CN113201808A - 一种多孔纤维硅氧负极复合材料及其制备方法 - Google Patents

一种多孔纤维硅氧负极复合材料及其制备方法 Download PDF

Info

Publication number
CN113201808A
CN113201808A CN202110468544.0A CN202110468544A CN113201808A CN 113201808 A CN113201808 A CN 113201808A CN 202110468544 A CN202110468544 A CN 202110468544A CN 113201808 A CN113201808 A CN 113201808A
Authority
CN
China
Prior art keywords
composite material
sio
preparation
precursor
porous fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110468544.0A
Other languages
English (en)
Inventor
郭华军
谭福金
颜果春
王志兴
王接喜
牛旭鹏
李新海
胡启阳
彭文杰
殷振国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202110468544.0A priority Critical patent/CN113201808A/zh
Publication of CN113201808A publication Critical patent/CN113201808A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0532Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing sulfate-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/24Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/26Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds from polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明涉及锂离子电池技术领域,尤其涉及一种多孔纤维硅氧负极复合材料及其制备方法。该制备方法包括:将SiOx在惰性气氛下进行球磨获得球磨SiOx;将球磨SiOx、碳前驱体、钛前驱体和造孔剂按比例加入溶剂中搅拌均匀获得前驱体纺丝液,并进行纺丝获得前驱体纤维薄膜;将所述前驱体纤维薄膜经过稳定化处理和碳化处理,获得多孔纤维硅氧负极SiOx@TiO2/C复合材料。本发明制备方法简单环保,工艺中各项反应条件易控制产率高,且复合材料具有良好的导电性以及界面稳定性,具有较高的容量、良好的循环性能和倍率性能,可用于锂离子电池负极材料。

Description

一种多孔纤维硅氧负极复合材料及其制备方法
技术领域
本发明涉及锂离子电池技术领域,尤其涉及一种多孔纤维硅氧负极复合材料及其制备方法。
背景技术
锂离子电池(LIBs)具有比能量密度高、循环寿命长、无记忆效应等优点,被广泛应用于便携电子设备和新能源汽车上。然而,传统的石墨负极材料(理论比容量低,372mAh g-1)难以满足下一代高能量密度锂离子电池的需求。硅的理论比容量高(3579mAh g-1)、反应电位适中(~0.4V)且资源丰富(地壳中第二丰富的元素),是极具应用潜力的新一代高容量锂离子电池负极材料之一。但是,由于在充放电过程中硅合金化反应而产生的巨大体积变化(~320%),硅负极会产生颗粒粉化、电极结构破坏及界面稳定性恶化等问题,严重制约了其商业化应用。
因此,人们将目光转向了体积膨胀较小的SiOx材料,但是SiOx也面临着导电性差、不可忽略的体积膨胀的问题。研究人员已提出各种方法对氧化亚硅进行改性,比如球磨法、化学气相沉积法,溶胶凝胶法等。因此,开发一种解决SiOx导电性差以及体积膨胀的问题的技术材料迫在眉睫。
发明内容
针对现有技术存在的上述问题,本发明通过静电纺丝法对SiOx进行碳包覆和二氧化钛包覆,再通过稳定化处理和高温碳化处理获得多孔纤维结构,该纤维结构可以避免断裂问题,且对于压力和体积形变具有良好的适应性,由于活性物质和导电网络、集流体之间会存在更好的接触往往具有更好的导电性,同时也可以降低电解液和电极之间的界面阻抗,可用于锂粒子电池负极材料。
为实现上述发明目的,本发明提供了多孔纤维硅氧负极复合材料的制备方法,具体包括:
将SiOx在惰性气氛下进行球磨获得球磨SiOx
将球磨SiOx、碳前驱体、钛前驱体和造孔剂加入溶剂中搅拌均匀获得前驱体纺丝液,并进行纺丝获得前驱体纤维薄膜;
将所述前驱体纤维薄膜在空气气氛、100-300℃条件下进行稳定化处理后,置于惰性气氛下进行碳化处理,获得多孔纤维状的SiOx@TiO2/C复合材料。
进一步的,所述球磨过程中球料比为20-30:1,转速为700-900rpm,球磨时间为3-5h。
进一步的,所述纺丝液中各原料及其质量百分含量为:
球磨SiOx 1~10wt%,碳前驱体5~15wt%,钛前驱体5~25wt%,造孔剂1~10wt%,其余量为溶剂。
进一步的,所述碳前驱体为聚乙烯基吡咯烷酮、聚丙烯腈、聚乙烯醇缩丁醛、聚乙烯醇、左旋聚乳酸、聚丙烯酸中的至少一种;
所述钛前驱体为钛酸异丙酯、硫酸氧钛、钛酸四丁酯、偏钛酸、四氯化钛中的至少一种;
所述造孔剂为聚乙二醇、聚甲基丙烯酸甲酯和聚苯乙烯中的至少一种;
所述溶剂为乙醇、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二氯甲烷、二甲基亚砜的至少一种。
进一步的,所述纺丝过程的工艺参数为:
针头内径为0.3~2.0mm,纺丝电压为8~20kV,纺丝液的流速为0.03~0.15mmmin-1,接收距离为10~20cm,以及纺丝时间为6~15h。
进一步的,所述稳定化处理的升温速度为2~10℃min-1,稳定化保温时间为0.5~3h。
进一步的,所述碳化处理的升温速度为5~10℃min-1,碳化处理温度为500-800℃,处理时间为2-5h。
基于同一发明构思的,本发明还提供了一种多孔纤维状SiOx@TiO2/C复合材料,所述复合材料由上述制备方法制备获得。
有益效果:
(1)本发明多孔纤维多孔纤维硅氧负极(SiOx@TiO2/C)复合材料复合材料的制备方法简单环保,工艺中各项反应条件易控制,制备成本低廉,制备时间短,产率高,利于批量大规模生产。
(2)本发明的多孔纤维SiOx@TiO2/C复合材料以碳纤维为基体,SiOx可以依附或者嵌入碳纤维里面,同时生成的纳米TiO2粒子可以包覆在材料的表面,且纤维含有孔结构。该复合材料有效地提高了材料的导电性以及界面稳定性,具有较高的容量、良好的循环性能和倍率性能,以其作为负极材料的锂离子电池具有优良的比容量、倍率性能和循环性能。
附图说明
图1是本发明实施例1提供的多孔纤维SiOx@TiO2/C复合材料的SEM图。
图2是本发明实施例1提供的球磨SiOx和多孔纤维SiOx@TiO2/C复合材料的XRD图。
图3是本发明实施例1提供的多孔纤维SiOx@TiO2/C复合材料作为锂电负极材料在0.1Ag-1的电流密度下的首次充放电曲线。
图4是本发明实施例1提供的多孔纤维SiOx@TiO2/C复合材料作为锂电负极材料在0.1Ag-1活化三圈、0.4Ag-1循环100圈的循环稳定性曲线。
图5是本发明实施例2提供的多孔纤维SiOx@TiO2/C复合材料的SEM图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例进行详细描述,但本发明的保护范围并不限于以下具体实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1
按20:1的球料比将SiOx装入球磨罐,在惰性气氛下按400rpm的转速球磨4h后获得材料球磨SiOx(M-SiOx)。
配制以乙醇为溶剂的纺丝液,其中,纺丝液中各种原料的配比为:聚乙烯基吡咯烷酮的质量分数为6.3wt%,钛酸异丙酯的质量分数为11.8wt%,M-SiOx的质量分数为6.3wt%,聚乙二醇的质量分数为3.2wt%。
将上述纺丝液进行静电纺丝,纺丝条件为:针头内径为0.7mm,纺丝电压为12kV,纺丝液的流速为0.1mm min-1,接收距离为15cm,以及纺丝时间为10h,得到前驱体纤维薄膜。
然后将前驱体纤维薄膜在空气气氛、250℃下对前驱体纤维薄膜进行稳定化,其中升温速率为3℃min-1,保温时间为1h。
最后,将经过稳定化处理的纤维薄膜在氩气气氛、650℃下进行碳化处理,其中升温速率为5℃min-1,碳化时间为3h,得到SiOx@TiO2/C复合材料。
在制备扣式电池时,将目标材料、导电剂Super P和粘结剂海藻酸钠按7:2:1的质量比混合配成浆料均匀地涂覆到铜箔集流体上得到电极片。80℃真空干燥箱12h。将极片切成直径12mm的小圆片。采用金属锂片(直径14mm)为对电极、玻璃纤维(GF/A)为隔膜和LiPF6/EC+DEC(体积比为1:1)/VC+FEC(质量分数分别为2%和10%)的有机溶液为电解液。电池的组装在充满氩气的手套箱中进行,按自下往上的顺序依次放置电池负极壳、锂片、隔膜、极片、电解液、垫片、弹片和电池正极壳,组装好的电池用纽扣电池封口机进行密封。采用恒流充放电模式,电压范围为0.01~2.0V。在上海辰华电化学工作站进行循环伏安测试,扫描速度为0.1mV s-1。
实施例2:
由实施例1中所述方法制备出材料M-SiOx
配制以N,N-二甲基甲酰胺为溶剂的纺丝液,其中,纺丝液中各种原料的配比为:聚丙烯腈的质量分数为6.1wt%,硫酸氧钛的质量分数为12.1wt%,M-SiOx的质量分数为3.0wt%,聚甲基丙烯酸甲酯的质量分数为3.1wt%。
接下来将上述纺丝液进行静电纺丝,纺丝条件为:纺丝针头内径为1mm,纺丝电压为15kV,纺丝液的流速为0.08mm min-1,接收距离为15cm,以及纺丝时间为12h,得到前驱体纤维薄膜。
然后将前驱体纤维薄膜在空气气氛、250℃下对前驱体纤维薄膜进行稳定化,其中升温速率为1℃min-1,保温时间为0.5h。
最后,将经过稳定化处理的纤维薄膜在氩气气氛、650℃下进行碳化处理,其中升温速率为5℃min-1,碳化时间为5h,得到SiOx@TiO2/C复合材料。
材料涂片和扣式电池的制备及电化学性能测试同实施例1。
实施例3
由实施例1中所述方法制备出材料M-SiOx
配制以二氯甲烷为溶剂的纺丝液,其中,纺丝液中各种原料的配比为:聚乙烯醇缩丁醛的质量分数为9.6wt%,钛酸四丁酯的质量分数为15.5wt%,M-SiOx的质量分数为4.8wt%,聚苯乙烯的质量分数为4.8wt%。
接下来将上述纺丝液进行静电纺丝,纺丝条件为:针头内径为1.5mm,纺丝电压为18kV,纺丝液的流速为0.12mm min-1,接收距离为20cm,以及纺丝时间为8h,得到前驱体纤维薄膜。
然后将前驱体纤维薄膜在空气气氛、250℃下对前驱体纤维薄膜进行稳定化,其中升温速率为2℃min-1,保温时间为1.5h。
最后,将经过稳定化处理的纤维薄膜在氩气气氛、650℃下进行碳化处理,其中升温速率为3℃min-1,碳化时间为4h,得到SiOx@TiO2/C复合材料。
材料涂片和扣式电池的制备及电化学性能测试同实施例1。
以实施例1和实施例2获得的SiOx@TiO2/C复合材料进行表征和测试。参见图1,从图1可以看出,经过高温碳化后,材料含有微小的孔,纤维形貌保持较为完整,并且裸露着的M-SiOx很少,说明M-SiOx与碳纤维复合的效果很好。参见图2,从图2可以看出,M-SiOx为无定型结构,而SiOx@TiO2/C材料在25°出现了尖锐的衍射峰,这与了锐钛矿型二氧化钛(JPCDSNo.21-1272)的(101)晶面是相一致的,说明形成了锐钛矿型的二氧化钛晶体。然而晶体碳的衍射峰并没有观察到,说明形成的碳为非晶碳。参见图3,从图3可以看出,SiOx@TiO2/C在0.1Ag-1的电流密度下的首次充电比容量为1125.1mAh g-1,首次库伦效率为68.8%。参见图4,从图4可以看出,在0.4Ag-1的电流密度下循环100圈后的充电比容量为855.0mAh g-1,对应的容量保持率分别为89.5%(对比于第四圈的充电比容量),说明SiOx@TiO2/C复合材料拥有出色的循环稳定性。参见图5,从图5可以看出,SiOx@TiO2/C复合材料为多孔纤维结构,大部分直径在800nm左右,且表面较为粗糙。
以上所述实施例,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明的技术范围内,根据本发明的技术方案及其构思加以等同替换或改变,都应涵盖在本发明的保护范围内。

Claims (8)

1.一种多孔纤维硅氧负极复合材料的制备方法,其特征在于,具体包括以下步骤:
将SiOx在惰性气氛下进行球磨获得球磨SiOx
将球磨SiOx、碳前驱体、钛前驱体和造孔剂加入溶剂中搅拌均匀获得前驱体纺丝液,并进行纺丝获得前驱体纤维薄膜;
将所述前驱体纤维薄膜在空气气氛、100-300℃条件下进行稳定化处理后,置于惰性气氛下进行碳化处理,获得多孔纤维状的SiOx@TiO2/C复合材料。
2.根据权利要求1所述的多孔纤维硅氧负极复合材料的制备方法,其特征在于,所述球磨过程中球料比为20-30:1,转速为700-900rpm,球磨时间为3-5h。
3.根据权利要求1所述的多孔纤维硅氧负极复合材料的制备方法,其特征在于,所述纺丝液中各原料及其质量百分含量为:
球磨SiOx 1~10wt%,碳前驱体5~15wt%,钛前驱体5~25wt%,造孔剂1~10wt%,其余量为溶剂。
4.根据权利要求1所述的多孔纤维硅氧负极复合材料的制备方法,其特征在于,所述碳前驱体为聚乙烯基吡咯烷酮、聚丙烯腈、聚乙烯醇缩丁醛、聚乙烯醇、左旋聚乳酸、聚丙烯酸中的至少一种;
所述钛前驱体为钛酸异丙酯、硫酸氧钛、钛酸四丁酯、偏钛酸、四氯化钛中的至少一种;
所述造孔剂为聚乙二醇、聚甲基丙烯酸甲酯和聚苯乙烯中的至少一种;
所述溶剂为乙醇、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二氯甲烷、二甲基亚砜的至少一种。
5.根据权利要求1所述的多孔纤维硅氧负极复合材料的制备方法,其特征在于,所述纺丝过程的工艺参数为:
针头内径为0.3~2.0mm,纺丝电压为8~20kV,纺丝液的流速为0.03~0.15mm min-1,接收距离为10~20cm,以及纺丝时间为6~15h。
6.根据权利要求1所述的多孔纤维硅氧负极复合材料的制备方法,其特征在于,所述稳定化处理的升温速度为2~10℃ min-1,稳定化保温时间为0.5~3h。
7.根据权利要求1所述的多孔纤维硅氧负极复合材料的制备方法,其特征在于,所述碳化处理的升温速度为5~10℃ min-1,碳化处理温度为500-800℃,处理时间为2-5h。
8.一种多孔纤维硅氧负极复合材料,其特征在于,所述复合材料由权利要求1-7任意所述的制备方法制备获得。
CN202110468544.0A 2021-04-28 2021-04-28 一种多孔纤维硅氧负极复合材料及其制备方法 Pending CN113201808A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110468544.0A CN113201808A (zh) 2021-04-28 2021-04-28 一种多孔纤维硅氧负极复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110468544.0A CN113201808A (zh) 2021-04-28 2021-04-28 一种多孔纤维硅氧负极复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN113201808A true CN113201808A (zh) 2021-08-03

Family

ID=77029751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110468544.0A Pending CN113201808A (zh) 2021-04-28 2021-04-28 一种多孔纤维硅氧负极复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113201808A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284479A (zh) * 2021-12-22 2022-04-05 博路天成新能源科技有限公司 一种新型碳硅负极材料的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683710A (zh) * 2012-05-21 2012-09-19 北京化工大学 碳纳米纤维负载二氧化钛薄膜负极材料及其制备方法
CN103311523A (zh) * 2013-06-04 2013-09-18 清华大学深圳研究生院 具有纳米微孔隙的硅碳复合材料及其制备方法与用途
CN104835949A (zh) * 2014-07-28 2015-08-12 北汽福田汽车股份有限公司 Si-TiO2-C纳米纤维复合薄膜及其制备方法和应用
CN105591080A (zh) * 2016-01-18 2016-05-18 北京科技大学 一种锂离子电池负极材料SiOX-TiO2/C的制备方法
WO2016165262A1 (zh) * 2015-04-15 2016-10-20 田东 一种掺杂钛酸锂负极材料的制备方法
CN108520955A (zh) * 2018-06-07 2018-09-11 成都硅宝科技股份有限公司 三维网络结构纳米硅碳/钛氧化物复合材料及其制备方法
CN109524648A (zh) * 2018-11-08 2019-03-26 华南理工大学 一种含纳米硅的多孔碳纳米管柔性电池材料及其制备方法
CN110518198A (zh) * 2019-07-17 2019-11-29 浙江理工大学 应用于锂离子电池负极的Si/TiO2/Ti2O3复合碳纳米纤维及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683710A (zh) * 2012-05-21 2012-09-19 北京化工大学 碳纳米纤维负载二氧化钛薄膜负极材料及其制备方法
CN103311523A (zh) * 2013-06-04 2013-09-18 清华大学深圳研究生院 具有纳米微孔隙的硅碳复合材料及其制备方法与用途
CN104835949A (zh) * 2014-07-28 2015-08-12 北汽福田汽车股份有限公司 Si-TiO2-C纳米纤维复合薄膜及其制备方法和应用
WO2016165262A1 (zh) * 2015-04-15 2016-10-20 田东 一种掺杂钛酸锂负极材料的制备方法
CN105591080A (zh) * 2016-01-18 2016-05-18 北京科技大学 一种锂离子电池负极材料SiOX-TiO2/C的制备方法
CN108520955A (zh) * 2018-06-07 2018-09-11 成都硅宝科技股份有限公司 三维网络结构纳米硅碳/钛氧化物复合材料及其制备方法
CN109524648A (zh) * 2018-11-08 2019-03-26 华南理工大学 一种含纳米硅的多孔碳纳米管柔性电池材料及其制备方法
CN110518198A (zh) * 2019-07-17 2019-11-29 浙江理工大学 应用于锂离子电池负极的Si/TiO2/Ti2O3复合碳纳米纤维及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284479A (zh) * 2021-12-22 2022-04-05 博路天成新能源科技有限公司 一种新型碳硅负极材料的制备方法

Similar Documents

Publication Publication Date Title
CN107681142B (zh) 一种用作锂离子电池负极材料的二硫化钼包覆碳纳米纤维及其制备方法
CN104022266B (zh) 一种硅基负极复合材料及其制备方法
WO2019080346A1 (zh) 一种空间缓冲、掺杂锂的硅氧化物复合材料及其制备方法、锂离子电池
CN109786670A (zh) 一种高首效的锂离子二次电池负极活性材料的制备方法
CN108899486B (zh) 包覆硫系电解质的正极活性材料及其制备方法、全固态锂硫电池及其制备方法
CN107248569B (zh) 以1-乙基-3-甲基咪唑二氰胺为碳源制得的锑/氮掺杂碳复合物及其制备方法和应用
CN110010895B (zh) 碳纤维负载氧化镁颗粒交联纳米片阵列复合材料及其制备方法和应用
CN107732158A (zh) 锂离子电池负极极片制备方法、负极极片及锂离子电池
CN110808179B (zh) 一种氮氧共掺杂生物质硬碳材料及其制备方法和应用
CN109671946B (zh) 锌离子电池正极活性材料、正极材料、锌离子电池正极、锌离子电池及其制备方法和应用
CN112110448A (zh) 一种氮掺杂碳与纳米硅复合负极材料及其制备方法
CN109167048B (zh) 钛、氮共掺杂的碳包覆氧化亚硅的材料及其制法与应用
CN114122352A (zh) 一种多孔碳掺杂诱导硅沉积的硅碳负极材料及其制备方法
CN108807941B (zh) 磷化铁纳米片与生物质碳复合材料的制备方法及应用
CN104966814A (zh) 一种高安全性的金属锂负极及其制备方法
CN108281627B (zh) 一种锂离子电池用锗碳复合负极材料及其制备方法
CN111029551A (zh) 合成原位碳包覆的FeF2颗粒的制备方法、FeF2颗粒及电池
CN110233251A (zh) 一种多孔硅/碳复合材料的制备方法及其应用
CN108281620B (zh) 一种钠离子电池负极材料二氧化钛的制备方法
CN113851710A (zh) 一种钠离子双功能凝胶聚合物电解质、其制备方法及应用
CN113201808A (zh) 一种多孔纤维硅氧负极复合材料及其制备方法
CN111146443A (zh) 用于锌电池的锌电极材料及其制备方法
CN110649227A (zh) 三维复合钾金属负极及其制备方法和应用
JP2023158230A (ja) リチウムイオン電池負極材料の製造方法
CN116014128A (zh) 一种锂电池负极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210803