CN113328644B - 一种模块化多电平变换器电容电压波动无源控制方法 - Google Patents

一种模块化多电平变换器电容电压波动无源控制方法 Download PDF

Info

Publication number
CN113328644B
CN113328644B CN202110571162.0A CN202110571162A CN113328644B CN 113328644 B CN113328644 B CN 113328644B CN 202110571162 A CN202110571162 A CN 202110571162A CN 113328644 B CN113328644 B CN 113328644B
Authority
CN
China
Prior art keywords
fluctuation
capacitor voltage
mmc
control method
state equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110571162.0A
Other languages
English (en)
Other versions
CN113328644A (zh
Inventor
薛花
王育飞
扈增辉
陈程
田广平
杨兴武
王�锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Electric Power University
Original Assignee
Shanghai Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Electric Power University filed Critical Shanghai Electric Power University
Priority to CN202110571162.0A priority Critical patent/CN113328644B/zh
Publication of CN113328644A publication Critical patent/CN113328644A/zh
Application granted granted Critical
Publication of CN113328644B publication Critical patent/CN113328644B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及一种模块化多电平电容电压波动无源控制方法,包括以下步骤:建立基于PCHD模型的MMC波动电容电压状态方程;基于建立的MMC波动电容电压状态方程,进一步构建得到基于PCHD模型的MMC电容电压波动无源控制器,以得到波动电容电压控制量;采用脉冲调制方法对波动电容电压控制量进行处理,得到相应的触发脉冲信号;根据触发脉冲信号对MMC各相桥臂子模块的变换器开关状态进行控制。与现有技术相比,本发明将基于PCHD模型的无源性控制方法用于MMC电容电压波动抑制,具有控制律形式简单、无奇异点、稳定性好的优点,能够有效地对MMC电容电压波动进行抑制。

Description

一种模块化多电平变换器电容电压波动无源控制方法
技术领域
本发明涉及模块化多电平变换器控制技术领域,尤其是涉及一种模块化多电平变换器电容电压波动无源控制方法。
背景技术
模块化多电平变换器(Modular MultilevelConverter,MMC)凭借其谐波含量少、开关损耗低、故障穿越能力强、便于模块化扩容和工业化生产等优点,目前已被广泛应用于大规模可再生能源并网领域。但由于大规模可再生能源发电具有间歇性、波动性特点,容易导致三相MMC相间能量不平衡,进而引发子模块电容电压不均衡。而MMC电容电压波动必然会增加换流器损耗,导致交流侧输出电压出现偏差,严重时会影响***可靠运行。
为此,有必要对MMC电容电压波动进行抑制,传统方法是采用矢量控制方法,这种方式针对MMC子模块电容电压波动***的非线性本质进行控制器设计,未从能量角度出发,因此当存在不确定性扰动情况时,矢量控制器的抗扰性和鲁棒性将会面临难以克服的挑战。相比于传统矢量控制方法,现有技术采用非线性控制方法,以从能量角度出发,设计能够反映MMC子模块电容电压波动***非线性本质的控制器,在闭环控制***稳定性和鲁棒性方面控制性能有所提升,但这种方法的计算较复杂,且没有解决***内部损耗过大的问题,在能量优化方面尚有不足,不利于解决工程实际问题。由此可知,如何在控制器设计尽量简洁的前提下,实现动、静态响应性能的提升,同时确保***全局渐进稳定性和鲁棒性的进一步提升,是MMC子模块电容电压波动抑制工程应用必须解决的关键问题。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种模块化多电平变换器电容电压波动无源控制方法,以通过一种形式简单的控制器对MMC电容电压波动进行有效抑制,且能提升***全局渐进稳定性及鲁棒性。
本发明的目的可以通过以下技术方案来实现:一种模块化多电平电容电压波动无源控制方法,包括以下步骤:
S1、建立基于PCHD(port-controlled Hamiltonian with dissipation,端口受控耗散哈密顿)模型的MMC波动电容电压状态方程;
S2、基于步骤S1建立的MMC波动电容电压状态方程,进一步构建得到基于PCHD模型的MMC电容电压波动无源控制器,以得到波动电容电压控制量;
S3、采用脉冲调制方法对波动电容电压控制量进行处理,得到相应的触发脉冲信号;
S4、根据触发脉冲信号对MMC各相桥臂子模块的变换器开关状态进行控制。
进一步地,所述步骤S1具体是在dq旋转坐标系下,分别定义状态变量、输入变量和输出变量,其中,状态变量为三相注入环流二倍频dq轴分量与桥臂电感的乘积,输入变量为三相波动电容电压dq轴分量,输出变量为三相注入环流二倍频dq轴分量。
进一步地,所述MMC波动电容电压状态方程具体为:
Figure BDA0003082740140000021
x=[x1 x2]T=[Lmicird Lmicirq]T
u=[u1 u2]T=[ucird ucirq]T
y=[y1 y2]T=[icird icirq]T
Figure BDA0003082740140000022
Figure BDA0003082740140000023
Figure BDA0003082740140000024
Figure BDA0003082740140000025
其中,x为状态变量,u为输入变量,y为输出变量,Lm为桥臂电感,icird、icirq分别为三相注入环流二倍频d轴和q轴分量,ucird、ucirq分别为三相波动电容电压d轴和q轴分量,J(x)为互连矩阵,R(x)为阻尼矩阵,g(x)为端口矩阵,H(x)为能量函数,ω0为基波角频率,Rm为桥臂电阻,
Figure BDA0003082740140000031
为微分算子。
进一步地,所述步骤S2具体包括以下步骤:
S21、设定MMC子模块波动电容电压***注入环流后的期望平衡点;
S22、以状态变量与期望平衡点之差为零作为控制目标,结合MMC波动电容电压状态方程,得到基于PCHD模型的无源控制律,即可得到波动电容电压控制量。
进一步地,所述期望平衡点具体为:
Figure BDA0003082740140000032
其中,x*为期望平衡点,
Figure BDA0003082740140000033
Figure BDA0003082740140000034
分别为三相注入环流二倍频d轴和q轴分量参考轨迹。
进一步地,所述步骤S22具体包括以下步骤:
S221、根据控制目标x-x*=0,设计对应的期望能量函数;
S222、基于期望能量函数,结合MMC波动电容电压状态方程,得到MMC子模块波动电容电压闭环***的状态方程;
S223、根据MMC子模块波动电容电压闭环***的状态方程,进一步得到基于PCHD模型的无源控制律。
进一步地,所述期望能量函数具体为:
Figure BDA0003082740140000035
其中,Hd(x)为期望能量函数。
进一步地,所述MMC子模块波动电容电压闭环***的状态方程具体为:
Figure BDA0003082740140000036
其中,Jd(x)为***期望的互联矩阵,Rd(x)为***期望的阻尼矩阵。
进一步地,所述***期望的互联矩阵具体为:
Jd(x)=J(x)+Ja(x)
Ja(x)=0
其中,Ja(x)为注入的耗散矩阵;
所述***期望的阻尼矩阵具体为:
Rd(x)=R(x)+Ra(x)
Figure BDA0003082740140000041
其中,Ra(x)为注入的阻尼矩阵,ra1、ra2为注入的正阻尼参数。
进一步地,所述基于PCHD模型的无源控制律具体为:
Figure BDA0003082740140000042
其中,ucird、ucirq分别为三相波动电容电压d轴和q轴分量,即为波动电容电压控制量。
与现有技术相比,本发明基于PCHD模型以及无源性理论,基于建立的MMC波动电容电压状态方程,通过能量函数整形,以使控制目标能够在期望平衡点取得最小值,利用PCHD***的输入输出映射,能够有效确保***全局渐进稳定,从而保证后续波动电容电压控制量求取的准确性、提高MMC电容电压波动抑制的可靠性;
此外,本发明构建的基于PCHD模型的MMC电容电压波动无源控制器,在确保***的全局稳定性的同时,能够实现注入环流参考轨迹的快速跟踪,其控制律形式简单,且具有较好的暂态性能和稳定性能。
附图说明
图1为本发明的方法流程示意图;
图2为实施例的应用过程示意图;
图3为MMC三相等效电路结构示意图;
图4为实施例中应用本发明方法后的MMC子模块电容电压波动示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例
如图1所示,一种模块化多电平电容电压波动无源控制方法,包括以下步骤:
S1、建立基于PCHD模型的MMC波动电容电压状态方程,具体是在dq旋转坐标系下,分别定义状态变量、输入变量和输出变量:状态变量为三相注入环流二倍频dq轴分量与桥臂电感的乘积,输入变量为三相波动电容电压dq轴分量,输出变量为三相注入环流二倍频dq轴分量;
MMC波动电容电压状态方程具体为:
Figure BDA0003082740140000051
x=[x1 x2]T=[Lmicird Lmicirq]T
u=[u1 u2]T=[ucird ucirq]T
y=[y1 y2]T=[icird icirq]T
Figure BDA0003082740140000052
Figure BDA0003082740140000053
Figure BDA0003082740140000054
Figure BDA0003082740140000055
其中,x为状态变量,u为输入变量,y为输出变量,Lm为桥臂电感,icird、icirq分别为三相注入环流二倍频d轴和q轴分量,ucird、ucirq分别为三相波动电容电压d轴和q轴分量,J(x)为互连矩阵,R(x)为阻尼矩阵,g(x)为端口矩阵,H(x)为能量函数,ω0为基波角频率,Rm为桥臂电阻,
Figure BDA0003082740140000056
为微分算子;
S2、基于步骤S1建立的MMC波动电容电压状态方程,进一步构建得到基于PCHD模型的MMC电容电压波动无源控制器,以得到波动电容电压控制量,具体的:
S21、设定MMC子模块波动电容电压***注入环流后的期望平衡点:
Figure BDA0003082740140000057
其中,x*为期望平衡点,
Figure BDA0003082740140000058
Figure BDA0003082740140000059
分别为三相注入环流二倍频d轴和q轴分量参考轨迹;
S22、以状态变量与期望平衡点之差为零作为控制目标,结合MMC波动电容电压状态方程,得到基于PCHD模型的无源控制律,即可得到波动电容电压控制量:
首先根据控制目标x-x*=0,设计对应的期望能量函数——
Figure BDA0003082740140000061
其中,Hd(x)为期望能量函数;
之后基于期望能量函数,结合MMC波动电容电压状态方程,得到MMC子模块波动电容电压闭环***的状态方程——
Figure BDA0003082740140000062
Jd(x)=J(x)+Ja(x)
Ja(x)=0
Rd(x)=R(x)+Ra(x)
Figure BDA0003082740140000063
其中,Jd(x)为***期望的互联矩阵,Rd(x)为***期望的阻尼矩阵,Ja(x)为注入的耗散矩阵,Ra(x)为注入的阻尼矩阵,ra1、ra2为注入的正阻尼参数;
S223、根据MMC子模块波动电容电压闭环***的状态方程,进一步得到基于PCHD模型的无源控制律:
Figure BDA0003082740140000064
其中,ucird、ucirq分别为三相波动电容电压d轴和q轴分量,即为波动电容电压控制量;
S3、采用脉冲调制方法对波动电容电压控制量进行处理,得到相应的触发脉冲信号;
S4、根据触发脉冲信号对MMC各相桥臂子模块的变换器开关状态进行控制。
本实施例应用上述方法,其过程如图2所示:
步骤1:三相MMC电路结构及子模块拓扑图如图3所示,由图3可得dq旋转坐标系下MMC波动电容电压动态方程式为
Figure BDA0003082740140000065
其中,ω0为基波角频率,Lm为桥臂电感,Rm为桥臂电阻,icird和icirq为三相注入环流二倍频的d轴和q轴分量,ucird和ucirq为三相波动电容电压的d轴和q轴分量,
Figure BDA0003082740140000071
为微分算子,t为时间。
选取状态变量x、输入变量u、输出变量y为:
Figure BDA0003082740140000072
式中:[·]T为矩阵的转置。
设计正定二次型能量函数H(x)为
Figure BDA0003082740140000073
对MMC波动电容电压动态方程式(1)进行等效变换,得到MMC子模块电容电压波动PCHD模型
Figure BDA0003082740140000074
其中,
互联矩阵
Figure BDA0003082740140000075
阻尼矩阵
Figure BDA0003082740140000076
端口矩阵
Figure BDA0003082740140000077
式中,
Figure BDA0003082740140000078
为微分算子。
由式(3)和式(4)可得耗散不等式
Figure BDA0003082740140000079
式(5)左边是整个MMC波动电容电压***的增量,右边是外部供给能量,由无源性理论可知:映射u→x为输出严格无源的,MMC波动电容电压***具有无源特性。
步骤2:根据***控制性能目标,设置MMC子模块电容电压波动***注入环流后期望平衡点为
Figure BDA00030827401400000710
式中,
Figure BDA00030827401400000711
Figure BDA00030827401400000712
为三相注入环流二倍频d轴和q轴分量参考轨迹。
根据控制目标x-x*=0,设计MMC子模块电容电压波动抑制控制***期望能量函数
Figure BDA0003082740140000081
由式(4)、式(7),可得MMC子模块波动电容电压闭环***的状态方程为
Figure BDA0003082740140000082
式中,Jd(x)=J(x)+Ja(x)为***期望的互联矩阵,Rd(x)=R(x)+Ra(x)为***期望的阻尼矩阵,Ja(x)=0、
Figure BDA0003082740140000083
分别为注入的耗散矩阵和阻尼矩阵,ra1、ra2为注入的正阻尼参数。
由式(8)可得基于PCHD模型的无源控制律为
Figure BDA0003082740140000084
式(9)可确保闭环控制***在全局渐进稳定前提下实现MMC子模块电容电压波动的有效抑制。
在MATLAB/Simulink中搭建MMC电容电压波动控制***的仿真模型,对本发明的有效性进行验证,本实施例的仿真参数如表1所示。
表1
仿真模型参数与单位 数值
子模块数量n/个 24
子模块电容C/mF 2
桥臂电感L/mH 5
桥臂电阻R/Ω 5
交流侧额定电压u<sub>k</sub>/V 220
交流***频率f/Hz 50
直流侧电压U<sub>dc</sub>/V 650
交流侧电感L<sub>g</sub>/mH 1
交流侧电阻R<sub>g</sub>/mΩ 100
在MMC***稳态运行下采用基于PCHD模型的MMC电容电压波动无源性控制方法进行仿真测试。在t=0.3s时启动子模块电容电压波动抑制方法,仿真结果如图4所示。由图4分析可知,在t=0.3s前未采用子模块电容电压波动抑制时,MMC子模块电容电压波动较大,在t=0.3s实施基于PCHD模型的无源控制方法后,暂态过渡时间段,动态响应快速,实现了MMC子模块电容电压波动的有效抑制,提升了***的稳定性。

Claims (7)

1.一种模块化多电平电容电压波动无源控制方法,其特征在于,包括以下步骤:
S1、建立基于PCHD模型的MMC波动电容电压状态方程;
S2、基于步骤S1建立的MMC波动电容电压状态方程,进一步构建得到基于PCHD模型的MMC电容电压波动无源控制器,以得到波动电容电压控制量;
S3、采用脉冲调制方法对波动电容电压控制量进行处理,得到相应的触发脉冲信号;
S4、根据触发脉冲信号对MMC各相桥臂子模块的变换器开关状态进行控制;
所述步骤S1具体是在dq旋转坐标系下,分别定义状态变量、输入变量和输出变量,其中,状态变量为三相注入环流二倍频dq轴分量与桥臂电感的乘积,输入变量为三相波动电容电压dq轴分量,输出变量为三相注入环流二倍频dq轴分量;
所述MMC波动电容电压状态方程具体为:
Figure FDA0003832974180000011
x=[x1 x2]T=[Lmicird Lmicirq]T
u=[u1 u2]T=[ucird ucirq]T
y=[y1 y2]T=[icird icirq]T
Figure FDA0003832974180000012
Figure FDA0003832974180000013
Figure FDA0003832974180000014
Figure FDA0003832974180000015
其中,x为状态变量,u为输入变量,y为输出变量,Lm为桥臂电感,icird、icirq分别为三相注入环流二倍频d轴和q轴分量,ucird、ucirq分别为三相波动电容电压d轴和q轴分量,J(x)为互连矩阵,R(x)为阻尼矩阵,g(x)为端口矩阵,H(x)为能量函数,ω0为基波角频率,Rm为桥臂电阻,
Figure FDA0003832974180000021
为微分算子;
所述步骤S2具体包括以下步骤:
S21、设定MMC子模块波动电容电压***注入环流后的期望平衡点;
S22、以状态变量与期望平衡点之差为零作为控制目标,结合MMC波动电容电压状态方程,得到基于PCHD模型的无源控制律,即可得到波动电容电压控制量。
2.根据权利要求1所述的一种模块化多电平电容电压波动无源控制方法,其特征在于,所述期望平衡点具体为:
Figure FDA0003832974180000022
其中,x*为期望平衡点,
Figure FDA0003832974180000023
Figure FDA0003832974180000024
分别为三相注入环流二倍频d轴和q轴分量参考轨迹。
3.根据权利要求2所述的一种模块化多电平电容电压波动无源控制方法,其特征在于,所述步骤S22具体包括以下步骤:
S221、根据控制目标x-x*=0,设计对应的期望能量函数;
S222、基于期望能量函数,结合MMC波动电容电压状态方程,得到MMC子模块波动电容电压闭环***的状态方程;
S223、根据MMC子模块波动电容电压闭环***的状态方程,进一步得到基于PCHD模型的无源控制律。
4.根据权利要求3所述的一种模块化多电平电容电压波动无源控制方法,其特征在于,所述期望能量函数具体为:
Figure FDA0003832974180000025
其中,Hd(x)为期望能量函数。
5.根据权利要求4所述的一种模块化多电平电容电压波动无源控制方法,其特征在于,所述MMC子模块波动电容电压闭环***的状态方程具体为:
Figure FDA0003832974180000026
其中,Jd(x)为***期望的互联矩阵,Rd(x)为***期望的阻尼矩阵。
6.根据权利要求5所述的一种模块化多电平电容电压波动无源控制方法,其特征在于,所述***期望的互联矩阵具体为:
Jd(x)=J(x)+Ja(x)
Ja(x)=0
其中,Ja(x)为注入的耗散矩阵;
所述***期望的阻尼矩阵具体为:
Rd(x)=R(x)+Ra(x)
Figure FDA0003832974180000031
其中,Ra(x)为注入的阻尼矩阵,ra1、ra2为注入的正阻尼参数。
7.根据权利要求6所述的一种模块化多电平电容电压波动无源控制方法,其特征在于,所述基于PCHD模型的无源控制律具体为:
Figure FDA0003832974180000032
其中,ucird、ucirq分别为三相波动电容电压d轴和q轴分量,即为波动电容电压控制量。
CN202110571162.0A 2021-05-25 2021-05-25 一种模块化多电平变换器电容电压波动无源控制方法 Active CN113328644B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110571162.0A CN113328644B (zh) 2021-05-25 2021-05-25 一种模块化多电平变换器电容电压波动无源控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110571162.0A CN113328644B (zh) 2021-05-25 2021-05-25 一种模块化多电平变换器电容电压波动无源控制方法

Publications (2)

Publication Number Publication Date
CN113328644A CN113328644A (zh) 2021-08-31
CN113328644B true CN113328644B (zh) 2022-12-16

Family

ID=77416598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110571162.0A Active CN113328644B (zh) 2021-05-25 2021-05-25 一种模块化多电平变换器电容电压波动无源控制方法

Country Status (1)

Country Link
CN (1) CN113328644B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595284A (zh) * 2013-11-27 2014-02-19 电子科技大学 模块化多电平换流器无源性建模与控制方法
CN109921424A (zh) * 2019-03-22 2019-06-21 大唐环境产业集团股份有限公司 电容中点式三相四线制并联型有源滤波器的无源控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212798B (zh) * 2019-06-24 2020-12-22 上海电力学院 一种模块化多电平变换器的环流抑制方法
CN110212799B (zh) * 2019-06-24 2020-12-22 上海电力学院 用于抑制模块化多电平变换器环流的无源反步控制方法
CN111327219B (zh) * 2020-02-25 2021-01-12 上海电力大学 一种用于抑制模块化多电平变换器环流的无源一致性控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595284A (zh) * 2013-11-27 2014-02-19 电子科技大学 模块化多电平换流器无源性建模与控制方法
CN109921424A (zh) * 2019-03-22 2019-06-21 大唐环境产业集团股份有限公司 电容中点式三相四线制并联型有源滤波器的无源控制方法

Also Published As

Publication number Publication date
CN113328644A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
CN110212798B (zh) 一种模块化多电平变换器的环流抑制方法
Xiao et al. Multiple reference frame-based control of three-phase PWM boost rectifiers under unbalanced and distorted input conditions
CN113285583B (zh) 非隔离型光伏逆变器漏电流抑制方法及***
CN104811067A (zh) 基于pr控制器的mmc-hvdc环流抑制方法
CN110212799B (zh) 用于抑制模块化多电平变换器环流的无源反步控制方法
CN107276091B (zh) Npc型三电平三相四线制sapf非线性无源控制方法
CN110868082A (zh) 基于电网电压故障下的对无源网络供电的mmc-pet的控制方法
CN110829870B (zh) 一种模块化多电平变换器低频运行状态下的控制方法
CN111211562A (zh) 一种基于电网电压不平衡条件下mmc-upqc的无源控制方法
CN114696334A (zh) 基于前馈补偿量计算的级联h桥statcom相间电压平衡控制方法
CN113328644B (zh) 一种模块化多电平变换器电容电压波动无源控制方法
CN116581790B (zh) 一种模块化多电平换流器在不平衡电网的抑制方法及***
CN112003318A (zh) 一种风电并网逆变器直流母线电压控制方法
CN106602560A (zh) 电容中点式三相四线制sapf混合无源非线性控制方法
CN113765345B (zh) 一种模块化多电平变换器电容电压波动抑制方法
Chebabhi et al. Four leg dstatcom based on synchronous reference frame theory with enhanced phase locked loop for compensating a four wire distribution network under unbalanced pcc voltages and loads
CN113765345A (zh) 一种模块化多电平变换器电容电压波动抑制方法
CN115967256A (zh) 一种基于改进桥臂电流预测的mmc低频运行控制方法
CN114069649A (zh) 一种基于负序电流和零序电压注入的级联式svg的直流侧电压平衡控制方法
CN113346781B (zh) 一种模块化多电平变换器并网电流无源一致性控制方法
Wang et al. Research on dynamic characteristics and stability of MMC photovoltaic grid-connected system based on rotational synchronous generator model
Suresh et al. Three-level active neutral point clamped DSTATCOM with Interval Type-2 fuzzy logic controller
CN113346779B (zh) 一种模块化多电平变换器并网电流无源控制方法
Hamoudi et al. Analysis and sliding mode control of four-wire three-leg shunt active power filter
CN111682786A (zh) 一种改进的级联型pwm整流器的控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant