CN113765345A - 一种模块化多电平变换器电容电压波动抑制方法 - Google Patents

一种模块化多电平变换器电容电压波动抑制方法 Download PDF

Info

Publication number
CN113765345A
CN113765345A CN202110967810.4A CN202110967810A CN113765345A CN 113765345 A CN113765345 A CN 113765345A CN 202110967810 A CN202110967810 A CN 202110967810A CN 113765345 A CN113765345 A CN 113765345A
Authority
CN
China
Prior art keywords
fluctuation
mmc
capacitor voltage
voltage
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110967810.4A
Other languages
English (en)
Other versions
CN113765345B (zh
Inventor
薛花
扈曾辉
王育飞
陈程
田广平
杨兴武
刘波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Electric Power
Original Assignee
Shanghai University of Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Electric Power filed Critical Shanghai University of Electric Power
Priority to CN202110967810.4A priority Critical patent/CN113765345B/zh
Publication of CN113765345A publication Critical patent/CN113765345A/zh
Application granted granted Critical
Publication of CN113765345B publication Critical patent/CN113765345B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明涉及一种模块化多电平变换器电容电压波动抑制方法,包括:建立基于PCHD模型的MMC波动电容电压状态方程;基于建立的MMC波动电容电压状态方程,进一步构建得到基于PCHD模型的MMC电容电压波动无源一致性控制器,以得到波动电容电压控制量;采用脉冲调制方法对波动电容电压控制量进行处理,得到相应的触发脉冲信号;根据触发脉冲信号对MMC各相桥臂子模块的变换器开关状态进行控制。与现有技术相比,本发明将基于PCHD模型的无源一致性控制方法用于MMC电容电压波动抑制,具有控制律形式简单、均值偏差小、稳定性好的优点,能够有效地对MMC电容电压波动进行抑制。

Description

一种模块化多电平变换器电容电压波动抑制方法
技术领域
本发明涉及模块化多电平变换器控制技术领域,尤其是涉及一种模块化多电平变换器电容电压波动抑制方法。
背景技术
模块化多电平变换器(Modular Multilevel Converter,MMC)由多个结构相同的子模块(Sub-module,SM)级联构成,其中,子模块的结构可以分为半H桥型、全H桥型和双箝位型子模块型三种。MMC具有谐波含量少、开关损耗低、故障穿越能力强、便于模块化扩容和工业化生产等优点,目前已被广泛应用于大规模可再生能源并网领域。但由于大规模可再生能源发电具有间歇性、波动性特点,容易导致三相MMC相间能量不平衡,进而引发子模块电容电压不均衡,而MMC电容电压波动必然会增加换流器损耗,导致交流侧输出电压出现偏差,严重时会影响***可靠运行。
因此,有必要对MMC电容电压波动进行抑制,传统方法是采用矢量控制方法,这种方式是针对MMC子模块电容电压波动***的非线性本质进行控制器设计,由于未从能量角度出发,因此当存在不确定性扰动情况时,矢量控制器的抗扰性和鲁棒性将会面临难以克服的挑战;相比于传统矢量控制方法,现有技术采用非线性控制方法,以从能量角度出发,设计能够反映MMC子模块电容电压波动***非线性本质的控制器,在闭环控制***稳定性和鲁棒性方面控制性能有所提升,但这种方法的计算较复杂,且无法解决***内部损耗过大的问题,在能量优化方面尚有不足,不利于解决工程实际问题。由此可知,如何在控制器设计尽量简洁的前提下,实现动、静态响应性能的提升,同时确保***全局渐进稳定性和鲁棒性的进一步提升,是MMC子模块电容电压波动抑制工程应用必须解决的关键问题。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种模块化多电平变换器电容电压波动抑制方法,通过设计无源一致性控制器,以实现一种形式简单的控制器,能够对MMC电容电压波动进行有效抑制,且能提升***全局渐进稳定性及鲁棒性。
本发明的目的可以通过以下技术方案来实现:一种模块化多电平变换器电容电压波动抑制方法,包括以下步骤:
S1、建立基于PCHD(port-controlled Hamiltonian with dissipation,端口受控耗散哈密顿)模型的MMC波动电容电压状态方程;
S2、基于步骤S1建立的MMC波动电容电压状态方程,进一步构建得到基于PCHD模型的MMC电容电压波动无源一致性控制器,以得到波动电容电压控制量;
S3、采用脉冲调制方法对波动电容电压控制量进行处理,得到相应的触发脉冲信号;
S4、根据触发脉冲信号对MMC各相桥臂子模块的变换器开关状态进行控制。
进一步地,所述步骤S1具体包括以下步骤:
S11、在dq旋转坐标系下,分别定义状态变量、输入变量和输出变量,其中,状态变量具体为三相注入环流二倍频dq轴分量与桥臂电感的乘积,输入变量具体为三相波动电容电压dq轴分量,输出变量具体为三相注入环流二倍频dq轴分量;
S12、基于定义的状态变量、输入变量和输出变量,建立基于PCHD模型的MMC波动电容电压状态方程。
进一步地,所述MMC波动电容电压状态方程具体为:
Figure BDA0003224798410000021
x=[x1 x2]T=[Lmicird Lmicirq]T
u=[u1 u2]T=[ucird ucirq]T
y=[y1 y2]T=[icird icirq]T
Figure BDA0003224798410000022
Figure BDA0003224798410000023
Figure BDA0003224798410000031
Figure BDA0003224798410000032
其中,x为状态变量,u为输入变量,y为输出变量,Lm为桥臂电感,icird、icirq分别为三相注入环流二倍频d轴和q轴分量,ucird、ucirq分别为三相波动电容电压d轴和q轴分量,J(x)为互连矩阵,R(x)为阻尼矩阵,g(x)为端口矩阵,H(x)为能量函数,ω0为基波角频率,Rm为桥臂电阻,
Figure BDA0003224798410000033
为微分算子。
进一步地,所述步骤S2具体包括以下步骤:
S21、在PCHD模型基础上引入一致性控制律,并设定MMC子模块波动电容电压***注入环流后的期望平衡点;
S22、以状态变量与期望平衡点之差及其差值微分均为零作为控制目标,结合MMC波动电容电压状态方程,得到基于PCHD模型的无源一致性控制律,即可得到波动电容电压控制量。
进一步地,所述步骤S21引入的一致性控制律具体为:
Figure BDA0003224798410000034
Figure BDA0003224798410000035
Figure BDA0003224798410000036
Figure BDA0003224798410000037
Figure BDA0003224798410000038
Figure BDA0003224798410000039
α=1
其中,xe为状态变量误差,x*为设定的期望平衡点,
Figure BDA00032247984100000310
Figure BDA00032247984100000311
分别为三相注入环流二倍频d轴和q轴分量参考轨迹,α为误差系数。
进一步地,所述步骤S22具体包括以下步骤:
S221、以状态变量与期望平衡点之差及其差值微分均为零作为控制目标,设计对应的期望能量函数;
S222、基于设计的期望能量函数,结合MMC波动电容电压状态方程,得到MMC子模块波动电容电压闭环***的状态方程;
S223、根据MMC子模块波动电容电压闭环***的状态方程,进一步得到基于PCHD模型无源一致性控制律。
进一步地,所述步骤S221中控制目标具体为:
Figure BDA0003224798410000041
设计的期望能量函数具体为:
Figure BDA0003224798410000042
其中,Hd(x)为期望能量函数,D为桥臂电感矩阵。
进一步地,所述步骤S222中MMC子模块波动电容电压闭环***的状态方程具体为:
Figure BDA0003224798410000043
其中,Jd(x)为***期望的互联矩阵,Rd(x)为***期望的阻尼矩阵。
进一步地,所述***期望的互联矩阵具体为:
Jd(x)=J(x)+Ja(x)
Ja(x)=0
其中,Ja(x)为注入的耗散矩阵;
所述***期望的阻尼矩阵具体为:
Rd(x)=R(x)+Ra(x)
Figure BDA0003224798410000044
其中,Ra(x)为注入的阻尼矩阵,ra1、ra2为注入的正阻尼参数。
进一步地,所述步骤S223中基于PCHD模型的无源一致性控制律具体为:
Figure BDA0003224798410000045
A1=8ω0Lm-5(Rm+ra1)
A2=10ω0Lm+4(Rm+ra2)
B1=-10ω0Lm+4(Rm+ra1)
B2=-8ω0Lm-5(Rm+ra2)
C1=2ω0Lm
C2=-2ω0Lm
D1=D2=Rm
其中,A1、B1、C1、D1均为d轴控制变量,A2、B2、C2、D2均为q轴控制变量,ucird、ucirq分别为三相波动电容电压d轴和q轴分量,即为波动电容电压控制量。
与现有技术相比,本发明基于PCHD模型以及无源性和一致性理论,基于建立的MMC波动电容电压状态方程,通过能量函数整形,以使控制目标能够在期望平衡点取得最小值,能够有效确保***全局渐进稳定,从而保证后续波动电容电压控制量求取的准确性、提高MMC电容电压波动抑制的可靠性;
此外,本发明构建的基于PCHD模型的MMC电容电压波动无源一致性控制器,在确保***的全局稳定性的同时,能够实现注入环流参考轨迹的快速跟踪以及同步性跟踪,其控制律形式简单,且具有较好的暂态性能和稳定性能。
附图说明
图1为本发明的方法流程示意图;
图2为实施例的应用过程示意图;
图3为MMC三相等效电路结构示意图;
图4为实施例中应用本发明方法后的MMC子模块电容电压波动示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例
如图1所示,一种模块化多电平电容电压波动抑制方法,包括以下步骤:
S1、建立基于PCHD模型的MMC波动电容电压状态方程,具体是在dq旋转坐标系下,分别定义状态变量、输入变量和输出变量:状态变量为三相注入环流二倍频dq轴分量与桥臂电感的乘积,输入变量为三相波动电容电压dq轴分量,输出变量为三相注入环流二倍频dq轴分量;
基于定义的状态变量、输入变量和输出变量,建立得到MMC波动电容电压状态方程:
Figure BDA0003224798410000061
x=[x1 x2]T=[Lmicird Lmicirq]T
u=[u1 u2]T=[ucird ucirq]T
y=[y1 y2]T=[icird icirq]T
Figure BDA0003224798410000062
Figure BDA0003224798410000063
Figure BDA0003224798410000064
Figure BDA0003224798410000065
其中,x为状态变量,u为输入变量,y为输出变量,Lm为桥臂电感,icird、icirq分别为三相注入环流二倍频d轴和q轴分量,ucird、ucirq分别为三相波动电容电压d轴和q轴分量,J(x)为互连矩阵,R(x)为阻尼矩阵,g(x)为端口矩阵,H(x)为能量函数,ω0为基波角频率,Rm为桥臂电阻,
Figure BDA0003224798410000066
为微分算子;
S2、基于步骤S1建立的MMC波动电容电压状态方程,进一步构建得到基于PCHD模型的MMC电容电压波动无源一致性控制器,以得到波动电容电压控制量,具体的:
首先引入一致性控制律,并设定MMC子模块波动电容电压***注入环流后的期望平衡点:
Figure BDA0003224798410000067
其中,x*为期望平衡点,
Figure BDA0003224798410000068
Figure BDA0003224798410000069
分别为三相注入环流二倍频d轴和q轴分量参考轨迹;
一致性控制律为:
Figure BDA00032247984100000610
其中,xe为状态变量误差,
Figure BDA00032247984100000611
x1=Lmicird,x2=Lmicirq,
Figure BDA00032247984100000612
由于MMC三相电容电压期望轨迹一致,因此取误差系数α=1;
之后以状态变量与期望平衡点之差与差值微分为零作为控制目标(即x-x*=0及
Figure BDA0003224798410000071
),设计对应的期望能量函数:
Figure BDA0003224798410000072
其中,Hd(x)为期望能量函数,D为桥臂电感矩阵,其对角线上元素均为Lm、其余元素均为0;
再基于设计的期望能量函数,结合MMC波动电容电压状态方程,得到MMC子模块波动电容电压闭环***的状态方程:
Figure BDA0003224798410000073
Jd(x)=J(x)+Ja(x)
Ja(x)=0
Rd(x)=R(x)+Ra(x)
Figure BDA0003224798410000074
其中,Jd(x)为***期望的互联矩阵,Rd(x)为***期望的阻尼矩阵,Ja(x)为注入的耗散矩阵,Ra(x)为注入的阻尼矩阵,ra1、ra2为注入的正阻尼参数;
最后根据MMC子模块波动电容电压闭环***的状态方程,进一步得到基于PCHD模型的无源一致性控制律:
Figure BDA0003224798410000075
其中,A1=8ω0Lm-5(Rm+ra1);A2=10ω0Lm+4(Rm+ra2);
B1=-10ω0Lm+4(Rm+ra1);B2=-8ω0Lm-5(Rm+ra2);
C1=2ω0Lm;C2=-2ω0Lm
D1=D2=Rm
A1、B1、C1、D1均为d轴控制变量,A2、B2、C2、D2均为q轴控制变量,ucird、ucirq分别为三相波动电容电压d轴和q轴分量,即为波动电容电压控制量;
S3、采用脉冲调制方法对波动电容电压控制量进行处理,得到相应的触发脉冲信号;
S4、根据触发脉冲信号对MMC各相桥臂子模块的变换器开关状态进行控制。
本实施例应用上述方法,其过程如图2所示:
步骤1:三相MMC电路结构及子模块拓扑图如图3所示,由图3可得dq旋转坐标系下MMC波动电容电压动态方程式为
Figure BDA0003224798410000081
其中,ω0为基波角频率,Lm为桥臂电感,Rm为桥臂电阻,icird和icirq为三相注入环流二倍频的d轴和q轴分量,ucird和ucirq为三相波动电容电压的d轴和q轴分量,
Figure BDA0003224798410000082
为微分算子,t为时间。
选取状态变量x、输入变量u、输出变量y为:
Figure BDA0003224798410000083
式中:[·]T为矩阵的转置。
设计正定二次型能量函数H(x)为:
Figure BDA0003224798410000084
对MMC波动电容电压动态方程式(1)进行等效变换,得到MMC子模块电容电压波动PCHD模型:
Figure BDA0003224798410000085
其中,
互联矩阵
Figure BDA0003224798410000086
阻尼矩阵
Figure BDA0003224798410000087
端口矩阵
Figure BDA0003224798410000088
式中,
Figure BDA0003224798410000089
为微分算子。
由式(3)和式(4)可得耗散不等式:
Figure BDA0003224798410000091
式(5)左边是整个MMC波动电容电压***的增量,右边是外部供给能量,由无源性理论可知:映射u→x为输出严格无源的,MMC波动电容电压***具有无源特性。
步骤2:根据***控制性能目标,设置MMC子模块电容电压波动***注入环流后期望平衡点为
Figure BDA0003224798410000092
式中,
Figure BDA0003224798410000093
Figure BDA0003224798410000094
为三相注入环流二倍频d轴和q轴分量参考轨迹。
根据控制目标x-x*=0及
Figure BDA0003224798410000095
设计MMC子模块电容电压波动抑制控制***期望能量函数
Figure BDA0003224798410000096
由式(4)、式(7),可得MMC子模块波动电容电压闭环***的状态方程为
Figure BDA0003224798410000097
式中,Jd(x)=J(x)+Ja(x)为***期望的互联矩阵,Rd(x)=R(x)+Ra(x)为***期望的阻尼矩阵,Ja(x)=0、
Figure BDA0003224798410000098
分别为注入的耗散矩阵和阻尼矩阵,ra1、ra2为注入的正阻尼参数。
由式(8)可得基于PCHD模型的无源一致性控制律为
Figure BDA0003224798410000099
式(9)可确保闭环控制***在全局渐进稳定前提下实现MMC子模块电容电压波动的有效抑制。
本实施例在MATLAB/Simulink中搭建MMC电容电压波动控制***的仿真模型,以对本发明的有效性进行验证,本实施例的仿真参数如表1所示。
表1
Figure BDA00032247984100000910
Figure BDA0003224798410000101
在MMC***稳态运行下采用基于PCHD模型的MMC电容电压波动抑制方法进行仿真测试。在t=0.3s时启动子模块电容电压波动抑制方法,仿真结果如图4所示。由图4分析可知,在t=0.3s前未采用子模块电容电压波动抑制时,MMC子模块电容电压波动较大,在t=0.3s实施基于PCHD模型的无源一致性控制方法后,暂态过渡时间段,动态响应快速,实现了MMC子模块电容电压波动的有效抑制,且平稳后三相电容电压均值偏差小,提升了***的稳定性。

Claims (10)

1.一种模块化多电平变换器电容电压波动抑制方法,其特征在于,包括以下步骤:
S1、建立基于PCHD模型的MMC波动电容电压状态方程;
S2、基于步骤S1建立的MMC波动电容电压状态方程,进一步构建得到基于PCHD模型的MMC电容电压波动无源一致性控制器,以得到波动电容电压控制量;
S3、采用脉冲调制方法对波动电容电压控制量进行处理,得到相应的触发脉冲信号;
S4、根据触发脉冲信号对MMC各相桥臂子模块的变换器开关状态进行控制。
2.根据权利要求1所述的一种模块化多电平变换器电容电压波动抑制方法,其特征在于,所述步骤S1具体包括以下步骤:
S11、在dq旋转坐标系下,分别定义状态变量、输入变量和输出变量,其中,状态变量具体为三相注入环流二倍频dq轴分量与桥臂电感的乘积,输入变量具体为三相波动电容电压dq轴分量,输出变量具体为三相注入环流二倍频dq轴分量;
S12、基于定义的状态变量、输入变量和输出变量,建立基于PCHD模型的MMC波动电容电压状态方程。
3.根据权利要求2所述的一种模块化多电平变换器电容电压波动抑制方法,其特征在于,所述MMC波动电容电压状态方程具体为:
Figure FDA0003224798400000011
x=[x1 x2]T=[Lmicird Lmicirq]T
u=[u1 u2]T=[ucird ucirq]T
y=[y1 y2]T=[icird icirq]T
Figure FDA0003224798400000012
Figure FDA0003224798400000013
Figure FDA0003224798400000021
Figure FDA0003224798400000022
其中,x为状态变量,u为输入变量,y为输出变量,Lm为桥臂电感,icird、icirq分别为三相注入环流二倍频d轴和q轴分量,ucird、ucirq分别为三相波动电容电压d轴和q轴分量,J(x)为互连矩阵,R(x)为阻尼矩阵,g(x)为端口矩阵,H(x)为能量函数,ω0为基波角频率,Rm为桥臂电阻,
Figure FDA0003224798400000023
为微分算子。
4.根据权利要求3所述的一种模块化多电平变换器电容电压波动抑制方法,其特征在于,所述步骤S2具体包括以下步骤:
S21、在PCHD模型基础上引入一致性控制律,并设定MMC子模块波动电容电压***注入环流后的期望平衡点;
S22、以状态变量与期望平衡点之差及其差值微分均为零作为控制目标,结合MMC波动电容电压状态方程,得到基于PCHD模型的无源一致性控制律,即可得到波动电容电压控制量。
5.根据权利要求4所述的一种模块化多电平变换器电容电压波动抑制方法,其特征在于,所述步骤S21引入的一致性控制律具体为:
Figure FDA0003224798400000024
Figure FDA0003224798400000025
Figure FDA0003224798400000026
Figure FDA0003224798400000027
Figure FDA0003224798400000028
Figure FDA0003224798400000029
α=1
其中,xe为状态变量误差,x*为设定的期望平衡点,
Figure FDA00032247984000000210
Figure FDA00032247984000000211
分别为三相注入环流二倍频d轴和q轴分量参考轨迹,α为误差系数。
6.根据权利要求5所述的一种模块化多电平变换器电容电压波动抑制方法,其特征在于,所述步骤S22具体包括以下步骤:
S221、以状态变量与期望平衡点之差及其差值微分均为零作为控制目标,设计对应的期望能量函数;
S222、基于设计的期望能量函数,结合MMC波动电容电压状态方程,得到MMC子模块波动电容电压闭环***的状态方程;
S223、根据MMC子模块波动电容电压闭环***的状态方程,进一步得到基于PCHD模型无源一致性控制律。
7.根据权利要求6所述的一种模块化多电平变换器电容电压波动抑制方法,其特征在于,所述步骤S221中控制目标具体为:
Figure FDA0003224798400000031
设计的期望能量函数具体为:
Figure FDA0003224798400000032
其中,Hd(x)为期望能量函数,D为桥臂电感矩阵。
8.根据权利要求7所述的一种模块化多电平变换器电容电压波动抑制方法,其特征在于,所述步骤S222中MMC子模块波动电容电压闭环***的状态方程具体为:
Figure FDA0003224798400000033
其中,Jd(x)为***期望的互联矩阵,Rd(x)为***期望的阻尼矩阵。
9.根据权利要求8所述的一种模块化多电平变换器电容电压波动抑制方法,其特征在于,所述***期望的互联矩阵具体为:
Jd(x)=J(x)+Ja(x)
Ja(x)=0
其中,Ja(x)为注入的耗散矩阵;
所述***期望的阻尼矩阵具体为:
Rd(x)=R(x)+Ra(x)
Figure FDA0003224798400000034
其中,Ra(x)为注入的阻尼矩阵,ra1、ra2为注入的正阻尼参数。
10.根据权利要求9所述的一种模块化多电平变换器电容电压波动抑制方法,其特征在于,所述步骤S223中基于PCHD模型的无源一致性控制律具体为:
Figure FDA0003224798400000041
A1=8ω0Lm-5(Rm+ra1)
A2=10ω0Lm+4(Rm+ra2)
B1=-10ω0Lm+4(Rm+ra1)
B2=-8ω0Lm-5(Rm+ra2)
C1=2ω0Lm
C2=-2ω0Lm
D1=D2=Rm
其中,A1、B1、C1、D1均为d轴控制变量,A2、B2、C2、D2均为q轴控制变量,ucird、ucirq分别为三相波动电容电压d轴和q轴分量,即为波动电容电压控制量。
CN202110967810.4A 2021-08-23 2021-08-23 一种模块化多电平变换器电容电压波动抑制方法 Active CN113765345B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110967810.4A CN113765345B (zh) 2021-08-23 2021-08-23 一种模块化多电平变换器电容电压波动抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110967810.4A CN113765345B (zh) 2021-08-23 2021-08-23 一种模块化多电平变换器电容电压波动抑制方法

Publications (2)

Publication Number Publication Date
CN113765345A true CN113765345A (zh) 2021-12-07
CN113765345B CN113765345B (zh) 2024-06-28

Family

ID=78790812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110967810.4A Active CN113765345B (zh) 2021-08-23 2021-08-23 一种模块化多电平变换器电容电压波动抑制方法

Country Status (1)

Country Link
CN (1) CN113765345B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212799A (zh) * 2019-06-24 2019-09-06 上海电力学院 用于抑制模块化多电平变换器环流的无源反步控制方法
CN110212798A (zh) * 2019-06-24 2019-09-06 上海电力学院 一种模块化多电平变换器的环流抑制方法
CN111327219A (zh) * 2020-02-25 2020-06-23 上海电力大学 一种用于抑制模块化多电平变换器环流的无源一致性控制方法
CN112737381A (zh) * 2020-12-18 2021-04-30 辽宁工程技术大学 一种基于环流压降平衡的mmc电容电压波动抑制方法
CN112865504A (zh) * 2021-02-03 2021-05-28 华北电力大学 故障下抑制mmc子模块电容电压波动的二倍频环流注入方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212799A (zh) * 2019-06-24 2019-09-06 上海电力学院 用于抑制模块化多电平变换器环流的无源反步控制方法
CN110212798A (zh) * 2019-06-24 2019-09-06 上海电力学院 一种模块化多电平变换器的环流抑制方法
CN111327219A (zh) * 2020-02-25 2020-06-23 上海电力大学 一种用于抑制模块化多电平变换器环流的无源一致性控制方法
CN112737381A (zh) * 2020-12-18 2021-04-30 辽宁工程技术大学 一种基于环流压降平衡的mmc电容电压波动抑制方法
CN112865504A (zh) * 2021-02-03 2021-05-28 华北电力大学 故障下抑制mmc子模块电容电压波动的二倍频环流注入方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RONGJIANG YU等: "Passivity-based Method Based on PCHD Model of Modular Multilevel Converter Circulating Current Suppressing", 《2020 5TH ASIA CONFERENCE ON POWER AND ELECTRICAL ENGINEERING》, pages 1219 - 1223 *
燕伯峰 等: "电网不平衡电压下基于PCHD模型的MMC-HVDC无源控制策略", 《电测与仪表》, vol. 57, no. 07, pages 93 - 100 *

Also Published As

Publication number Publication date
CN113765345B (zh) 2024-06-28

Similar Documents

Publication Publication Date Title
CN110212798B (zh) 一种模块化多电平变换器的环流抑制方法
CN113285583B (zh) 非隔离型光伏逆变器漏电流抑制方法及***
CN110212799B (zh) 用于抑制模块化多电平变换器环流的无源反步控制方法
US20230250803A1 (en) Method and system of positive and negative sequence rotor currents control for doubly-fed induction generator-based wind turbines under single dq-pi control structure
CN108039706B (zh) 一种有源电力滤波器抗饱和频率自适应谐振控制方法
CN107302219B (zh) 一种有源电力滤波器电网角度的闭环控制方法
CN110868082B (zh) 基于电网电压故障下的对无源网络供电的mmc-pet的控制方法
CN111478565B (zh) Vienna整流器的高次谐波抑制控制器的设计方法
CN116581790B (zh) 一种模块化多电平换流器在不平衡电网的抑制方法及***
CN113328644B (zh) 一种模块化多电平变换器电容电压波动无源控制方法
CN113765345A (zh) 一种模块化多电平变换器电容电压波动抑制方法
CN110224651B (zh) 一种抑制二次谐波转矩的缺相控制方法
CN101719672B (zh) 有源电力滤波器及其能量整形控制方法
CN106602560A (zh) 电容中点式三相四线制sapf混合无源非线性控制方法
CN107612398B (zh) 一种五电平npc型逆变器无源控制***及方法
CN113346781B (zh) 一种模块化多电平变换器并网电流无源一致性控制方法
Wang et al. Research on dynamic characteristics and stability of MMC photovoltaic grid-connected system based on rotational synchronous generator model
CN113346779B (zh) 一种模块化多电平变换器并网电流无源控制方法
CN114069649A (zh) 一种基于负序电流和零序电压注入的级联式svg的直流侧电压平衡控制方法
CN114336660A (zh) 一种基于功角的upqc直接电流预测控制方法
CN116827143B (zh) 3tsmc-sdsem断相容错的有源功率解耦***
Yu et al. Passivity-based Method Based on PCHD Model of Modular Multilevel Converter Circulating Current Suppressing
Li et al. Composite Control Strategy of Output Current of LCL Photovoltaic Grid-Connected Inverter
Zhang et al. Passive Sliding Mode Control Strategy for Modular Multilevel Matrix Converters
Ji et al. Comparative analysis of control methods for modular multilevel converter with unbalanced grid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant