CN113346781B - 一种模块化多电平变换器并网电流无源一致性控制方法 - Google Patents

一种模块化多电平变换器并网电流无源一致性控制方法 Download PDF

Info

Publication number
CN113346781B
CN113346781B CN202110734879.2A CN202110734879A CN113346781B CN 113346781 B CN113346781 B CN 113346781B CN 202110734879 A CN202110734879 A CN 202110734879A CN 113346781 B CN113346781 B CN 113346781B
Authority
CN
China
Prior art keywords
grid
mmc
passive
consistency
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110734879.2A
Other languages
English (en)
Other versions
CN113346781A (zh
Inventor
薛花
王育飞
田广平
扈曾辉
陈程
杨兴武
刘波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Electric Power University
Original Assignee
Shanghai Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Electric Power University filed Critical Shanghai Electric Power University
Priority to CN202110734879.2A priority Critical patent/CN113346781B/zh
Publication of CN113346781A publication Critical patent/CN113346781A/zh
Application granted granted Critical
Publication of CN113346781B publication Critical patent/CN113346781B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及一种模块化多电平并网电流无源一致性控制方法,包括以下步骤:建立电网电压不平衡条件下MMC并网电流,并设计MMC并网***期望全局能量函数,以得到电网电压不平衡下MMC并网***PCHD模型;基于MMC并网***PCHD模型,结合一致性方法,构建电网电压不平衡条件下基于PCHD模型的MMC并网无源一致性控制器,以得到控制量;采用脉冲调制方法对控制量进行处理,得到相应的触发脉冲信号;根据触发脉冲信号对MMC各相桥臂子模块的变换器开关状态进行控制。与现有技术相比,本发明结合PCHD模型以及一致性方法,以实现对MMC并网正负序子***的独立同步控制,具有控制律形式简单、无奇异点、稳定性好的优点,能够有效提高并网电流同步跟踪效果。

Description

一种模块化多电平变换器并网电流无源一致性控制方法
技术领域
本发明涉及模块化多电平变换器控制技术领域,尤其是涉及一种模块化多电平变换器并网电流无源一致性控制方法。
背景技术
模块化多电平变换器(Modular Multilevel Converter,MMC)是一种不需要变压器就能够实现高、中压电力转换的多级转换器,MMC目前已被广泛应用于大规模可再生能源并网领域,然而当电网发生单相短路时,由于***交流电流会产生负序分量,进而引发功率振荡,最终影响MMC并网***稳定运行,严重时还会导致***失稳。
为此,有必要对MMC并网电流进行控制,以实现MMC并网电流平衡,传统大多采用矢量控制方法进行控制,这种方法是针对MMC并网电流***的非线性本质进行控制器设计,未从能量角度出发,因此当存在不确定性扰动情况时,矢量控制器的抗扰性和鲁棒性面临挑战;相比于传统矢量控制方法,现有技术基于非线性控制方法,以从能量角度出发,设计能够反映MMC并网电流***非线性本质的控制器,这种方法能够在一定程度上提升闭环控制***稳定性和鲁棒性方面控制性能,但计算较复杂,而且无法解决正序和负序电流子***内在关联性影响无源性控制动态跟踪性能的问题,也就无法确保正、负序独立子***控制的同步性,不能可靠地实现正负序***的同步稳定跟踪。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种模块化多电平并网电流无源一致性控制方法,以保证正负序双***的同步稳定跟踪。
本发明的目的可以通过以下技术方案来实现:一种模块化多电平并网电流无源一致性控制方法,包括以下步骤:
S1、建立电网电压不平衡条件下MMC并网电流,并设计MMC并网***期望全局能量函数,以得到电网电压不平衡下MMC并网***PCHD(port controlled Hamiltonian withdissipation,端口受控耗散哈密顿)模型;
S2、基于步骤S1建立的MMC并网***PCHD模型,结合一致性方法,构建电网电压不平衡条件下基于PCHD模型的MMC并网无源一致性控制器,以得到控制量;
S3、采用脉冲调制方法对控制量进行处理,得到相应的触发脉冲信号;
S4、根据触发脉冲信号对MMC各相桥臂子模块的变换器开关状态进行控制。
进一步地,所述步骤S1具体包括以下步骤:
S11、在dq旋转坐标系下,定义状态变量为
Figure BDA0003141235510000021
定义输入变量为
Figure BDA0003141235510000022
Figure BDA0003141235510000023
定义输出变量为
Figure BDA0003141235510000024
其中,正序子***状态变量为
Figure BDA0003141235510000025
Figure BDA0003141235510000026
负序子***状态变量为
Figure BDA0003141235510000027
正序子***输入变量为
Figure BDA0003141235510000028
负序子***输入变量为
Figure BDA0003141235510000029
Figure BDA00031412355100000210
正序子***输出变量为
Figure BDA00031412355100000211
负序子***输出变量为
Figure BDA00031412355100000212
其中,Leq为桥臂电感,
Figure BDA00031412355100000213
分别为交流侧输出电压的dq轴正、负序分量,
Figure BDA00031412355100000214
分别为交流侧电源电流的dq轴正、负序分量,
Figure BDA00031412355100000215
Figure BDA00031412355100000216
分别为交流侧电源电压的dq轴正、负序分量;
S12、基于步骤S11中的状态变量、输入变量和输出变量,建立基于PCHD模型的MMC并网电流状态方程,并设计MMC并网***期望全局能量函数,得到电网电压不平衡下MMC并网***PCHD模型。
进一步地,所述MMC并网电流状态方程具体为:
Figure BDA00031412355100000217
Figure BDA00031412355100000218
Figure BDA00031412355100000219
Figure BDA00031412355100000220
Figure BDA0003141235510000031
Figure BDA0003141235510000032
Figure BDA0003141235510000033
Figure BDA0003141235510000034
Figure BDA0003141235510000035
其中,J(x)为互联矩阵,R(x)为阻尼矩阵,g(x)为端口矩阵,H(x)为能量函数,ω为基波角频率,R为桥臂电阻,
Figure BDA0003141235510000036
为微分算子。
进一步地,所述期望全局能量函数具体为:
Figure BDA0003141235510000037
Figure BDA0003141235510000038
Figure BDA0003141235510000039
Figure BDA00031412355100000310
Figure BDA00031412355100000311
其中,x*为x的期望轨迹,
Figure BDA00031412355100000312
分别为交流侧电源电流的dq轴期望正、负序分量,D为桥臂电感矩阵。
进一步地,所述电网电压不平衡下MMC并网***PCHD模型具体为:
Figure BDA00031412355100000313
Figure BDA00031412355100000314
Figure BDA00031412355100000315
其中,Jd(x)为***期望互联矩阵,Rd(x)为***期望阻尼矩阵,Ja(x)、Ra(x)分别为注入的耗散矩阵、阻尼矩阵。
进一步地,所述步骤S2具体包括以下步骤:
S21、结合一致性方法,设定MMC并网***正、负序子***的拉普拉斯矩阵L1、L2
S22、以状态变量与期望平衡点之差为零作为控制目标,将并网电流状态变量误差代入基于PCHD模型的无源一致性控制期望能量函数,结合MMC并网***PCHD模型,得到MMC并网***闭环状态方程;
S23、结合MMC并网***闭环状态方程以及MMC并网电流状态方程,得到基于PCHD模型的无源一致性控制律,即可得到控制量。
进一步地,所述MMC并网***正、负序子***的拉普拉斯矩阵L1、L2具体为:
Figure BDA0003141235510000041
其中,Δ为L1、L2的关联度矩阵,A为邻接矩阵。
进一步地,所述并网电流状态变量误差具体为:
Figure BDA0003141235510000042
Figure BDA0003141235510000043
Figure BDA0003141235510000044
其中,Aij为交互系数,α为误差系数,当子***具有相同期望轨迹时,α=1;当子***期望轨迹不同时,α=0。
进一步地,所述基于PCHD模型的无源一致性控制期望能量函数具体为:
Figure BDA0003141235510000045
进一步地,所述MMC并网***闭环状态方程具体为:
Figure BDA0003141235510000046
进一步地,所述基于PCHD模型的无源一致性控制律具体为:
Figure BDA0003141235510000047
Figure BDA0003141235510000051
Figure BDA0003141235510000052
Figure BDA0003141235510000053
Figure BDA0003141235510000054
Figure BDA0003141235510000055
Figure BDA0003141235510000056
Figure BDA0003141235510000057
其中,
Figure BDA0003141235510000058
分别为交流侧电源电压的dq轴正、负序分量,即为得到的控制量,ra11、ra12、ra21、ra22为无源控制器系数,A1、A2、B1、B2、C1、C2、D1、D2分别为正序、负序控制变量。
与现有技术相比,本发明基PCHD特性以及无源性理论,通过引入一致性方法,能够实现并网正负序电流的同步跟踪,从而保证同步效果;基于建立的MMC并网***PCHD模型,通过能量函数整形,以使控制目标能够在期望平衡点取得最小值,利用PCHD***的输入输出映射,能够有效确保***全局渐进稳定,从而保证后续控制量求取的准确性、可靠实现MMC并网正负序双***的同步稳定跟踪;
此外,本发明构建的基于PCHD模型的MMC并网***无源一致性控制器,在确保***的全局稳定性的同时,能够实现并网电流的同步跟踪,其控制律形式简单、计算量小,且具有较好的暂态性能和稳定性能。
附图说明
图1为本发明的方法流程示意图;
图2为实施例应用本发明方法的过程示意图;
图3为三相MMC电路结构及其子模块拓扑示意图;
图4a为实施例中MMC正序d轴电流波形示意图;
图4b为实施例中MMC正序q轴电流波形示意图;
图4c为实施例中MMC负序d轴电流波形示意图;
图4d为实施例中MMC负序q轴电流波形示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例
如图1所示,一种模块化多电平并网电流无源一致性控制方法,包括以下步骤:
S1、建立电网电压不平衡条件下MMC并网电流,并设计MMC并网***期望全局能量函数,以得到电网电压不平衡下MMC并网***PCHD模型,具体的:
S11、在dq旋转坐标系下,定义状态变量为
Figure BDA0003141235510000061
、定义输入变量为
Figure BDA0003141235510000062
Figure BDA0003141235510000063
定义输出变量为
Figure BDA0003141235510000064
其中,正序子***状态变量为
Figure BDA0003141235510000065
Figure BDA0003141235510000066
负序子***状态变量为
Figure BDA0003141235510000067
正序子***输入变量为
Figure BDA0003141235510000068
负序子***输入变量为
Figure BDA0003141235510000069
Figure BDA00031412355100000610
正序子***输出变量为
Figure BDA00031412355100000611
负序子***输出变量为
Figure BDA00031412355100000612
其中,Leq为桥臂电感,
Figure BDA00031412355100000613
分别为交流侧输出电压的dq轴正、负序分量,
Figure BDA00031412355100000614
