到所述低应力类金刚石耐磨涂层。
8.根据权利要求7所述的制备方法,其特征在于,所述第一磁控溅射的条件包括:沉积功率为60~100W,本底真空≤1×10-4Pa,氩气流量为50~80sccm,工作腔压为0.5~1Pa,时间为5~10min。
9.根据权利要求7所述的制备方法,其特征在于,所述微波辅助化学气相沉积的条件包括:甲烷和氢气的体积比为(0.05~0.15):1,氮气流量为1~1.5sccm,腔压为8~12kPa,功率为1.5~3kW,沉积温度为500℃~700℃,时间为30~60min。
10.根据权利要求7所述的制备方法,其特征在于,所述第二磁控溅射的条件包括:沉积功率为300~500W,本底真空≤1×10-4Pa,氩气流量为50~80sccm,工作腔压为0.5~1Pa,时间为100~120min。
CN202110930166.3A 2021-08-13 2021-08-13 一种低应力类金刚石耐磨涂层及其制备方法 Pending CN113621926A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110930166.3A CN113621926A (zh) 2021-08-13 2021-08-13 一种低应力类金刚石耐磨涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110930166.3A CN113621926A (zh) 2021-08-13 2021-08-13 一种低应力类金刚石耐磨涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN113621926A true CN113621926A (zh) 2021-11-09

Family

ID=78385334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110930166.3A Pending CN113621926A (zh) 2021-08-13 2021-08-13 一种低应力类金刚石耐磨涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN113621926A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447354A (zh) * 2022-01-26 2022-05-06 纳狮新材料有限公司 一种用于金属极板的类金刚石复合涂层及其制备方法
CN114855143A (zh) * 2022-05-10 2022-08-05 西南石油大学 一种用于抽油泵柱塞的固体薄膜涂层

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070004325A1 (en) * 2005-07-01 2007-01-04 Kinik Company Method for manufacturing diamond film
CN101818332A (zh) * 2010-03-23 2010-09-01 中国地质大学(北京) 一种超硬自润滑金刚石/类金刚石复合多层涂层材料及制备方法
CN102650053A (zh) * 2012-04-25 2012-08-29 上海交通大学 复杂形状cvd金刚石/类金刚石复合涂层刀具制备方法
CN106756880A (zh) * 2015-11-24 2017-05-31 中国科学院深圳先进技术研究院 一种金刚石/类金刚石多层复合涂层及其制备方法
CN107022740A (zh) * 2016-01-29 2017-08-08 广东耐信镀膜科技有限公司 一种超硬多层复合类金刚石涂层及其制备方法
CN109372651A (zh) * 2018-09-25 2019-02-22 安庆帝伯格茨活塞环有限公司 一种类金刚石涂层活塞环及制备方法
CN109811303A (zh) * 2019-01-23 2019-05-28 上海大学 基于类金刚石薄膜中间层的纳米金刚石薄膜制备方法
CN111005009A (zh) * 2019-12-30 2020-04-14 长春理工大学 一种低应力散热层半导体衬底及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070004325A1 (en) * 2005-07-01 2007-01-04 Kinik Company Method for manufacturing diamond film
CN101818332A (zh) * 2010-03-23 2010-09-01 中国地质大学(北京) 一种超硬自润滑金刚石/类金刚石复合多层涂层材料及制备方法
CN102650053A (zh) * 2012-04-25 2012-08-29 上海交通大学 复杂形状cvd金刚石/类金刚石复合涂层刀具制备方法
CN106756880A (zh) * 2015-11-24 2017-05-31 中国科学院深圳先进技术研究院 一种金刚石/类金刚石多层复合涂层及其制备方法
CN107022740A (zh) * 2016-01-29 2017-08-08 广东耐信镀膜科技有限公司 一种超硬多层复合类金刚石涂层及其制备方法
CN109372651A (zh) * 2018-09-25 2019-02-22 安庆帝伯格茨活塞环有限公司 一种类金刚石涂层活塞环及制备方法
CN109811303A (zh) * 2019-01-23 2019-05-28 上海大学 基于类金刚石薄膜中间层的纳米金刚石薄膜制备方法
CN111005009A (zh) * 2019-12-30 2020-04-14 长春理工大学 一种低应力散热层半导体衬底及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P. NIEDZIELSKI等: ""Tribological properties of NCD coated cemented carbides in contact with wood"", 《DIAMOND AND RELATED MATERIALS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447354A (zh) * 2022-01-26 2022-05-06 纳狮新材料有限公司 一种用于金属极板的类金刚石复合涂层及其制备方法
CN114447354B (zh) * 2022-01-26 2022-11-25 纳狮新材料有限公司 一种用于金属极板的类金刚石复合涂层及其制备方法
CN114855143A (zh) * 2022-05-10 2022-08-05 西南石油大学 一种用于抽油泵柱塞的固体薄膜涂层

Similar Documents

Publication Publication Date Title
JP2572438B2 (ja) ガラスプレス成形型の製造方法
CN108677144B (zh) 一种制备铝氮共掺类金刚石复合薄膜的方法
CN110106483B (zh) 一种类石墨颗粒复合的类金刚石涂层及其制备方法和应用
CN113621926A (zh) 一种低应力类金刚石耐磨涂层及其制备方法
JP4755262B2 (ja) ダイヤモンドライクカーボン膜の製造方法
JPH01294867A (ja) 炭素または炭素を主成分とする被膜を形成する方法
JP2001048512A (ja) 垂直配向カーボンナノチューブの作製方法
CN108977781B (zh) 一种硬质合金表面磁控溅射复合技术沉积w-n硬质膜的方法
CN114703452B (zh) 一种CoCrFeNi高熵合金掺杂非晶碳薄膜及其制备方法
CN111218663A (zh) 一种类金刚石保护性涂层及其制备方法
Sein et al. Chemical vapour deposition diamond coating on tungsten carbide dental cutting tools
CN110923650B (zh) 一种dlc涂层及其制备方法
CN110629174B (zh) 利用牵引式氮等离子体增强反应气氛环境制备Ti-Al-N 硬质薄膜的方法
Ohtake et al. Synthesis of diamond-like carbon films by nanopulse plasma chemical vapor deposition at subatmospheric pressure
CN114000147B (zh) 一种耐磨橡胶材料及制备方法
CN113293357B (zh) 一种脉冲复合射频增强空心阴极长管内壁沉积类金刚石涂层方法
TWI554633B (zh) 類鑽碳膜及其製作方法
CN108660427B (zh) 碳纳米线阵列镶嵌在非晶碳薄膜中的碳纳米线/非晶碳复合膜及其制备
KR100928970B1 (ko) 제3의 원소가 첨가된 다이아몬드상 탄소박막의 제조방법
CN112831749B (zh) 一种硬质合金基体及其表面的预处理方法
CN107937914B (zh) 一种在不锈钢表面的过渡层上制备金刚石薄膜的方法
JP4116144B2 (ja) 硬質炭素被膜部材の製造方法
CN115961251B (zh) 一种具有纳米双相结构涂层的钛合金零件及其制备方法
CN111235570B (zh) 在基体表面制备含Si/SixNy梯度的改性膜及方法
KR20150092577A (ko) 플라즈마 처리를 통한 나노 결정 다이아몬드가 포함된 탄소막의 제조방법 및 이를 통해 제조된 나노 결정 다이아몬드를 포함하는 탄소막

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination