CN112808261B - 一种鸟巢状氧化铌的制备方法 - Google Patents

一种鸟巢状氧化铌的制备方法 Download PDF

Info

Publication number
CN112808261B
CN112808261B CN202110171210.7A CN202110171210A CN112808261B CN 112808261 B CN112808261 B CN 112808261B CN 202110171210 A CN202110171210 A CN 202110171210A CN 112808261 B CN112808261 B CN 112808261B
Authority
CN
China
Prior art keywords
solution
nest
niobium oxide
distilled water
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110171210.7A
Other languages
English (en)
Other versions
CN112808261A (zh
Inventor
谢太平
杨俊�
王建康
王雅静
李扬
彭媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze Normal University
Original Assignee
Yangtze Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze Normal University filed Critical Yangtze Normal University
Priority to CN202110171210.7A priority Critical patent/CN112808261B/zh
Publication of CN112808261A publication Critical patent/CN112808261A/zh
Application granted granted Critical
Publication of CN112808261B publication Critical patent/CN112808261B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种鸟巢状氧化铌的制备方法,包括以下步骤:(1)将可溶性铌盐加入蒸馏水中,50‑70℃下搅拌均匀作为溶液a;(2)将聚乙烯吡咯烷酮分散于蒸馏水中,搅拌均匀作为溶液b;(3)将溶液b逐滴加入溶液a中搅拌均匀,转移至水热反应釜中;(4)将水热反应釜高温反应10‑13h,取出冷却至室温,于烘箱中干燥,取出研磨得产品。通过对原料、反应速度、温度以及烘干温度的控制,最终制备的产品纯度高,对可见光的利用率高,光催化效率高。

Description

一种鸟巢状氧化铌的制备方法
技术领域
本发明涉及光催化材料技术领域,尤其是涉及一种鸟巢状氧化铌的制备方法。
背景技术
氧化铌是一种半导体过渡金属氧化物,具有优异的光电性能,在催化剂、微电子、传感器、电致变色、太阳能电池等领域应用非常广泛。随着目前我国产业环保方面的要求越来越严格,氧化铌在光催化领域的应用研究也越来越多,其光催化机理是在光作用下,氧化铌价电子跃迁后,原位置产生空穴,部分电子-空穴分布到晶体的表面形成活性反应位,进而引发光催化反应,可以氧化分解有机有毒污染物,效率高,能耗低,因此在处理工业废水方面研究价值很高。由于氧化铌的带隙宽度为3.4-4.0eV,因此对光能的吸收主要在紫外波长范围,对光能的利用是比较低的。现有技术中对于氧化铌研究集中在两方面,提高其光能利用率,另外是提高其光催化效率,而具体实验思路为:一方面是通过掺杂其他元素,改变带隙宽度,从而降低对光能反应的阈值;另一方面是通过改变氧化铌的形貌,通过带隙重叠、互补等改变其光能利用率;改变形貌的同时,其比表面积、传输速率、活性反应的位点等方面也极大的影响光催化的效率。
安其尔等在《五氧化二铌纳米棒合成及其光催化性能》中公开了:在醋酸溶剂中,以氢氟酸和氨水活化得到的铌酸(Nb2O5·nH2O)为前驱物,溶剂热合成出一种纳米线状结构氧化铌,在400℃下焙烧样品1h,制备了Nb2O5纳米棒。通过XRD、SEM、TEM分析表明,制备的Nb2O5纳米棒为六方晶相结构,晶型单一,沿c轴[001]方向结晶生长。以亚甲基蓝和罗丹明B为例,测试焙烧后的Nb2O5纳米棒光催化活性,在紫外光照射下,发现Nb2O5纳米棒对两种有机染料均具有较高的光催化效果。该研究是通过改变氧化铌的形貌来改善其光催化性能。
中国专利文献(申请号2007101707946)公开一种蠕虫状介孔氧化铌的合成方法。该发明将双亲性嵌段高分子表面活性剂作为结构导向剂溶解于醇类溶剂中,加入铌源和无机盐类水溶液作为结构促进剂,在室温下搅拌一段时间后形成胶体,低温下加热挥发除去溶剂,经干燥、高温焙烧而成。由该方法合成得到的介孔氧化铌材料属于蠕虫状介孔结构,具有高的比表面和均一孔径分布等特点,是一类具有抗水性的固体中强酸,在催化领域中有广泛用途。
上述研究集中在通过改变氧化铌的合成工艺来改变其形貌,进而改善其在光催化方面的作用,在其对光能利用率上改善效果有限。
发明内容
有鉴于此,本发明的目的是针对现有技术的不足,提供一种鸟巢状氧化铌的制备方法,制备工艺简单,制备的鸟巢状氧化铌纯度高,禁带宽度为2.62eV,对可见光利用率高,催化效率高。
为达到上述目的,本发明采用以下技术方案:
一种鸟巢状氧化铌的制备方法,包括以下步骤:
(1)将可溶性铌盐加入蒸馏水中,50-70℃下搅拌均匀作为溶液a;
(2)将聚乙烯吡咯烷酮分散于蒸馏水中,搅拌均匀作为溶液b;
(3)将溶液b逐滴加入溶液a中搅拌均匀,转移至水热反应釜中;
(4)将水热反应釜高温反应10-13h,取出冷却至室温,于烘箱中干燥,取出研磨得产品。
进一步的,所述铌盐为草酸铌。
进一步的,所述步骤(1)中铌盐与蒸馏水的重量比为1:24-26。
进一步的,所述步骤(2)中聚乙烯吡咯烷酮与蒸馏水的重量比为0.1-0.9:10。
进一步的,所述烘箱干燥温度为80℃,时间为24h。
进一步的,所述步骤(4)中高温温度为170-190℃。
一种鸟巢状氧化铌的制备方法制备的鸟巢状氧化铌。
一种鸟巢状氧化铌的制备方法制备的鸟巢状氧化铌在光催化方面的应用。
本发明的有益效果是:
1、本发明公开一种鸟巢状氧化铌的制备方法,通过对原料、反应速度、温度以及烘干温度的控制,最终制备的产品纯度高,对可见光的利用率高,比表面积大,光催化效率高。
2、本申请以可溶性铌盐(草酸铌)和聚乙烯吡咯烷酮为原料,其中聚乙烯吡咯烷酮缓慢加入草酸铌中之后,能够使生成物缓慢成核,形成产物后,又起到稳定剂的作用,经过高温反应、干燥之后,形成鸟巢状的氧化铌,制备工艺简单,工艺参数易于控制,节能环保,成本低廉。
3、制备的鸟巢状氧化铌,经过IR和XRD图谱分析,纯度非常高;SEM微观表征可以看出有鸟巢状结构的Nb2O5形成,产品的形貌非常规整,内部孔道分布均匀,大大增加了产品的比表面积。
4、经紫外可见漫反射光吸收光谱图可以看出,本申请制备工艺制备的鸟巢状氧化铌,禁带宽度为2.62 eV,在200-800 nm波长范围内,都有吸收,即可吸收所有的紫外光和可见光,其对可见光的利用率远远高于现有技术。
5、检测本申请制备的产品的光催化性能,可以看出,本申请在反应进行25 min时,能降解82%的MO,而常规Nb2O5只能降解30%的MO;降解MO的速率常数是0.05811 min-1,是常规Nb2O5(0.00979 min-1)的5.94倍,说明Nb2O5/PVP降解MO的反应速度更快,反应效率更高。
附图说明
图1为本发明产品的IR图。
图2为产品的XRD图。
图3为产品的SEM图。
图4为产品的紫外可见漫反射光谱图。
图5为产品光催化效果图。
图6为产品光催化速率图。
具体实施方式
下面结合附图和实施例对本发明作进一步描述。
实施例1
一种鸟巢状氧化铌的制备方法,包括以下步骤:
(1)取1 g草酸铌加入25mL蒸馏水中在60℃搅拌10 min作为溶液a;
(2)取0.5 g聚乙烯吡咯烷酮分散于10 mL蒸馏水中,搅拌五分钟作为溶液b;
(3)将溶液b逐滴加入溶液a中搅拌10 min,转移至50 mL水热反应釜中;
(4)将水热反应釜于180℃烘箱中反应12 h,取出冷却至室温,于80℃烘箱中干燥24h,取出样品研磨备用。
实施例2
一种鸟巢状氧化铌的制备方法,包括以下步骤:
(1)取1g草酸铌加入24mL蒸馏水中在50℃搅拌10min作为溶液a;
(2)取0.1gPVP(聚乙烯吡咯烷酮)分散于10mL蒸馏水中,搅拌五分钟作为溶液b;
(3)将溶液b逐滴加入溶液a中搅拌10min,转移至50mL水热反应釜中;
(4)将水热反应釜于170℃烘箱中反应13h,取出冷却至室温,于80℃烘箱中干燥24h,取出样品研磨备用。
实施例3
一种鸟巢状氧化铌的制备方法,包括以下步骤:
(1)取1g草酸铌加入25mL蒸馏水中在60℃搅拌10min作为溶液a;
(2)取0.9g聚乙烯吡咯烷酮分散于10mL蒸馏水中,搅拌五分钟作为溶液b;
(3)将溶液b逐滴加入溶液a中搅拌10min,转移至50mL水热反应釜中;
(4)将水热反应釜于190℃烘箱中反应10h,取出冷却至室温,于80℃烘箱中干燥24h,取出样品研磨备用。
实施例4
一种鸟巢状氧化铌的制备方法,包括以下步骤:
(1)取1g草酸铌加入26mL蒸馏水中在70℃搅拌10min作为溶液a;
(2)取0.7g聚乙烯吡咯烷酮分散于10mL蒸馏水中,搅拌五分钟作为溶液b;
(3)将溶液b逐滴加入溶液a中搅拌10min,转移至50mL水热反应釜中;
(4)将水热反应釜于180℃烘箱中反应10h,取出冷却至室温,于80℃烘箱中干燥24h,取出样品研磨备用。
产品表征以及光催化性能检测
1、产品的表征
对本发明实施例1中制备的样品的物相、显微结构等进行检测分析,其中傅里叶变换红外光谱分析结果见图1,X射线衍射仪物相分析结果见图2;扫描电子显微镜分析结果见图3;紫外可见漫反射光谱图见图4。
由图1中的红外光谱图中可以看出,与Nb2O5标准品相比,本申请制备的鸟巢状氧化铌(Nb2O5/PVP)在520cm-1~820cm-1有Nb-O键和Nb-O-Nb键伸缩振动峰,并发生了耦合,而在1500cm-1~2500cm-1之间的特征吸收峰对应的是吸附H2O的弯曲振动,在3400cm-1~3500cm-1之间的特征吸收峰属于样品吸附H2O的羟基(-OH)伸缩振动。
从图2的X-射线衍射图谱中可以看出,在2Ɵ=23.022°,33.626°,46.483°,55.114°均出现了Nb2O5的特征衍射峰,对应的晶面为(101),(107),(200),(208)。
结合图1的红外光谱图和图2的X-射线衍射图谱可以看出,本申请的制备工艺制备的样品为Nb2O5,且纯度非常高。
从图3的SEM图可以明显看出,大量的鸟笼状结构的Nb2O5形成,产品的形貌非常规整,内部孔道分布均匀,比表面积大大增加,其独特的结构会对鸟巢状氧化铌(Nb2O5/PVP)的带隙以及光催化性能产生极大的影响。
图4为紫外可见漫反射光谱图,从谱图中可以看出,本申请制备的鸟巢状氧化铌禁带宽度为2.62 eV,在200-800 nm波长范围内,都有吸收,即可吸收所有的紫外光和可见光,说明本申请的制备工艺制备的鸟巢状氧化铌(Nb2O5/PVP)对太阳光光谱能的利用率更高。
2、光催化性能检测
使用亚甲基蓝(MO)溶液来模拟工业废水,使用北京中教金源CEL-HXF300型300W的氙灯作为光源,光催化反应时分别称取100mg本法敏实施例1中的光催化剂鸟巢状氧化铌(Nb2O5/PVP)加入100mL、50mg/L亚甲基蓝溶液中,并在暗处搅拌1h,达到染料与光催化剂之间的吸脱附平衡。在降解过程中,可见光降液面与光源之间保持20cm的距离,并进行磁力搅拌。每隔一段时间移取3mL左右的亚甲基蓝溶液。离心机3000r/min的条件下离心5min,取离心管上清液测定其吸光度。亚甲基蓝的降解率用C/C0表示,其中C0—初始溶液的吸光度;C—不同降解反应时间下溶液的吸光度,结果见图5和图6。
由图5可以看出,在光催化反应进行25min时,本申请制备的鸟巢状氧化铌(Nb2O5/PVP)能降解82%的MO,而常规Nb2O5只能降解30%的MO;由图6可以看出,鸟巢状氧化铌(Nb2O5/PVP)降解MO的速率常数是0.05811min-1,是常规Nb2O5(0.00979min-1)的5.94倍,说明Nb2O5/PVP降解MO的反应速度更快,反应效率更高,可节约应用成本。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (4)

1.一种鸟巢状氧化铌的制备方法,其特征在于:包括以下步骤:
(1)将可溶性铌盐加入蒸馏水中,50-70℃下搅拌均匀作为溶液a;
(2)将聚乙烯吡咯烷酮分散于蒸馏水中,搅拌均匀作为溶液b;
(3)将溶液b逐滴加入溶液a中搅拌均匀,转移至水热反应釜中;
(4)将水热反应釜高温反应10-13h,取出冷却至室温,于烘箱中干燥,取出研磨得产品;
所述铌盐为草酸铌,所述步骤(1)中铌盐与蒸馏水的重量比为1:24-26;
所述步骤(2)中聚乙烯吡咯烷酮与蒸馏水的重量比为0.1-0.9:10;
所述步骤(4)中高温温度为170-190℃。
2.根据权利要求1所述的一种鸟巢状氧化铌的制备方法,其特征在于:所述烘箱干燥温度为80℃,时间为24h。
3.一种权利要求1所述的方法制备的鸟巢状氧化铌。
4.一种权利要求1所述的方法制备的鸟巢状氧化铌在光催化方面的应用。
CN202110171210.7A 2021-02-08 2021-02-08 一种鸟巢状氧化铌的制备方法 Expired - Fee Related CN112808261B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110171210.7A CN112808261B (zh) 2021-02-08 2021-02-08 一种鸟巢状氧化铌的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110171210.7A CN112808261B (zh) 2021-02-08 2021-02-08 一种鸟巢状氧化铌的制备方法

Publications (2)

Publication Number Publication Date
CN112808261A CN112808261A (zh) 2021-05-18
CN112808261B true CN112808261B (zh) 2022-09-02

Family

ID=75863749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110171210.7A Expired - Fee Related CN112808261B (zh) 2021-02-08 2021-02-08 一种鸟巢状氧化铌的制备方法

Country Status (1)

Country Link
CN (1) CN112808261B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130056663A (ko) * 2011-11-22 2013-05-30 한국과학기술연구원 염료감응 태양전지용 상대전극 및 이의 제조방법
KR20150028529A (ko) * 2013-09-06 2015-03-16 한국과학기술연구원 Nb-TiO2 촉매 담체 및 전기방사법을 이용한 이것의 제조방법
CN105226299A (zh) * 2014-06-27 2016-01-06 福特全球技术公司 氧还原反应催化剂
CN105384193A (zh) * 2015-12-09 2016-03-09 郑州轻工业学院 一种五氧化二铌海胆状纳米微球的制备方法及其作为光催化剂的应用
WO2016034001A1 (en) * 2014-09-04 2016-03-10 Byd Company Limited Polymer product, method for selectively metallizing polymer substrate
CN107359328A (zh) * 2017-06-30 2017-11-17 陕西科技大学 一种锂离子电池用葡萄状氧化铌/碳复合电极材料的制备方法
CN107601564A (zh) * 2017-09-04 2018-01-19 北京工业大学 一种醇溶剂热制备铌酸锡纳米球的方法
CN109626427A (zh) * 2018-12-10 2019-04-16 常州工学院 五氧化二铌纳米片及其可控制备方法
CN110571423A (zh) * 2019-09-17 2019-12-13 上海理工大学 一种含氮碳包覆的纳米铌酸钛电极材料的制备方法
CN111629755A (zh) * 2017-11-17 2020-09-04 施里昂医疗有限公司 联合放射疗法治疗癌症的粒子
CN111850739A (zh) * 2020-03-26 2020-10-30 南通科技职业学院 一种三氧化钨/五氧化二铌纳米纤维的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130056663A (ko) * 2011-11-22 2013-05-30 한국과학기술연구원 염료감응 태양전지용 상대전극 및 이의 제조방법
KR20150028529A (ko) * 2013-09-06 2015-03-16 한국과학기술연구원 Nb-TiO2 촉매 담체 및 전기방사법을 이용한 이것의 제조방법
CN105226299A (zh) * 2014-06-27 2016-01-06 福特全球技术公司 氧还原反应催化剂
WO2016034001A1 (en) * 2014-09-04 2016-03-10 Byd Company Limited Polymer product, method for selectively metallizing polymer substrate
CN105384193A (zh) * 2015-12-09 2016-03-09 郑州轻工业学院 一种五氧化二铌海胆状纳米微球的制备方法及其作为光催化剂的应用
CN107359328A (zh) * 2017-06-30 2017-11-17 陕西科技大学 一种锂离子电池用葡萄状氧化铌/碳复合电极材料的制备方法
CN107601564A (zh) * 2017-09-04 2018-01-19 北京工业大学 一种醇溶剂热制备铌酸锡纳米球的方法
CN111629755A (zh) * 2017-11-17 2020-09-04 施里昂医疗有限公司 联合放射疗法治疗癌症的粒子
CN109626427A (zh) * 2018-12-10 2019-04-16 常州工学院 五氧化二铌纳米片及其可控制备方法
CN110571423A (zh) * 2019-09-17 2019-12-13 上海理工大学 一种含氮碳包覆的纳米铌酸钛电极材料的制备方法
CN111850739A (zh) * 2020-03-26 2020-10-30 南通科技职业学院 一种三氧化钨/五氧化二铌纳米纤维的制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Effect of Chromium and Niobium Doping on the Morphology and Electrochemical Performance of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode Material;Mao, J et al.;《Acs Applied Materials & Interfaces》;20160413;9116-9124 *
Nb2O5和分散剂对硅碳材料电化学性能的影响;陈垒等;《化工新型材料》;20201215;133-136、141 *
Preparation of nanocrystalline niobium pentoxide with different morphologies via a thermal decomposition route;Vosoughifar, M;《Journal Of Materials Science-Materials In Electronics》;20170131;532-536 *
SiC/C3N4复合材料的光催化降解亚甲基蓝性能研究;杨静静等;《化学研究与应用》;20190715;1373-1380 *
磷化镍及其纳米复合材料构筑新型不对称超级电容器研究;王飞;《中国优秀硕士学位论文全文数据库》;20210115;B020-243 *
铌基复合功能材料的制备及其光催化性能研究;王雨薇;《中国博士学位论文全文数据库》;20210115;B014-392 *

Also Published As

Publication number Publication date
CN112808261A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
CN109603880B (zh) 中空管状氮化碳光催化剂及其制备方法和应用
CN108940344B (zh) 改性石墨相氮化碳光催化剂及其制备方法和应用
CN107262133B (zh) 一种基于单分散单质铋和氮化碳的光催化剂的制备办法
CN111715251A (zh) 暴露活性{001}晶面TiO2/TiC MXene复合光催化剂的制备方法与应用
CN109317183B (zh) 一种氮化硼量子点/超薄多孔氮化碳复合光催化材料及其制备方法和应用
CN111085238A (zh) 含氮缺陷的中空管状石墨相氮化碳光催化剂及其制法和应用
CN108927188B (zh) 一种碳酸氧铋光催化剂及其制备方法
CN111068715B (zh) Ag/Bi2O3/CuBi2O4纳米纤维复合光催化剂的制备方法
CN102580736A (zh) 一种石墨烯/钒酸银纳米复合可见光催化剂及其制备方法
CN113318764A (zh) 一种氮缺陷/硼掺杂的管状氮化碳光催化剂的制备方法及应用
CN108325555A (zh) 氮自掺杂石墨化氮化碳纳米片光催化剂及其制备方法和应用
CN111282589A (zh) WO3/Ag/g-C3N4三相光催化材料的合成方法
CN113198505A (zh) 一种钛酸铋钠/石墨相氮化碳异质结压电光催化剂及其制备方法
CN113145134B (zh) 一种基于矿物复合材料的可见光催化剂及其制备方法
CN110102322A (zh) 花状的Ag@AgBr/ZnO光催化材料的制备方法
CN112264079A (zh) 构造金属氧化物纳米阵列/二维氮化碳的方法
CN107983373A (zh) 一种微波原位快速制备炭负载BiOBr可见光催化剂的方法
CN113578306A (zh) 一种2d/1d异质结光催化剂的制备方法及其在制氢中的应用
CN107715898A (zh) 一种氧化石墨烯/红磷复合材料及其制备方法与应用
CN112808261B (zh) 一种鸟巢状氧化铌的制备方法
CN107970951B (zh) 一种花状介孔结构CdS-ZnO复合材料的制备方法
CN113244961A (zh) 双金属CoCu-MOF可见光催化剂及其制备方法和应用
CN108816267A (zh) 一种黄土负载氮掺杂氧化锌光催化剂及其制备方法
CN107629094B (zh) 一种有机杂化硒代锡酸锰及其制备方法
CN106423259A (zh) 一种利用天然凹凸棒石制备Ag‑AgBr/Al‑MCM‑41复合功能材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220902