分别为交流侧电源电流的dq轴正、负序分量,
Figure BDA00031412355100000615
Figure BDA00031412355100000616
分别为交流侧电源电压的dq轴正、负序分量;
S12、基于步骤S11中的状态变量、输入变量和输出变量,建立基于PCHD模型的MMC并网电流状态方程,并设计MMC并网***期望全局能量函数,得到电网电压不平衡下MMC并网***PCHD模型,其中,MMC并网电流状态方程具体为:
Figure BDA00031412355100000617
Figure BDA00031412355100000618
Figure BDA00031412355100000619
Figure BDA0003141235510000071
Figure BDA0003141235510000072
Figure BDA0003141235510000073
Figure BDA0003141235510000074
Figure BDA0003141235510000075
Figure BDA0003141235510000076
其中,J(x)为互联矩阵,R(x)为阻尼矩阵,g(x)为端口矩阵,H(x)为能量函数,ω为基波角频率,R为桥臂电阻,
Figure BDA0003141235510000077
为微分算子;
期望全局能量函数具体为:
Figure BDA0003141235510000078
Figure BDA0003141235510000079
Figure BDA00031412355100000710
Figure BDA00031412355100000711
Figure BDA00031412355100000712
其中,x*为x的期望轨迹,
Figure BDA00031412355100000713
分别为交流侧电源电流的dq轴期望正、负序分量,D为桥臂电感矩阵;
电网电压不平衡下MMC并网***PCHD模型具体为:
Figure BDA00031412355100000714
Figure BDA00031412355100000715
Figure BDA00031412355100000716
其中,Jd(x)为***期望互联矩阵,Rd(x)为***期望阻尼矩阵,Ja(x)、Ra(x)分别为注入的耗散矩阵、阻尼矩阵;
S2、基于步骤S1建立的MMC并网***PCHD模型,结合一致性方法,构建电网电压不平衡条件下基于PCHD模型的MMC并网无源一致性控制器,以得到控制量,具体的:
S21、结合一致性方法,设定MMC并网***正、负序子***的拉普拉斯矩阵L1、L2
Figure BDA0003141235510000081
其中,Δ为L1、L2的关联度矩阵,A为邻接矩阵;
S22、以状态变量与期望平衡点之差为零作为控制目标,设计并网电流状态变量误差为:
Figure BDA0003141235510000082
Figure BDA0003141235510000083
Figure BDA0003141235510000084
其中,Aij为交互系数,α为误差系数,当子***具有相同期望轨迹时,α=1;当子***期望轨迹不同时,α=0;
之后将并网电流状态变量误差代入基于PCHD模型的无源一致性控制期望能量函数:
Figure BDA0003141235510000085
最后结合MMC并网***PCHD模型,得到MMC并网***闭环状态方程:
Figure BDA0003141235510000086
S23、结合MMC并网***闭环状态方程以及MMC并网电流状态方程,得到基于PCHD模型的无源一致性控制律,即可得到控制量,基于PCHD模型的无源一致性控制律具体为:
Figure BDA0003141235510000091
Figure BDA0003141235510000092
Figure BDA0003141235510000093
Figure BDA0003141235510000094
Figure BDA0003141235510000095
Figure BDA0003141235510000096
Figure BDA0003141235510000097
Figure BDA0003141235510000098
其中,
Figure BDA0003141235510000099
分别为交流侧电源电压的dq轴正、负序分量,即为得到的控制量,ra11、ra12、ra21、ra22为无源控制器系数,A1、A2、B1、B2、C1、C2、D1、D2分别为正序、负序控制变量;
S3、采用脉冲调制方法对控制量进行处理,得到相应的触发脉冲信号;
S4、根据触发脉冲信号对MMC各相桥臂子模块的变换器开关状态进行控制。
本实施例应用上述方法,如图2所示,包括以下内容:
步骤1:三相MMC电路结构及子模块拓扑图如图3所示,由图3可得dq旋转坐标系下MMC并网电流正、负序子***动态方程式分别为
Figure BDA00031412355100000910
Figure BDA00031412355100000911
其中,ω为基波角频率,Leq为桥臂电感,R为桥臂电阻,
Figure BDA0003141235510000101
分别为交流侧输出电压urj(j=a,b,c)的dq轴正、负序分量,
Figure BDA0003141235510000102
分别为交流侧电源电流ij(j=a,b,c)的dq轴正、负序分量,
Figure BDA0003141235510000103
分别为交流侧电源电压uj(j=a,b,c)的dq轴正、负序分量,
Figure BDA0003141235510000104
为微分算子,t为时间。
选取状态变量x、输入变量u、输出变量y为:
Figure BDA0003141235510000105
其中,
Figure BDA0003141235510000106
Figure BDA0003141235510000107
Figure BDA0003141235510000108
设计正定二次型能量函数H(x)为
Figure BDA0003141235510000109
对MMC并网电流正、负序子***动态方程式(1)、式(2)进行等效变换,得到MMC并网电流状态方程为:
Figure BDA00031412355100001010
互联矩阵
Figure BDA00031412355100001011
阻尼矩阵
Figure BDA00031412355100001012
端口矩阵
Figure BDA00031412355100001013
式中,
Figure BDA00031412355100001014
为微分算子。
设计基于PCHD模型的无源性MMC并网***期望能量函数具体为:
Figure BDA00031412355100001015
Figure BDA00031412355100001016
其中,D为桥臂电感矩阵。
引入状态反馈控制律
u1=δ(x1) (7)
u2=δ(x2) (8)
将式(7)和式(8)分别代入式(5)可得电压不平衡下MMC并网***PCHD模型具体为:
Figure BDA0003141235510000111
式中,Jd(x)=J(x)+Ja(x)为***期望互联矩阵,满足
Figure BDA0003141235510000118
Rd(x)=R(x)+Ra(x)为***期望阻尼矩阵,满足
Figure BDA0003141235510000119
Ja(x)、Ra(x)分别为注入的耗散矩阵、阻尼矩阵。
由式(4)和式(9)可得耗散不等式:
Figure BDA0003141235510000112
式(10)左边是整个MMC并网电流***的增量,右边是外部供给能量,由无源性理论可知:映射u→x为输出严格无源的,MMC并网电流***具有无源特性。
步骤2:结合一致性方法,设定MMC并网***正、负序子***的拉普拉斯矩阵L1、L2
Figure BDA0003141235510000113
式中:Lij为矩阵L1、L2节点(i,j)的取值,Δ为L1、L2的关联度矩阵,A为邻接矩阵。
以状态变量与期望平衡点之差为零作为控制目标,设计并网电流状态变量误差为:
Figure BDA0003141235510000114
式中,
Figure BDA0003141235510000115
Figure BDA0003141235510000116
Figure BDA0003141235510000117
Figure BDA0003141235510000121
当子***具有相同期望轨迹时,α=1;当子***期望轨迹不同时,α=0。
将式(11)代入式(6),得到基于PCHD模型的无源一致性控制期望能量函数具体为:
Figure BDA0003141235510000122
结合MMC并网***PCHD模型,得到MMC并网***闭环状态方程为:
Figure BDA0003141235510000123
其中,Jd(x)=J(x)+Ja(x)为***期望的互联矩阵,Rd(x)=R(x)+Ra(x)为***期望的阻尼矩阵,Ja(x)、Ra(x)分别为注入的耗散矩阵、阻尼矩阵。
联立式(5)、式(12)和式(13),可得基于PCHD模型的无源一致性控制律:
Figure BDA0003141235510000124
Figure BDA0003141235510000125
式中,
Figure BDA0003141235510000126
Figure BDA0003141235510000127
Figure BDA0003141235510000128
Figure BDA0003141235510000129
Figure BDA00031412355100001210
Figure BDA00031412355100001211
式(14)、式(15)可确保闭环控制***在全局渐进稳定前提下实现MMC正、负序子***期望目标的同步渐进跟踪。
本实施例在MATLAB/Simulink中搭建MMC电容电压波动控制***的仿真模型,对本发明的有效性进行验证,本实施例的仿真参数如表1所示。
表1
仿真模型参数/单位 数值
子模块数量n/个 36
子模块电容C/mF 9
桥臂电感L/mH 60
桥臂电阻R/Ω 6
交流侧额定电压u<sub>k</sub>/V 100
交流***频率f/Hz 50
直流侧电压U<sub>dc</sub>/kV 180
交流侧电感L<sub>g</sub>/mH 25.5
额定有功功率P/MW 180
在电网电压不平衡下采用基于PCHD模型的MMC并网电流无源一致性性控制方法进行仿真测试。设置t=0.2s时MMC交流侧发生a相接地故障,t=0.3s时***恢复平稳,MMC正序和负序d轴、q轴电流仿真结果如图4a~4d所示。图4a为正序d轴电流波形;图4b为正序q轴电流波形;图4c为负序d轴电流波形;图4d负序q轴电流波形。分析可知,所提方法在电网电压平衡和单相接地故障下均能实现正序电流期望轨迹的快速跟踪与负序电流的快速抑制;结合一致性方法,正、负序电流期望轨迹跟踪的调节时间都约6.8ms,实现正序子***和负序子***的同步跟踪,跟踪稳态误差较小。

Claims (6)

1.一种模块化多电平并网电流无源一致性控制方法,其特征在于,包括以下步骤:
S1、建立电网电压不平衡条件下MMC并网电流,并设计MMC并网***期望全局能量函数,以得到电网电压不平衡下MMC并网***PCHD模型;
S2、基于步骤S1建立的MMC并网***PCHD模型,结合一致性方法,构建电网电压不平衡条件下基于PCHD模型的MMC并网无源一致性控制器,以得到控制量;
S3、采用脉冲调制方法对控制量进行处理,得到相应的触发脉冲信号;
S4、根据触发脉冲信号对MMC各相桥臂子模块的变换器开关状态进行控制;
所述步骤S1具体包括以下步骤:
S11、在dq旋转坐标系下,定义状态变量为
Figure FDA0003818157190000011
定义输入变量为
Figure FDA0003818157190000012
Figure FDA0003818157190000013
定义输出变量为
Figure FDA0003818157190000014
其中,正序子***状态变量为
Figure FDA0003818157190000015
Figure FDA0003818157190000016
负序子***状态变量为
Figure FDA0003818157190000017
正序子***输入变量为
Figure FDA0003818157190000018
负序子***输入变量为
Figure FDA0003818157190000019
Figure FDA00038181571900000110
正序子***输出变量为
Figure FDA00038181571900000111
负序子***输出变量为
Figure FDA00038181571900000112
其中,Leq为桥臂电感,
Figure FDA00038181571900000113
分别为交流侧输出电压的dq轴正、负序分量,
Figure FDA00038181571900000114
分别为交流侧电源电流的dq轴正、负序分量,
Figure FDA00038181571900000115
Figure FDA00038181571900000116
分别为交流侧电源电压的dq轴正、负序分量;
S12、基于步骤S11中的状态变量、输入变量和输出变量,建立基于PCHD模型的MMC并网电流状态方程,并设计MMC并网***期望全局能量函数,得到电网电压不平衡下MMC并网***PCHD模型;
所述MMC并网电流状态方程具体为:
Figure FDA00038181571900000117
Figure FDA00038181571900000118
Figure FDA0003818157190000021
Figure FDA0003818157190000022
Figure FDA0003818157190000023
Figure FDA0003818157190000024
Figure FDA0003818157190000025
Figure FDA0003818157190000026
Figure FDA0003818157190000027
其中,J(x)为互联矩阵,R(x)为阻尼矩阵,g(x)为端口矩阵,H(x)为能量函数,ω为基波角频率,R为桥臂电阻,
Figure FDA0003818157190000028
为微分算子;
所述期望全局能量函数具体为:
Figure FDA0003818157190000029
Figure FDA00038181571900000210
Figure FDA00038181571900000211
Figure FDA00038181571900000212
Figure FDA00038181571900000213
其中,x*为x的期望轨迹,
Figure FDA00038181571900000214
分别为交流侧电源电流的dq轴期望正、负序分量,D为桥臂电感矩阵;
所述步骤S2具体包括以下步骤:
S21、结合一致性方法,设定MMC并网***正、负序子***的拉普拉斯矩阵L1、L2
S22、以状态变量与期望平衡点之差为零作为控制目标,将并网电流状态变量误差代入基于PCHD模型的无源一致性控制期望能量函数,结合MMC并网***PCHD模型,得到MMC并网***闭环状态方程;
S23、结合MMC并网***闭环状态方程以及MMC并网电流状态方程,得到基于PCHD模型的无源一致性控制律,即可得到控制量。
2.根据权利要求1所述的一种模块化多电平并网电流无源一致性控制方法,其特征在于,所述电网电压不平衡下MMC并网***PCHD模型具体为:
Figure FDA0003818157190000031
Jd(x)=J(x)+Ja(x),
Figure FDA0003818157190000032
Rd(x)=R(x)+Ra(x),
Figure FDA0003818157190000033
其中,Jd(x)为***期望互联矩阵,Rd(x)为***期望阻尼矩阵,Ja(x)、Ra(x)分别为注入的耗散矩阵、阻尼矩阵。
3.根据权利要求2所述的一种模块化多电平并网电流无源一致性控制方法,其特征在于,所述MMC并网***正、负序子***的拉普拉斯矩阵L1、L2具体为:
Figure FDA0003818157190000034
其中,Δ为L1、L2的关联度矩阵,A为邻接矩阵。
4.根据权利要求3所述的一种模块化多电平并网电流无源一致性控制方法,其特征在于,所述并网电流状态变量误差具体为:
Figure FDA0003818157190000035
Figure FDA0003818157190000036
Figure FDA0003818157190000037
其中,Aij为交互系数,α为误差系数,当子***具有相同期望轨迹时,α=1;当子***期望轨迹不同时,α=0。
5.根据权利要求4所述的一种模块化多电平并网电流无源一致性控制方法,其特征在于,所述基于PCHD模型的无源一致性控制期望能量函数具体为:
Figure FDA0003818157190000041
所述MMC并网***闭环状态方程具体为:
Figure FDA0003818157190000042
6.根据权利要求5所述的一种模块化多电平并网电流无源一致性控制方法,其特征在于,所述基于PCHD模型的无源一致性控制律具体为:
Figure FDA0003818157190000043
Figure FDA0003818157190000044
Figure FDA0003818157190000045
Figure FDA0003818157190000046
Figure FDA0003818157190000047
Figure FDA0003818157190000048
Figure FDA0003818157190000049
Figure FDA00038181571900000410
其中,
Figure FDA00038181571900000411
分别为交流侧电源电压的dq轴正、负序分量,即为得到的控制量,ra11、ra12、ra21、ra22为无源控制器系数,A1、A2、B1、B2、C1、C2、D1、D2分别为正序、负序控制变量。
CN202110734879.2A 2021-06-30 2021-06-30 一种模块化多电平变换器并网电流无源一致性控制方法 Active CN113346781B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110734879.2A CN113346781B (zh) 2021-06-30 2021-06-30 一种模块化多电平变换器并网电流无源一致性控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110734879.2A CN113346781B (zh) 2021-06-30 2021-06-30 一种模块化多电平变换器并网电流无源一致性控制方法

Publications (2)

Publication Number Publication Date
CN113346781A CN113346781A (zh) 2021-09-03
CN113346781B true CN113346781B (zh) 2022-11-18

Family

ID=77481691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110734879.2A Active CN113346781B (zh) 2021-06-30 2021-06-30 一种模块化多电平变换器并网电流无源一致性控制方法

Country Status (1)

Country Link
CN (1) CN113346781B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212798A (zh) * 2019-06-24 2019-09-06 上海电力学院 一种模块化多电平变换器的环流抑制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108021719A (zh) * 2016-10-29 2018-05-11 南京理工大学 一种风电场并网的无源控制方法
CN111668867A (zh) * 2019-03-05 2020-09-15 南京理工大学 一种风电场经vsc-hvdc***并网的无源滑模控制方法
CN111327219B (zh) * 2020-02-25 2021-01-12 上海电力大学 一种用于抑制模块化多电平变换器环流的无源一致性控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212798A (zh) * 2019-06-24 2019-09-06 上海电力学院 一种模块化多电平变换器的环流抑制方法

Also Published As

Publication number Publication date
CN113346781A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
CN107123981B (zh) 基于mmc的柔性直流及直流电网机电暂态仿真方法及***
CN110707958B (zh) 一种基于调制波区间划分的中点电压控制方法
Song et al. Analysis of middle frequency resonance in DFIG system considering phase-locked loop
CN111541262B (zh) 模型预测定交流电压控制下mmc频率耦合阻抗建模方法
CN110212798B (zh) 一种模块化多电平变换器的环流抑制方法
CN108280271B (zh) 基于开关周期平均原理的统一潮流控制器等效建模方法
CN110212799B (zh) 用于抑制模块化多电平变换器环流的无源反步控制方法
CN110429603B (zh) 六开关七电平有源电力滤波器及补偿方法
CN107611971A (zh) 针对电网电压谐波畸变工况的网侧逆变器谐振全阶滑模控制方法
CN110365051A (zh) 一种自适应指令滤波反演的虚拟同步电机控制方法
CN110176770B (zh) 电网电压不平衡时mmc型有源电力滤波器的控制方法
CN114696334A (zh) 基于前馈补偿量计算的级联h桥statcom相间电压平衡控制方法
Meersman et al. The influence of grid-connected three-phase inverters on voltage unbalance
CN110048442B (zh) 模块化多电平变换器微分平滑非线性控制方法及装置
CN112003318A (zh) 一种风电并网逆变器直流母线电压控制方法
CN113346781B (zh) 一种模块化多电平变换器并网电流无源一致性控制方法
CN115811097A (zh) 一种基于虚拟振荡器控制的电压质量优化方法
CN111969643B (zh) 不对称故障下的对无源网络供电的mmc-hvdc的微分平坦控制方法
CN113346779B (zh) 一种模块化多电平变换器并网电流无源控制方法
CN111525567B (zh) 一种光伏并网逆变器故障电流的计算方法和装置
Liu et al. High performance controller design with PD feedback inner loop for three-phase four-leg inverter
CN113328644B (zh) 一种模块化多电平变换器电容电压波动无源控制方法
CN113765345B (zh) 一种模块化多电平变换器电容电压波动抑制方法
Shuang et al. A feedback linearization based control strategy for VSC-HVDC transmission converters
Lv et al. Multi-harmonic Linearization Based Small-Signal Impedance Modeling of a Modular Multilevel Converter With DSOGI-PLL

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant