CN113621926A - Low-stress diamond-like wear-resistant coating and preparation method thereof - Google Patents

Low-stress diamond-like wear-resistant coating and preparation method thereof Download PDF

Info

Publication number
CN113621926A
CN113621926A CN202110930166.3A CN202110930166A CN113621926A CN 113621926 A CN113621926 A CN 113621926A CN 202110930166 A CN202110930166 A CN 202110930166A CN 113621926 A CN113621926 A CN 113621926A
Authority
CN
China
Prior art keywords
diamond
transition layer
coating
metal
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110930166.3A
Other languages
Chinese (zh)
Inventor
贾鑫
黄鹭
孙淼
高思田
施玉书
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Metrology
Original Assignee
National Institute of Metrology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Metrology filed Critical National Institute of Metrology
Priority to CN202110930166.3A priority Critical patent/CN113621926A/en
Publication of CN113621926A publication Critical patent/CN113621926A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not

Abstract

The invention belongs to the field of wear-resistant coating material preparation, and particularly relates to a low-stress diamond-like wear-resistant coating and a preparation method thereof. The low-stress diamond-like wear-resistant coating provided by the invention comprises a metal-containing transition layer, a nano diamond transition layer and a diamond-like coating which are sequentially stacked. The invention utilizes the near homoepitaxy effect of the nano diamond transition layer and the diamond-like carbon coating, increases the supersaturation degree of carbon element in the diamond-like carbon, reduces the deposition difficulty of the diamond-like carbon coating, simultaneously reduces the residual stress in the diamond-like carbon deposition process, and improves the bonding strength of the diamond-like carbon coating and the nano diamond transition layer. Moreover, due to the introduction of the nano-diamond transition layer, a bridge effect is formed between the substrate and the diamond-like coating, and the bearing capacity of the diamond-like coating is improved.

Description

Low-stress diamond-like wear-resistant coating and preparation method thereof
Technical Field
The invention belongs to the field of wear-resistant coating material preparation, and particularly relates to a low-stress diamond-like wear-resistant coating and a preparation method thereof.
Background
The structure of the diamond-like carbon (DLC) film is an amorphous metastable state structure between diamond and graphite, has high hardness and high elastic modulus, excellent antifriction and wear-resistant characteristics, high thermal conductivity, good optical permeability, low dielectric constant, excellent physicochemical inertia and biocompatibility, and can be widely applied to the fields of machinery, electronics, optics, thermal engineering and the like.
At present, the preparation method of the DLC film mainly adopts a vapor deposition technology, and high residual stress is accumulated in the deposition process of the DLC film, so that the bonding strength of the DLC film and a substrate is poor, and the performance and the industrial application of the DLC film are seriously limited.
Disclosure of Invention
In view of the above, the invention provides a low-stress diamond-like wear-resistant coating and a preparation method thereof. The low-stress diamond-like wear-resistant coating provided by the invention has low stress and high bonding strength with a substrate.
In order to achieve the above object, the present invention provides a low stress diamond-like wear resistant coating.
The invention provides a low-stress diamond-like wear-resistant coating, which comprises a metal-containing transition layer, a nano diamond transition layer and a diamond-like coating which are sequentially stacked.
Preferably, the material of the metal-containing transition layer comprises one or more of metal, metal nitride and metal carbide.
Preferably, the low stress diamond-like wear resistant coating is supported on a substrate; the metal-containing transition layer of the low stress diamond-like wear resistant coating is in contact with the substrate.
Preferably, the thickness of the metal-containing transition layer is 0.1-3 μm.
Preferably, the grain size of the nano-diamond in the nano-diamond transition coating is 1-100 nm; the thickness of the nano diamond transition layer is 0.1-3 mu m.
Preferably, the diamond-like coating has a thickness of 1-10 μm.
The invention also provides a preparation method of the low-stress diamond-like wear-resistant coating, which comprises the following steps:
taking a metal-containing material as a target material, and performing first magnetron sputtering on the surface of a substrate to obtain a metal-containing transition layer;
performing microwave-assisted chemical vapor deposition on the surface of the metal-containing transition layer by using methane as a carbon source to obtain a nano-diamond transition layer;
and performing second magnetron sputtering on the surface of the nano-diamond transition layer by taking graphite as a carbon source to obtain the low-stress diamond-like wear-resistant coating.
Preferably, the first magnetron sputtering conditions include: the deposition power is 60-100W, the background vacuum is less than or equal to 1 multiplied by 10- 4Pa, the argon flow is 50-80 sccm, the working chamber pressure is 0.5-1 Pa, and the time is 5-10 min.
Preferably, the conditions of the microwave-assisted chemical vapor deposition include: the volume ratio of methane to hydrogen is 0.05-0.15: 1, nitrogen flow is 1-1.5 sccm, cavity pressure is 8-12 kPa, power is 1.5-3 kW, deposition temperature is 500-700 ℃, and time is 30-60 min.
Preferably, the second magnetron sputtering conditions include: the deposition power is 300-500W, and the background vacuum is less than or equal to 1 multiplied by 10-4Pa, the argon flow is 50-80 sccm, the working chamber pressure is 0.5-1 Pa, and the time is 100-120 min.
The invention provides a low-stress diamond-like wear-resistant coating, which comprises a metal-containing transition layer, a nano diamond transition layer and a diamond-like coating which are sequentially stacked. According to the invention, the nano-diamond transition layer and the diamond-like coating have a near homoepitaxy effect, the supersaturation degree of carbon element in the diamond-like coating is increased, the deposition difficulty of the diamond-like coating is reduced, the residual stress in the diamond-like coating deposition process is reduced, and the bonding strength of the diamond-like coating and the nano-diamond transition layer is improved. Moreover, due to the introduction of the nano-diamond transition layer, a bridge function is formed between the substrate and the diamond-like coating, and the bearing capacity of the diamond-like coating is improved. Meanwhile, although the thermal mismatch degree and the lattice mismatch degree of the base body and the nano-diamond transition layer are larger due to different expansion coefficients and different crystal structures, the addition of the metal-containing transition layer can effectively relieve the thermal mismatch degree and the lattice mismatch degree of the base body and the nano-diamond transition layer, so that the stress during deposition is reduced, and the interface bonding strength is improved.
Drawings
FIG. 1 is a flow chart of the preparation method of the low stress diamond-like coating of the present invention.
Detailed Description
The invention provides a low-stress diamond-like wear-resistant coating, which comprises a metal-containing transition layer, a nano diamond transition layer and a diamond-like coating which are sequentially stacked.
In the present invention, the starting materials used in the present invention are preferably commercially available products unless otherwise specified.
In the present invention, the material of the metal-containing transition layer includes one or more of a metal, a metal carbide, and a metal nitride, and more preferably a metal, a metal carbide, or a metal nitride. In the present invention, the metal preferably includes Ti, Cr, W or Mo, and more preferably Cr or W. In the present invention, the metal nitride preferably includes TiN. In the present invention, the metal carbide preferably includes TiC, CrC or WC, and more preferably CrC or WC.
In the present invention, the thickness of the metal-containing transition layer is preferably 0.1 to 3 μm, and more preferably 1 to 3 μm.
In the invention, the grain size of the nano-diamond in the nano-diamond transition layer is preferably 1-100 nm, more preferably 10-90 nm, and even more preferably 10-40 nm. In the invention, the thickness of the nano-diamond transition layer is preferably 0.1-3 μm, and more preferably 2-3 μm.
In the invention, the thickness of the diamond-like coating is preferably 1-10 μm, and more preferably 1-4 μm.
In the present invention, the low stress diamond-like wear resistant coating is preferably supported on a substrate; the metal-containing transition layer of the low stress diamond-like wear resistant coating is in contact with the substrate. In the invention, the material of the substrate comprises a semiconductor or a metal; the semiconductor preferably comprises a silicon substrate; the metal preferably comprises an aluminium alloy, a manganese alloy or an alloy steel.
The invention also provides a preparation method of the low-stress diamond-like wear-resistant coating, which comprises the following steps:
taking a metal-containing material as a target material, and performing first magnetron sputtering on the surface of a substrate to obtain a metal-containing transition layer;
performing microwave-assisted chemical vapor deposition on the surface of the metal-containing transition layer by using methane as a carbon source to obtain a nano-diamond transition layer;
and performing second magnetron sputtering on the surface of the nano-diamond transition layer by taking graphite as a carbon source to obtain the low-stress diamond-like wear-resistant coating.
According to the invention, a metal-containing material is used as a target material, and first magnetron sputtering is carried out on the surface of a substrate to obtain a metal-containing transition layer.
In the present invention, the metal-containing material is the same as the metal-containing transition layer described in the above technical solution, and details thereof are not repeated herein.
In the present invention, the material of the substrate is preferably the same as that of the above technical solution, and is not described herein again.
In the present invention, before the first magnetron sputtering, it is preferable to perform a substrate pretreatment on the substrate.
In the present invention, the substrate pretreatment preferably comprises the steps of: and sequentially washing the matrix with acetone, absolute ethyl alcohol, deionized water and air drying. The operation and parameters of the substrate pretreatment in the present invention are not particularly limited, and the substrate pretreatment may be carried out by an operation known to those skilled in the art.
In the present invention, the substrate is pretreated for removing impurities on the surface of the substrate.
In the present invention, the conditions of the first magnetron sputtering preferably include: the deposition power is 60-100W, the preferable power is 80-100W, and the background vacuum is less than or equal to 1 multiplied by 10-4Pa, the argon gas flow is 50-80 sccm, preferably 50-60 sccm, the working chamber pressure is 0.5-1 Pa, preferably 0.5-0.8 Pa, and the time is 5-10 min.
After the metal-containing transition layer is obtained, the method takes methane as a carbon source, and carries out microwave-assisted chemical vapor deposition on the surface of the metal-containing transition layer to obtain the nano-diamond transition layer.
In the present invention, before the microwave-assisted chemical vapor deposition, it is preferable that the method further comprises performing a pretreatment on the substrate on which the metal-containing transition layer is deposited, wherein the pretreatment preferably comprises sequentially performing a plasma treatment and an ultrasonic treatment.
In the present invention, the parameters of the plasma treatment preferably include: the plasma includes nitrogen plasma, oxygen plasma, hydrogen plasma or fluorine plasma; the oxygen flow is 10-40 sccm; the cavity pressure is 1-2 kPa; the applied voltage is 400V; the current is 0.5-1.0A; the treatment time is 2-5 min.
In the present invention, the plasma treatment may form a metal-containing transition layer into surface charges and chemical groups that are advantageous for attracting the nanodiamond particles.
In the present invention, the ultrasonic treatment preferably comprises the steps of: and placing the substrate which is subjected to the plasma treatment and is deposited with the metal-containing transition layer in the nano-diamond dispersion liquid for ultrasonic treatment.
In the invention, the concentration of the nano-diamond dispersion liquid is preferably 1-10 g/L, and more preferably 1-5 g/L; the particle size of the nano-diamond in the nano-diamond dispersion liquid is preferably 1-100 nm, and more preferably 10-100 nm.
In the invention, the ultrasonic time is preferably 5-10 min.
According to the invention, the ultrasonic treatment in the nano-diamond dispersion liquid is beneficial to introducing the nano-diamond high-density seed crystal on the surface of the metal-containing transition layer, so that a high-density nucleation point is formed on the metal-containing transition layer, and a growth site is provided for the subsequent deposition of the nano-diamond.
In the present invention, the microwave-assisted chemical vapor deposition conditions preferably include: the volume ratio of methane to hydrogen is 0.05-0.15: 1; the nitrogen flow is 1-1.5 sccm, preferably 1 sccm; the cavity pressure is 8-12 kPa, preferably 10 kPa; the power is 1.5-3 kW, and preferably 2 kW; the deposition temperature is 500-700 ℃, and preferably 600 ℃; the time is 30-60 min.
In the present invention, the specific process using microwave-assisted chemical vapor deposition preferably includes:
putting the substrate loaded with the metal-containing transition layer after ultrasonic treatment into a furnace, then introducing hydrogen, starting a microwave source, and performing glow discharge to obtain hydrogen plasma; then, nitrogen and methane are sequentially introduced into the vacuum cavity, the pressure of the vacuum cavity is adjusted, and deposition is carried out.
In the invention, the hydrogen is introduced from the beginning of introduction until the deposition is finished; the nitrogen is introduced until the deposition is finished.
In the present invention, the flow rate of the hydrogen gas is preferably 250 to 400sccm, and more preferably 300 sccm.
After the nano-diamond transition coating is obtained, the invention takes graphite as a carbon source, and carries out second magnetron sputtering on the surface of the nano-diamond transition layer to obtain the low-stress diamond-like wear-resistant coating.
In the present invention, the second magnetron sputtering conditions include: the power is preferably 300-500W, preferably 300-400W, and the background vacuum is preferably less than or equal to 1 x 10-4Pa, the flow of argon gas is preferably 50-80 sccm, preferably 50-60 sccm, the pressure of the working chamber is preferably 0.5-1 Pa, preferably 0.5-0.8 Pa, and the deposition time is preferably 100-120 min, preferably 120 min.
In the present invention, when the substrate is not required, it is preferable to remove the substrate after the second magnetron sputtering.
FIG. 1 is a flow chart of the preparation method of the low stress diamond-like coating. From FIG. 1, the reaction scheme of the present invention is: carrying out first magnetron sputtering on a metal-containing material on the surface of a substrate to obtain the substrate deposited with a metal-containing transition layer; sequentially carrying out plasma treatment and ultrasonic treatment on the substrate deposited with the metal-containing transition layer; then carrying out microwave-assisted chemical vapor deposition on the substrate deposited with the metal-containing transition layer after ultrasonic treatment so as to deposit the nano-diamond transition layer on the metal-containing transition layer; and then carrying out second magnetron sputtering on the substrate loaded with the nano-diamond transition layer and the metal-containing transition layer to obtain the low-stress diamond-like wear-resistant coating.
The low stress diamond-like wear resistant coating and the method for preparing the same provided by the present invention will be described in detail with reference to the following examples, which should not be construed as limiting the scope of the present invention.
Example 1
(1) And cleaning the bearing steel matrix by sequentially adopting acetone, absolute ethyl alcohol and deionized water, and air-drying.
(2) Carrying out first magnetron sputtering on the surface of a bearing steel substrate by using a pure Cr target (the purity is 99.99%) to obtain a Cr layer of a transition layer, wherein the thickness of the Cr layer is 1 mu m, and the conditions of the first magnetron sputtering are as follows: the deposition power is 100W, the background vacuum is less than or equal to 1 multiplied by 10-4Pa, the argon flow is 50sccm, the working chamber pressure is 0.5Pa, and the time is 10 min.
(3) Carrying out plasma treatment and ultrasonic treatment on the Cr layer plated on the surface of the bearing steel substrate in sequence: the plasma processing conditions include: the plasma is oxygen plasma, the oxygen flow is 30sccm, the cavity pressure is 1.5kPa, the applied voltage is 400V, the current is 1.0A, and the treatment time is 2 min; placing the bearing steel substrate deposited with the Cr layer in the nano-diamond dispersion liquid for ultrasonic treatment; the concentration of the nano-diamond dispersion liquid is 1g/L, the particle size of the nano-diamond is 10nm, and the ultrasonic time is 5 min.
(5) And carrying out microwave-assisted chemical vapor deposition on the surface of the Cr layer to obtain the nano-diamond transition coating.
The method comprises the following specific steps: putting the matrix loaded with the Cr layer after ultrasonic treatment into a furnace, then introducing hydrogen, starting a microwave source, and performing glow discharge to obtain hydrogen plasma; then, nitrogen and methane are sequentially introduced into the vacuum cavity, the pressure of the vacuum cavity is adjusted, and deposition is carried out.
The parameters of the microwave-assisted chemical vapor deposition are as follows: the flow rate of the hydrogen is 1sccm, the flow rate of the nitrogen is 1sccm, the volume ratio of the methane to the hydrogen is 0.05-0.15: 1, the power is 2kW, the deposition temperature is 600 ℃, and the cavity pressure is 10 kPa.
The thickness of the nano-diamond transition layer is 1 μm.
(6) And performing second magnetron sputtering on the surface of the nano-diamond transition layer by taking graphite as a target material to obtain the diamond-like coating. The second magnetron sputtering condition is as follows: the deposition power is 300W, the background vacuum is less than or equal to 1 multiplied by 10-4Pa, the argon flow is 50sccm, the working chamber pressure is 0.5Pa, and the time is 120 min.
The diamond-like coating has a thickness of 2 μm.
Example 2
(1) And cleaning the bearing steel matrix by sequentially adopting acetone, absolute ethyl alcohol and deionized water, and air-drying.
(2) Carrying out first magnetron sputtering on the surface of a bearing steel substrate by using a pure W target (the purity is 99.99%) to obtain a W layer of a transition layer, wherein the thickness of the Cr layer is 1 mu m, and the magnetron sputtering conditions are as follows: the deposition power is 100W, the background vacuum is less than or equal to 1 multiplied by 10-4Pa, the argon flow is 50sccm, the working chamber pressure is 0.5Pa, and the time is 10 min.
(3) Sequentially carrying out plasma treatment and ultrasonic treatment on the W layer plated on the surface of the bearing steel substrate, wherein the plasma treatment conditions comprise that: the plasma is oxygen plasma, the oxygen flow is 30sccm, the cavity pressure is 1.5kPa, the applied voltage is 400V, the current is 1.0A, and the treatment time is 2 min; and (3) placing the bearing steel substrate deposited with the W layer in a nano-diamond solution for ultrasonic treatment. The concentration of the nano-diamond aqueous solution is 5g/L, the particle size of the nano-diamond is 20nm, and the ultrasonic time is 5 min.
(4) And carrying out microwave-assisted chemical vapor deposition on the surface of the W layer to obtain the nano-diamond transition coating.
The method comprises the following specific steps: putting the substrate loaded with the W layer after ultrasonic treatment into a furnace, then introducing hydrogen, starting a microwave source, and performing glow discharge to obtain hydrogen plasma; then, nitrogen and methane are sequentially introduced into the vacuum cavity, the pressure of the vacuum cavity is adjusted, and deposition is carried out.
The parameters of the microwave-assisted chemical vapor deposition are as follows: the flow rate of the hydrogen is 1sccm, the flow rate of the nitrogen is 1sccm, the volume ratio of the methane to the hydrogen is 0.05-0.15: 1, the power is 2kW, the deposition temperature is 600 ℃, and the cavity pressure is 10 kPa.
The thickness of the nano-diamond transition layer is 3 μm.
(5) And performing second magnetron sputtering on the surface of the nano-diamond transition layer by taking graphite as a target material to obtain the diamond-like coating. The second magnetron sputtering condition is as follows: the deposition power is 300W, the background vacuum is less than or equal to 1 multiplied by 10-4Pa, the argon flow is 50sccm, the working chamber pressure is 0.5Pa, and the time is 120 min.
The diamond-like coating has a thickness of 1.5 μm.
Example 3
(1) And cleaning the bearing steel matrix by sequentially adopting acetone, absolute ethyl alcohol and deionized water, and air-drying.
(2) Carrying out first magnetron sputtering on the surface of a bearing steel substrate by using a pure WC target (with the purity of 99.99 percent) to obtain a transition layer WC layer, wherein the thickness of the metal-containing transition layer WC layer is 2 mu m, and the magnetron sputtering conditions are as follows: the deposition power is 100W, the background vacuum is less than or equal to 1 multiplied by 10-4Pa, the argon flow is 50sccm, the working chamber pressure is 0.5Pa, and the time is 10 min.
(3) Carrying out plasma treatment and ultrasonic treatment on the WC layer plated on the surface of the bearing steel substrate in sequence, wherein the plasma treatment conditions comprise that: the plasma is oxygen plasma, the oxygen flow is 30sccm, the cavity pressure is 1.5kPa, the applied voltage is 400V, the current is 1.0A, and the treatment time is 2 min; and (3) placing the bearing steel substrate deposited with the WC layer in a nano-diamond solution for ultrasonic treatment. The concentration of the nano-diamond aqueous solution is 5g/L, the particle size of the nano-diamond is 30nm, and the ultrasonic time is 5 min.
(4) And carrying out microwave-assisted chemical vapor deposition on the surface of the WC layer to obtain the nano-diamond transition coating.
The method comprises the following specific steps: putting the substrate loaded with the WC layer after ultrasonic treatment into a furnace, then introducing hydrogen, starting a microwave source, and performing glow discharge to obtain hydrogen plasma; then, nitrogen and methane are sequentially introduced into the vacuum cavity, the pressure of the vacuum cavity is adjusted, and deposition is carried out.
The parameters of the microwave-assisted chemical vapor deposition are as follows: the flow rate of the hydrogen is 1sccm, the flow rate of the nitrogen is 1sccm, the volume ratio of the methane to the hydrogen is 0.05-0.15: 1, the power is 2kW, the deposition temperature is 600 ℃, and the cavity pressure is 10 kPa.
The thickness of the nano-diamond transition layer is 2 μm.
(5) And performing second magnetron sputtering on the surface of the nano-diamond transition layer by taking graphite as a target material to obtain the diamond-like coating. The second magnetron sputtering condition is as follows: the deposition power is 300W, the background vacuum is less than or equal to 1 multiplied by 10-4Pa, the argon flow is 50sccm, the working chamber pressure is 0.5Pa, and the time is 120 min.
The diamond-like coating has a thickness of 2 μm.
Comparative example 1
(1) And cleaning the bearing steel matrix by sequentially adopting acetone, absolute ethyl alcohol and deionized water, and air-drying.
(2) Depositing a Cr layer on the surface of a bearing steel substrate by adopting magnetron sputtering emission, wherein the thickness of the Cr layer is 1 mu m, and the magnetron sputtering conditions are as follows: the deposition power is 100W, the background vacuum is less than or equal to 1 multiplied by 10-4Pa, the argon flow is 50sccm, the working chamber pressure is 0.5Pa, and the time is 10 min.
(3) Carrying out plasma treatment and ultrasonic treatment on the Cr layer plated on the surface of the bearing steel substrate in sequence, wherein the plasma treatment conditions comprise that: the plasma is oxygen plasma, the oxygen flow is 30sccm, the cavity pressure is 1.5kPa, the applied voltage is 400V, the current is 1.0A, and the treatment time is 2 min; and (3) placing the bearing steel substrate deposited with the metal-containing transition layer in a nano-diamond solution for ultrasonic treatment. The mass concentration of the nano-diamond aqueous solution is 0.1%, the particle size of the nano-diamond is 10nm, and the ultrasonic time is 5 min.
(4) And performing magnetron sputtering on the surface of the Cr layer by taking graphite as a target material to obtain the diamond-like coating. The magnetron sputtering conditions are as follows: the deposition power is 300W, the background vacuum is less than or equal to 1 multiplied by 10-4Pa, the argon flow is 50sccm, the working chamber pressure is 0.5Pa, and the time is 120 min.
The diamond-like coating has a thickness of 2 μm.
The invention also tests the bonding strength of the wear-resistant coatings obtained in the examples 1-3 and the comparative example 1 to the matrix, and the test mode is as follows:
the WS-2005 micro-scratch method is adopted as the test method, the used instrument pressure head is a diamond pressure head with a cone angle of 120 degrees, the radius of the tip is 0.2mm, continuous linear loading is carried out, 2N is loaded each time, and the loading speed is 0.5N/min. The results are shown in Table 1.
TABLE 1 bonding Strength test results of the abrasion resistant coatings obtained in examples 1 to 3 and comparative example 1 with the substrate
Example 1 Example 2 Example 3 Comparative example 1
Bonding Strength (N) 20 18 21 12
By comparing examples 1 to 3 with comparative example 1, it can be found that: the comparative example 1 and the example 1 are only different in that the comparative example 1 is not provided with the nano-diamond transition layer, and the bonding strength of the comparative example 1 and the matrix is far lower than that of the example 1, so that the diamond-like wear-resistant coating provided by the invention has good bonding strength with the matrix.
It should be noted that, for those skilled in the art, without departing from the principle of the present invention, several improvements and modifications can be made, and these improvements and modifications should also be construed as the protection scope of the present invention.

Claims (10)

1. A low-stress diamond-like wear-resistant coating is characterized by comprising a metal-containing transition layer, a nano diamond transition layer and a diamond-like coating which are sequentially stacked.
2. The low stress diamond-like wear coating of claim 1, wherein the material of the metal-containing transition layer comprises one or more of a metal, a metal nitride and a metal carbide.
3. The low stress diamond-like wear coating of claim 1, wherein the low stress diamond-like wear coating is supported on a substrate; the metal-containing transition layer of the low stress diamond-like wear resistant coating is in contact with the substrate.
4. The low stress diamond-like wear coating according to any of claims 1-3, wherein the metal-containing transition layer has a thickness of 0.1-3 μm.
5. The low stress diamond-like wear resistant coating according to any one of claims 1 to 3, wherein the nano diamond transition coating has a nano diamond grain size of 1 to 100 nm; the thickness of the nano diamond transition layer is 0.1-3 mu m.
6. A low stress diamond like abrasion resistant coating according to any of claims 1 to 3, wherein the diamond like coating has a thickness of 1 to 10 μm.
7. The method for preparing the low-stress diamond-like wear-resistant coating of any one of claims 3 to 6, characterized by comprising the following steps:
taking a metal-containing material as a target material, and performing first magnetron sputtering on the surface of a substrate to obtain a metal-containing transition layer;
performing microwave-assisted chemical vapor deposition on the surface of the metal-containing transition layer by using methane as a carbon source to obtain a nano-diamond transition layer;
and performing second magnetron sputtering on the surface of the nano-diamond transition layer by taking graphite as a carbon source to obtain the low-stress diamond-like wear-resistant coating.
8. The method of manufacturing according to claim 7, wherein the conditions of the first magnetron sputtering include: the deposition power is 60-100W, the background vacuum is less than or equal to 1 multiplied by 10-4Pa, the argon flow is 50-80 sccm, the working chamber pressure is 0.5-1 Pa, and the time is 5-10 min.
9. The method of claim 7, wherein the conditions of the microwave-assisted chemical vapor deposition comprise: the volume ratio of the methane to the hydrogen is (0.05-0.15): 1, nitrogen flow is 1-1.5 sccm, cavity pressure is 8-12 kPa, power is 1.5-3 kW, deposition temperature is 500-700 ℃, and time is 30-60 min.
10. The method of manufacturing according to claim 7, wherein the conditions of the second magnetron sputtering include: the deposition power is 300-500W, and the background vacuum is less than or equal to 1 multiplied by 10-4Pa, the argon flow is 50-80 sccm, the working chamber pressure is 0.5-1 Pa, and the time is 100-120 min.
CN202110930166.3A 2021-08-13 2021-08-13 Low-stress diamond-like wear-resistant coating and preparation method thereof Pending CN113621926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110930166.3A CN113621926A (en) 2021-08-13 2021-08-13 Low-stress diamond-like wear-resistant coating and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110930166.3A CN113621926A (en) 2021-08-13 2021-08-13 Low-stress diamond-like wear-resistant coating and preparation method thereof

Publications (1)

Publication Number Publication Date
CN113621926A true CN113621926A (en) 2021-11-09

Family

ID=78385334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110930166.3A Pending CN113621926A (en) 2021-08-13 2021-08-13 Low-stress diamond-like wear-resistant coating and preparation method thereof

Country Status (1)

Country Link
CN (1) CN113621926A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447354A (en) * 2022-01-26 2022-05-06 纳狮新材料有限公司 Diamond-like carbon composite coating for metal polar plate and preparation method thereof
CN114855143A (en) * 2022-05-10 2022-08-05 西南石油大学 Solid film coating for oil pump plunger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070004325A1 (en) * 2005-07-01 2007-01-04 Kinik Company Method for manufacturing diamond film
CN101818332A (en) * 2010-03-23 2010-09-01 中国地质大学(北京) Super-hard self-lubricating diamond/diamond-like composite laminated coating material and preparation method thereof
CN102650053A (en) * 2012-04-25 2012-08-29 上海交通大学 Manufacturing method for CVD (Chemical Vapor Deposition) diamond/diamond-like composite coating tool with complex shape
CN106756880A (en) * 2015-11-24 2017-05-31 中国科学院深圳先进技术研究院 A kind of diamond/DLC multi-layer composite coatings and preparation method thereof
CN107022740A (en) * 2016-01-29 2017-08-08 广东耐信镀膜科技有限公司 A kind of superhard MULTILAYER COMPOSITE diamond-like coating and preparation method thereof
CN109372651A (en) * 2018-09-25 2019-02-22 安庆帝伯格茨活塞环有限公司 A kind of diamond-like coating piston ring and preparation method
CN109811303A (en) * 2019-01-23 2019-05-28 上海大学 Nano-diamond film preparation method based on DLC film middle layer
CN111005009A (en) * 2019-12-30 2020-04-14 长春理工大学 Low-stress heat dissipation layer semiconductor substrate and preparation method and application thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070004325A1 (en) * 2005-07-01 2007-01-04 Kinik Company Method for manufacturing diamond film
CN101818332A (en) * 2010-03-23 2010-09-01 中国地质大学(北京) Super-hard self-lubricating diamond/diamond-like composite laminated coating material and preparation method thereof
CN102650053A (en) * 2012-04-25 2012-08-29 上海交通大学 Manufacturing method for CVD (Chemical Vapor Deposition) diamond/diamond-like composite coating tool with complex shape
CN106756880A (en) * 2015-11-24 2017-05-31 中国科学院深圳先进技术研究院 A kind of diamond/DLC multi-layer composite coatings and preparation method thereof
CN107022740A (en) * 2016-01-29 2017-08-08 广东耐信镀膜科技有限公司 A kind of superhard MULTILAYER COMPOSITE diamond-like coating and preparation method thereof
CN109372651A (en) * 2018-09-25 2019-02-22 安庆帝伯格茨活塞环有限公司 A kind of diamond-like coating piston ring and preparation method
CN109811303A (en) * 2019-01-23 2019-05-28 上海大学 Nano-diamond film preparation method based on DLC film middle layer
CN111005009A (en) * 2019-12-30 2020-04-14 长春理工大学 Low-stress heat dissipation layer semiconductor substrate and preparation method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P. NIEDZIELSKI等: ""Tribological properties of NCD coated cemented carbides in contact with wood"", 《DIAMOND AND RELATED MATERIALS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447354A (en) * 2022-01-26 2022-05-06 纳狮新材料有限公司 Diamond-like carbon composite coating for metal polar plate and preparation method thereof
CN114447354B (en) * 2022-01-26 2022-11-25 纳狮新材料有限公司 Diamond-like carbon composite coating for metal polar plate and preparation method thereof
CN114855143A (en) * 2022-05-10 2022-08-05 西南石油大学 Solid film coating for oil pump plunger

Similar Documents

Publication Publication Date Title
JP2572438B2 (en) Manufacturing method of glass press mold
CN108677144B (en) Method for preparing aluminum-nitrogen co-doped diamond-like carbon composite film
CN110106483B (en) Graphite-like particle composite diamond-like coating and preparation method and application thereof
CN113621926A (en) Low-stress diamond-like wear-resistant coating and preparation method thereof
JP4755262B2 (en) Method for producing diamond-like carbon film
JPH01294867A (en) Formation of coating film of carbon or consisting essentially of carbon
JP2001048512A (en) Preparation of perpendicularly oriented carbon nanotube
CN108977781B (en) Method for depositing W-N hard film on surface of hard alloy by magnetron sputtering composite technology
CN114703452B (en) CoCrFeNi high-entropy alloy doped amorphous carbon film and preparation method thereof
CN111218663A (en) Diamond-like protective coating and preparation method thereof
Sein et al. Chemical vapour deposition diamond coating on tungsten carbide dental cutting tools
CN110923650B (en) DLC coating and preparation method thereof
CN107937914B (en) Method for preparing diamond film on transition layer on surface of stainless steel
Ohtake et al. Synthesis of diamond-like carbon films by nanopulse plasma chemical vapor deposition at subatmospheric pressure
CN114000147B (en) Wear-resistant rubber material and preparation method thereof
CN113293357B (en) Method for depositing diamond-like coating on inner wall of pulse composite radio frequency enhanced hollow cathode long tube
TWI554633B (en) A diamond-like carbon film and manufacturing method thereof
CN110629174B (en) Method for preparing Ti-Al-N hard film by using pull-type nitrogen plasma enhanced reaction atmosphere environment
CN108660427B (en) Carbon nanowire/amorphous carbon composite film with carbon nanowire array embedded in amorphous carbon film and preparation thereof
KR100928970B1 (en) Manufacturing method of diamond like carbon films doped with the third elements
CN112831749B (en) Hard alloy matrix and surface pretreatment method thereof
JP4116144B2 (en) Manufacturing method of hard carbon coating member
CN115961251B (en) Titanium alloy part with nano diphase structure coating and preparation method thereof
CN111235570B (en) Preparing Si/Si-containing on the surface of a substrate x N y Gradient modified membranes and methods
KR20150092577A (en) manufacturing method for carbon layer containing nano crystalline diamond by plasma treatment and carbon layer containing nano crystalline diamond thereby

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination