CN1127765C - 互补型金属氧化物晶体管半导体器件及其制造方法 - Google Patents

互补型金属氧化物晶体管半导体器件及其制造方法 Download PDF

Info

Publication number
CN1127765C
CN1127765C CN98123573A CN98123573A CN1127765C CN 1127765 C CN1127765 C CN 1127765C CN 98123573 A CN98123573 A CN 98123573A CN 98123573 A CN98123573 A CN 98123573A CN 1127765 C CN1127765 C CN 1127765C
Authority
CN
China
Prior art keywords
film
semiconductor device
layer
interlayer dielectric
conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN98123573A
Other languages
English (en)
Other versions
CN1216860A (zh
Inventor
伊藤浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of CN1216860A publication Critical patent/CN1216860A/zh
Application granted granted Critical
Publication of CN1127765C publication Critical patent/CN1127765C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0928Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供一种制造包括nMOSFET和pMOSFET的CMOS半导体器件的方法,包括(a)在半导体衬底上形成栅绝缘膜;在栅绝缘膜上形成第一导电膜;在第一导电膜上形成层间绝缘膜;在层间绝缘膜上形成第二导电膜;在要制造nMOSFET的第一区中和要制造pMOSFET的第二区中,将第一导电膜、层间绝缘膜和第二导电膜成形为栅极形状;将n-型杂质搀杂到第一区中,将p-型杂质搀杂到第二区中。该方法可以防止由钛原子的扩散引起的栅绝缘膜的绝缘电压减少,而不使栅极消耗。

Description

互补型金属氧化物晶体管 半导体器件及其制造方法
技术领域
本发明涉及包括重搀杂p-型杂质的栅极和重搀杂n-型杂质的栅极的CMOS半导体器件及其制造方法。特别是,本发明涉及能抑制栅绝缘膜的绝缘电压减小的CMOS半导体器件。
背景技术
近来,随着LSI的高度集成,栅极已经设计成具有较小的宽度。较小的宽度使栅极具有较高的电阻。为了解决栅极的这种高电阻问题,栅极通常由包括多晶硅层和硅化物层的多层(polycide)布线层构成。作为硅化物层,已经使用了具有大约70μΩ-cm电阻率的硅化钨层。
由于LSI要求制造为小尺寸,所以就要求栅极具有小的宽度,另外,还要求硅化钨层具有小的厚度。结果,多层布线层的电阻与多层布线层的尺寸减小率的二次方成反比增加。
为此,目前使用硅化钛层代替硅化钨层,因为硅化钛层具有比硅化钨层小的电阻率。硅化钛层的电阻率约为15μΩ-cm,并且一般是借助于硅化处理形成的。在硅化处理中,栅极和源/漏扩散层同时被硅化。现在硅化处理已经广泛使用,特别是,对于制造具有等于或小于0.25μm的栅极长度的半导体器件来说,已经广泛使用了硅化处理。
现有技术中已经制造了作为具有掩埋沟道的晶体管的常规pMOSFET。但是,如果形成的这种常规pMOSFET具有等于或小于0.25μm的栅极长度,会产生显著的短沟道效应。为此,pMOSFET主要是作为在表面具有沟道的晶体管形成的,而不是作为具有掩埋沟道的晶体管形成的。也就是,用CMOS半导体器件中p-n栅型代替了主要使用的n-n栅型。
下面说明借助于钛硅化处理制造包括p-n型栅的CMOS半导体器件的常规方法。图1A-1E是CMOS半导体器件的截面图,表示制造该器件的常规方法的各个步骤。
首先,如图1A所示,在选择区域中的p-型硅衬底101表面上形成场氧化膜102。然后,在将要制造nMOSFET的区域中的硅衬底101中形成p--阱103,并在将要制造p-MOSFET的区域中的硅衬底101中形成n-阱104。然后在p-阱103和n-阱104的表面上用栅氧化膜105覆盖。
然后,如图1B所示,在栅氧化膜105上形成栅极形状的多晶硅层。之后,去掉没有被多晶硅层覆盖的一部分栅氧化膜105。接着,在要制造nMOSFET的区域中注入n-型离子,在要制造pMOSFET的区域中注入p-型离子,由此在两区域中形成扩散层。
然后,在多晶硅层的侧面上形成侧壁113。之后,借助于光刻,以高于已经预先注入该区域中的n-型离子浓度的浓度,在要制造nMOSFET的区域中注入n型离子,由此形成源/漏n+层114。同样,借助于光刻,以高于已经预先注入该区域中的p-型离子浓度的浓度,在要制造p--MOSFET的区域中注入p-型离子,由此形成源/漏p+层115。同时,在侧壁113的下面和源/漏n+层114附近也形成具有低于源/漏n+层114浓度的杂质浓度的LLDn层111,在侧壁113的下面和源/漏p+层115附近也形成具有低于源/漏p+层115浓度的杂质浓度的LLDp-层112。
通过上述第二次离子注入,在要制造nMOSFET的区域的多晶硅层中注入n型离子,结果在p-阱103上面形成n+栅极116,在要制造pMOSFET的区域的多晶硅层中注入p-型离子,结果在n-阱104上面形成p+栅极117。
然后,如图1C所示,通过例如溅射,在整个产品上淀积钛层118。
然后,如图1D所示,在例如大约摄氏700度的氮气氛下,对产品进行热退火,由此使钛层118与n+栅极116、p+栅极117、源/漏n+层114、源/漏p+层115反应。结果,在n+栅极116的上部分中形成n+硅化钛层116a,在p+栅极117的上部分中形成p+硅化钛层117a,在源/漏n+层114上形成源/漏n+硅化钛层114a,在源/漏p+层115上形成源/漏p+硅化钛层115a。
然后去掉没有反应的部分钛层118,在例如摄氏850度的氮气氛下,对产品进行热退火,由此减小n+硅化钛层116a、p-+硅化钛层117a、源/漏n+硅化钛层114a和源/漏p+硅化钛层115a的电阻率。这样,就完成了CMOS半导体器件的制造,如图1E所示。
在如此制造的CMOS半导体器件中,当对硅化钛层116a、117a、114a和115a进行热退火用于减小其电阻时钛原子在栅极116和117中扩散,并到达栅氧化膜115,导致了栅氧化膜115的绝缘电压减小的问题。
为解决这个问题,在1988年7月21日公开的日本未审查专利公报63-177538已经提出了能够防止栅氧化膜的绝缘电压减小的半导体器件。图2是该公报中提出的半导体器件的截面图。
该半导体器件包括形成在选择区域中的p-型硅衬底201上的场氧化膜202和形成在场氧化膜202之间的栅氧化膜205。在场氧化膜202和栅氧化膜205上形成多晶硅膜203。在多晶硅膜203上形成硅氮化膜204。如图2所示,在带有开口的场氧化膜202上形成硅氮化膜204。形成作为完全覆盖产品的顶层的硅化钛层210。硅化钛层210通过硅氮化膜204的开口与多晶硅层203电连接。
根据具有上述结构的半导体器件,由于在形成栅极的多晶硅层203,和硅化钛层210之间形成硅氮化膜204,所以可以防止硅化钛层210中含有的钛原子达到栅氧化膜205。
但是,有这样的问题,即:不允许上述图2中所示的半导体器件应用于具有p-n型栅的CMOS半导体器件。如上所述,在制造具有p-n型栅的CMOS半导体器件的常规方法中,为了给多晶硅层提供导电率,对形成栅极的多晶硅层进行离子注入和热退火,同时形成源/漏区。
但是,由于硅氮化膜204防止杂质扩散进多晶硅层203中,所以不能给多晶硅203和栅氧化膜205之间的界面注入足量杂质,结果,栅极显著地消耗。这将使接通电流减小。
已经在1995年4月7日公开的日本未审查专利公报7-94731提出一种半导体器件,它包括:半导体衬底,形成在半导体衬底上的栅绝缘膜,和形成在栅绝缘膜上并由多晶硅层、阻挡层和耐熔金属层构成的的栅极。耐熔金属膜的上表面和/或侧面涂敷耐熔硅化物层,并且以上述耐熔硅化物层被夹在耐熔金属膜和硅氮化膜之间的形式涂敷硅氮化膜。
已经在1995年8月18日公开的日本未审查专利7-221097提出一种半导体器件,包括:硅衬底,形成在硅衬底上的栅氧化膜,通过化学气相淀积(CVD)形成在栅氧化膜上的非晶硅膜,和通过溅射形成在非晶硅膜上的硅化钛膜。通过在非晶硅膜中注入氧离子,在非晶硅膜中形成SiOx膜,接着,通过热退火,将非晶硅膜变为多晶硅膜。
发明内容
鉴于常规半导体器件中的上述问题,本发明的目的是提供一种CMOS半导体器件,它能够防止由钛原子扩散引起的栅绝缘膜的绝缘电压的减少,而不引起栅极的消耗。
本发明的另一目的是提供制造这种CMOS半导体器件的方法。
在本发明的一个方案中,提供的CMOS半导体器件包括:(a)半导体衬底,(b)形成在半导体衬底上的栅绝缘膜,和(c)形成在栅绝缘膜上的栅极,其特征在于,栅极包括:(c-1)形成在栅绝缘膜上的第一导电膜,(c-2)形成在第一导电膜上的层间绝缘膜,和(c-3)形成在层间绝缘膜上的第二导电膜,其厚度小于第一导电膜的厚度。
在本发明的另一个方案中,提供的CMOS半导体器件包括:(a)半导体衬底,(b)形成在半导体衬底上的栅绝缘膜,和(c)形成在栅绝缘膜上的栅极,其特征在于,栅极包括:(c-1)形成在栅绝缘膜上的第一导电膜,(c-2)形成在第一导电膜上的层间绝缘膜,其厚度为1nm,和(c-3)形成在层间绝缘膜上的第二导电膜。
例如,第一和第二导电膜可以是多晶硅构成。层间绝缘膜可以是由硅氧化物和/或硅氮化物构成。
根据上述CMOS半导体器件,由于层间绝缘膜形成在第一和第二导电膜之间,如果耐熔金属硅化物层,例如硅化钛层,将要形成在第二导电膜上,则可以容许耐熔金属的原子扩散进入第一导电膜和栅绝缘膜之间的界面中,但是,可以防止原子扩散到栅绝缘膜中。因而,可以防止栅极消耗,还可以防止栅绝缘膜的绝缘电压减小。
通过将第二导电膜的厚度设计为小于第一导电膜的厚度,可以防止耐熔金属原子扩散到栅极中。
在本发明的还一个方案中,提供的制造包括nMOSFET和p-MOSFET的CMOS半导体器件的方法包括以下步骤:(a)在半导体衬底上形成栅绝缘膜,(b)在栅绝缘膜上形成第一导电膜,(c)在第一导电绝缘膜上形成层间绝缘膜,(d)在层间绝缘膜上形成第二导电膜,(e)将第一导电绝缘膜、层间绝缘膜和第二导电绝缘膜成形为要制造nMOSFET的第一区和要制造pMOSFET的第二区中的栅极,和(f)在第一区中搀入n-型杂质,在第二区中搀入p-型杂质;
其中的步骤(c)包括以下步骤:
(c-1)通过将半导体衬底(1)从膜形成炉中取出,在第一导电膜(6)上形成氧化膜;和
(c-2)在氨气氛中对氧化膜进行热退火。
附图说明
图1A-1E是CMOS半导体器件的截面图,表示制造半导体器件的方法的各个步骤。
图2是另一常规CMOS半导体器件的截面图。
图3A-3I是根据本发明第一实施例的CMOS半导体器件的截面图,表示制造该器件的方法的各个步骤。
具体实施方式
下面参照图3A-3I说明制造根据第一实施例的CMOS半导体器件的方法。
首先,如图3A所示,在选择区域中的p-型硅衬底1的表面上形成场氧化膜2。然后,在要制造nMOSFET的区域中形成p-阱3,在要制造pMOSFET的区域中形成n-阱4。之后,在p-阱3和n-阱4的表面上涂敷厚度在5nm-6nm范围内(并包括5nm和6nm)的栅氧化膜5。
然后,如图3B所示,通过低压化学气相淀积(LPCVD)在膜形成炉中在栅氧化膜5上形成第一多晶硅膜6,作为第一导电膜。之后,从膜形成炉中取出p-型硅衬底1。结果,在第一多晶硅膜6的表面上形成厚度约为1nm的自然氧化膜膜,作为层间绝缘膜7。
之后,如图3C所示,在层间绝缘膜7上形成第二多晶硅膜8,作为第二导电膜。
然后,如图3D所示,第一多晶硅膜6、层间绝缘膜7和第二多晶硅膜8构图成具有栅极形状的多层硅层10。除了其上形成有多层硅层10的部分外,去掉栅氧化膜5。之后,通过离子注入在要制造nMOSFET的区域中搀杂n-型离子,由此形成n-型扩散层11。同样,通过离子注入在要制造pMOSFET的区域中搀杂p-型离子,由此形成p-型扩散层12。
之后,如图3E所示,在多晶硅层10的侧面上形成侧壁13。
然后,如图3F所示,通过离子注入,以高于预先搀杂在该区域中的杂质浓度的浓度,在要制造nMOSFET的区域中搀杂砷(As)。同样,通过离子注入,以高于预先搀杂在该区域中的杂质浓度的浓度,在要制造p-MOSFET的区域中搀杂BF2。之后,激活搀杂的As和BF2。结果,在p-阱3表面上形成重搀杂n-型杂质的源/漏n+层14,在n-阱4表面上形成重搀杂p-型杂质的源/漏p+层15。
具有小于源/漏n+层14的杂质浓度的n-型扩散层11部分保留在侧壁13的下面和源/漏n+层14的附近。同样,具有小于源/漏p+层15的杂质浓度的p-型扩散层12部分保留在侧壁13的下面和源/漏p+层15的附近。这样,就形成了具有轻搀杂漏(LDD)结构的源/漏区。
要制造nMOSFET的区域中的多层硅层10转化为重搀杂n-型杂质的n+硅层16,要制造pMOSFET的区域中的多层硅层10转化为重搀杂p-型杂质的p-硅层17。由于层间绝缘膜7的厚度约为1nm,因此搀杂的杂质可以容易地通过层间绝缘膜7,并且到达第一多晶硅膜6和栅氧化膜5之间的界面。
然后,如图3G所示,在整个结构上通过溅射淀积钛层18。
然后,如图3H所示,在氮气氛中,在摄氏650-700度下对该结构热退火10-60秒。钛层18和n+硅层16反应,结果,在n+硅层16的上部分中形成n+硅化钛层16a。这样就形成了包括n+硅层16和n+硅化钛层16a的n+栅极19。同样,钛层18和p+硅层17反应,结果,在p+硅层17的上部分中形成p+硅化钛层17a。这样就形成了包括p+硅层17和p+硅化钛层17a的n+栅极20。此外,钛层18和源/漏n+层14和源/漏p+层15反应。结果,在源/漏n+层14的上部分中形成源/漏n+硅化钛层14a,在源/漏p+层15的上部分中形成源/漏p+硅化钛层15a。
然后,如图3I所示,通过湿法腐蚀,将没有反应的钛层18和由上述热退火形成的硅化钛层去掉。
之后,在氮气氛中,在摄氏800-850度下,对得到的结构热退火10-60秒,由此给n+栅极19、p+栅极20、源/漏n+硅化钛层14a、和源/漏p+硅化钛层15a提供低电阻。
用上述方法,以自对准方式形成硅化钛层。之后,完成了常规方法中的半导体器件。
根据第一实施例,厚度约为1nm的层间绝缘膜7被夹在第一和第二多晶硅膜6和8之间。所以,即使钛原子从n+和p+硅化钛层16a和17a中扩散到第一多晶硅膜6和栅氧化膜5之间的界面中,也可以防止这种钛原子进入栅氧化膜5中。因而,可以抑制栅氧化膜的退化,而不使栅极消耗。这样,具有如此形成的栅极的半导体器件具有高的可靠性。
形成层间绝缘膜7之后,层间绝缘膜7和第一多晶硅膜6之间的界面可以通过在氨(NH3)气氛中,在摄氏600-1000度下,对该结构进行热退火10-60秒而被硝化。界面的硝化作用有效地抑制了钛原子扩散到栅氧化膜5中。
根据第一实施例制造的CMOS半导体器件的结构如图3I所示。栅极19是由第一多晶硅膜6、形成在第一多晶硅膜6上并且厚度约为1nm的层间绝缘膜7、形成在层间绝缘膜7上的第二多晶硅膜8、和形成在第二多晶硅膜8上的硅化钛膜16a构成。栅极20是由第一多晶硅膜6、形成在第一多晶硅膜6上并且厚度约为1nm的层间绝缘膜7、形成在层间绝缘膜7上的第二多晶硅膜8、和形成在第二多晶硅膜8上的硅化钛层17构成。
根据上述CMOS半导体器件,层间绝缘膜7被夹在第一和第二多晶硅膜6和8之间。所以,可以防止包含在硅化钛层16a和17a中的钛原子进入栅氧化膜5中。因而,可以抑制栅氧化膜5的退化。
另外,由于层间绝缘膜7很薄,具体约为1nm厚,所以,硅化钛层16a和17a中的钛原子可以容易地通过层间绝缘膜7,并到达第一多晶硅膜6和栅氧化膜5之间的界面。因此,可以防止栅极消耗。
下面说明根据第二实施例制造CMOS半导体器件的方法。在第二实施例中,在p-型硅衬底1上形成场氧化膜2、栅氧化膜5、和第一多晶硅膜6,与第一实施例相同。然后,在没有将硅衬底1从膜形成炉中取出的情况下,在膜形成炉中产生氧化气氛。结果,在第一多晶硅膜6上形成厚度大约为1nm的自然氧化膜。
然后,将膜形成炉改变为氨气氛,由此硝化第一多晶硅膜6和自然氧化膜之间的界面。结果,形成由硅氧化膜和硅氮化膜构成的层间绝缘膜7。
之后,进行与第一实施例的步骤相同的后面的步骤,由此完成半导体器件的制造。
根据第二实施例,由于第一多晶硅膜和自然氧化膜之间的界面被硝化,因此可以进一步防止钛原子扩散到栅氧化膜。
如果层间绝缘膜7位于n+栅极19和p+栅极20中的厚度方向的上半部,也就是,如果第二多晶硅膜的厚度小于第一多晶硅膜的厚度,则又可以防止钛原子扩散到栅氧化膜中。

Claims (11)

1.一种CMOS半导体器件,包括:
(a)半导体衬底(1);
(b)形成在半导体衬底(1)上的栅绝缘膜(5);和
(c)形成在栅绝缘膜(5)上的栅极(10),
其特征在于,栅极(10)包括:
(c-1)形成在栅绝缘膜(5)上的第一导电膜(6);
(c-2)形成在第一导电膜(6)上的层间绝缘膜(7);和
(c-3)形成在层间绝缘膜(7)上的第二导电膜(8),其厚度小于第一导电膜(6)的厚度。
2.根据权利要求1所述的CMOS半导体器件,其中至少第一和第二导电膜(6,8)中的一个是由多晶硅构成。
3.根据权利要求1所述的CMOS半导体器件,其中层间绝缘膜(7)是由硅氧化物和硅氮化物中至少一种构成。
4.一种CMOS半导体器件,包括:
(a)半导体衬底(1);
(b)形成在半导体衬底(1)上的栅绝缘膜(5);和
(c)形成在栅绝缘膜(5)上的栅极(10),
其特征在于,栅极(10)包括:
(c-1)形成在栅绝缘膜(5)上的第一导电膜(6);
(c-2)形成在第一导电膜(6)上的层间绝缘膜(7),其厚度为1nm;和
(c-3)形成在层间绝缘膜(7)上的第二导电膜(8)。
5.根据权利要求4所述的CMOS半导体器件,其中至少第一和第二导电膜(6,8)中的一个是由多晶硅构成。
6.根据权利要求4所述的CMOS半导体器件,其中层间绝缘膜(7)是由硅氧化物和硅氮化物中至少一种构成。
7.一种制造包括nMOSFET和pMOSFET的CMOS半导体器件的方法,包括以下步骤:
(a)在半导体衬底(1)上形成栅绝缘膜(5);
(b)在膜形成炉中在栅绝缘膜(5)上形成第一导电膜(6);
(c)在第一导电膜(6)上形成层间绝缘膜(7);
(d)在层间绝缘膜(7)上形成第二导电膜(8);
(e)在要制造nMOSFET的第一区中和要制造pMOSFET的第二区中,将第一导电膜(6)、层间绝缘膜(7)、和第二导电膜(8)成形为栅极形状(10);
(f)将n-型杂质搀杂到第一区中,将p-型杂质搀杂到第二区中;
其中的步骤(c)包括以下步骤:
(c-1)通过将半导体衬底(1)从膜形成炉中取出,在第一导电膜(6)上形成氧化膜;和
(c-2)在氨气氛中对氧化膜进行热退火。
8.根据权利要求7所述的方法,其中在步骤(c-2)中,氧化膜是在摄氏600-1000度的温度范围内热退火10-60分钟。
9.根据权利要求7所述的方法,其中步骤(b)和(d)是在执行步骤(c-1)的膜形成炉中执行的。
10.根据权利要求9所述的方法,其中步骤(c)包括:
(c-3)通过给膜形成炉提供氧化气氛,在第一导电膜(6)上形成氧化膜;和
(c-4)通过给膜形成炉提供氨气氛,硝化第一导电膜(6)和氧化膜之间的界面。
11.根据权利要求7,8,9或10所述的方法,其中第一和第二导电膜(6,8)分别在步骤(b)和(d)中由多晶硅构成的。
CN98123573A 1997-10-31 1998-11-02 互补型金属氧化物晶体管半导体器件及其制造方法 Expired - Fee Related CN1127765C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP300867/1997 1997-10-31
JP9300867A JPH11135646A (ja) 1997-10-31 1997-10-31 相補型mos半導体装置及びその製造方法
JP300867/97 1997-10-31

Publications (2)

Publication Number Publication Date
CN1216860A CN1216860A (zh) 1999-05-19
CN1127765C true CN1127765C (zh) 2003-11-12

Family

ID=17890072

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98123573A Expired - Fee Related CN1127765C (zh) 1997-10-31 1998-11-02 互补型金属氧化物晶体管半导体器件及其制造方法

Country Status (6)

Country Link
US (1) US6137177A (zh)
EP (1) EP0915510A1 (zh)
JP (1) JPH11135646A (zh)
KR (1) KR19990037533A (zh)
CN (1) CN1127765C (zh)
TW (1) TW404049B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3338383B2 (ja) * 1998-07-30 2002-10-28 三洋電機株式会社 半導体装置の製造方法
US6383879B1 (en) * 1999-12-03 2002-05-07 Agere Systems Guardian Corp. Semiconductor device having a metal gate with a work function compatible with a semiconductor device
JP2005026380A (ja) 2003-06-30 2005-01-27 Toshiba Corp 不揮発性メモリを含む半導体装置及びその製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673375B2 (ja) * 1984-03-19 1994-09-14 富士通株式会社 半導体装置の製造方法
JPS63177538A (ja) * 1987-01-19 1988-07-21 Fujitsu Ltd 半導体装置
KR970003903B1 (en) * 1987-04-24 1997-03-22 Hitachi Mfg Kk Semiconductor device and fabricating method thereof
US4897368A (en) * 1987-05-21 1990-01-30 Matsushita Electric Industrial Co., Ltd. Method of fabricating a polycidegate employing nitrogen/oxygen implantation
JPH0212835A (ja) * 1988-06-30 1990-01-17 Toshiba Corp 半導体装置およびその製造方法
US5093700A (en) * 1989-12-20 1992-03-03 Nec Electronics Inc. Single gate structure with oxide layer therein
US5021848A (en) * 1990-03-13 1991-06-04 Chiu Te Long Electrically-erasable and electrically-programmable memory storage devices with self aligned tunnel dielectric area and the method of fabricating thereof
JPH05291567A (ja) * 1992-04-14 1993-11-05 Toshiba Corp 半導体装置及びその製造方法
JPH06104428A (ja) * 1992-09-18 1994-04-15 Hitachi Ltd 半導体装置及びその製造方法
JPH06151834A (ja) * 1992-11-13 1994-05-31 Nippon Steel Corp 半導体装置の製造方法
JP3317459B2 (ja) * 1993-04-30 2002-08-26 ローム株式会社 不揮発性記憶素子およびこれを利用した不揮発性記憶装置、この記憶装置の駆動方法、ならびにこの記憶素子の製造方法
JPH0794731A (ja) * 1993-09-24 1995-04-07 Toshiba Corp 半導体装置及びその製造方法
JP3181783B2 (ja) * 1993-12-29 2001-07-03 株式会社リコー デュアルゲートcmos型半導体装置及びその製造方法
JP2746099B2 (ja) * 1994-01-27 1998-04-28 日本電気株式会社 半導体装置の製造方法
JP3045946B2 (ja) * 1994-05-09 2000-05-29 インターナショナル・ビジネス・マシーンズ・コーポレイション 半導体デバイスの製造方法
JPH08274090A (ja) * 1995-03-30 1996-10-18 Sony Corp 絶縁膜の形成方法
JP2845168B2 (ja) * 1995-06-15 1999-01-13 日本電気株式会社 半導体装置の製造方法
JP3371631B2 (ja) * 1995-08-07 2003-01-27 ソニー株式会社 半導体装置およびその製造方法
JPH0964349A (ja) * 1995-08-22 1997-03-07 Sony Corp 高融点シリサイドを持つ半導体装置とその製造方法
JPH0992728A (ja) * 1995-09-21 1997-04-04 Mitsubishi Electric Corp 相補型mos電界効果トランジスタおよびその製造方法
JPH09129870A (ja) * 1995-10-31 1997-05-16 Nec Corp 半導体装置の製造方法
US5861340A (en) * 1996-02-15 1999-01-19 Intel Corporation Method of forming a polycide film

Also Published As

Publication number Publication date
EP0915510A1 (en) 1999-05-12
TW404049B (en) 2000-09-01
US6137177A (en) 2000-10-24
JPH11135646A (ja) 1999-05-21
KR19990037533A (ko) 1999-05-25
CN1216860A (zh) 1999-05-19

Similar Documents

Publication Publication Date Title
KR100371285B1 (ko) Mis 전계 효과 트랜지스터 및 그 제조 방법
EP0859402A2 (en) Method of manufacturing a MOS electrode
US20010000629A1 (en) Semiconductor device and process of producing the same
GB2363903A (en) A semiconductor device having a metal gate with a work function compatible with a semiconductor device
CN1206712C (zh) 半导体装置的制造方法
US20020004294A1 (en) Dopant diffusion-retarding barrier region formed within polysilicon gate layer
CN1213845A (zh) 用于减少栅极结构中掺杂剂向外扩散的方法和装置
US20090189224A1 (en) Semiconductor device and fabrication process thereof
CN1628388A (zh) 半导体器件及其形成方法
US8319341B2 (en) Semiconductor device with gate structure
CN1812060A (zh) 半导体器件的制造方法
CN85108671A (zh) 半导体集成电路器件及其制造工艺
US5373178A (en) MOSFET with sidewall spacer on gate section
US6555885B2 (en) Semiconductor device and method of manufacturing the same
CN1127765C (zh) 互补型金属氧化物晶体管半导体器件及其制造方法
JPH0560265B2 (zh)
US8264045B2 (en) Semiconductor device including a SRAM section and a logic circuit section
US6124187A (en) Method of fabricating semiconductor device
US6232208B1 (en) Semiconductor device and method of manufacturing a semiconductor device having an improved gate electrode profile
US8735230B2 (en) Method for manufacturing a semiconductor device including an impurity-doped silicon film
US6326252B1 (en) Method for fabricating MOS transistor having dual gate
KR100264212B1 (ko) 반도체장치의 제조방법
US6197672B1 (en) Method for forming polycide dual gate
US6617219B1 (en) Semiconductor device and method for lowering miller capacitance by modifying source/drain extensions for high speed microprocessors
US7700468B2 (en) Semiconductor device and method of fabricating the same

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Owner name: NEC ELECTRONICS TAIWAN LTD.

Free format text: FORMER OWNER: NIPPON ELECTRIC CO., LTD.

Effective date: 20030403

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20030403

Address after: Kanagawa, Japan

Applicant after: NEC Corp.

Address before: Tokyo, Japan

Applicant before: NEC Corp.

C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: RENESAS ELECTRONICS CORPORATION

Free format text: FORMER NAME: NEC CORP.

CP01 Change in the name or title of a patent holder

Address after: Kanagawa, Japan

Patentee after: Renesas Electronics Corporation

Address before: Kanagawa, Japan

Patentee before: NEC Corp.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20031112

Termination date: 20131102