CN112382566B - 一种沟槽功率器件及其制造方法 - Google Patents

一种沟槽功率器件及其制造方法 Download PDF

Info

Publication number
CN112382566B
CN112382566B CN202011264302.1A CN202011264302A CN112382566B CN 112382566 B CN112382566 B CN 112382566B CN 202011264302 A CN202011264302 A CN 202011264302A CN 112382566 B CN112382566 B CN 112382566B
Authority
CN
China
Prior art keywords
groove
power device
trench
grid
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011264302.1A
Other languages
English (en)
Other versions
CN112382566A (zh
Inventor
杨笠
石亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Wanguo Semiconductor Technology Co ltd
Original Assignee
Chongqing Wanguo Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Wanguo Semiconductor Technology Co ltd filed Critical Chongqing Wanguo Semiconductor Technology Co ltd
Priority to CN202011264302.1A priority Critical patent/CN112382566B/zh
Publication of CN112382566A publication Critical patent/CN112382566A/zh
Priority to PCT/CN2021/125685 priority patent/WO2022100412A1/zh
Priority to EP21890939.8A priority patent/EP4246595A4/en
Priority to US18/316,247 priority patent/US20230282713A1/en
Application granted granted Critical
Publication of CN112382566B publication Critical patent/CN112382566B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76804Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics by forming tapered via holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53257Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a refractory metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66727Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明公开了一种沟槽功率器件及其制造方法,涉及功率器件半导体制造领域,包括如下步骤:A、元胞结构的制备;B、接触孔、钨栓的制备;C、蚀刻形成电路;D、淀积钝化层,蚀刻钝化层。本发明可以克服工厂的光刻机台的工艺能力,对栅极沟槽与源极沟槽的相对位置的工艺限制,进一步提高集成度。通过同时制造栅极沟槽与源极沟槽,克服了上述光刻工艺难点,且由于没有增加掩模版,成本可控。可以进一步缩小元胞密度,减少导通电阻,提高器件效率。

Description

一种沟槽功率器件及其制造方法
技术领域
本发明涉及功率器件半导体制造领域,尤其涉及一种沟槽功率器件及其制造方法。
背景技术
由于社会各界对环境保护的重视,功率器件由于节能省电的特点,在电子电力应用中的地位日益显著。特别是沟槽功率器件因具有低导通电阻,高集成度等优点,受到市场应用的青睐。
公开号为CN102956481B的中国发明专利提供了一种具有源极沟槽的沟槽式功率半导体元件的制造方法,首先,形成至少二个栅极沟槽于基材内;然后,依序形成介电层与多晶硅结构于栅极沟槽内;随后,形成至少一个源极沟槽于相邻二个栅极沟槽之间;接下来,依序形成介电层与第二多晶硅结构于源极沟槽内,并且第二多晶硅结构位于源极沟槽的下部分;接下来,去除部分第二介电层以裸露源极区与本体区;最后,于源极沟槽内填入一导电结构,以电性连接第二多晶硅结构、本体区与源极区。本发明提供的具有源极沟槽的沟槽式功率半导体元件的制造方法,可以有效缩减相邻栅极沟槽间的距离,以达到降低导通电阻的目的。
先进行栅极沟槽的制造,待元胞结构形成完毕后,再进行源极沟槽的制造。此方法在源极沟槽光刻工艺时,对光刻对准要求较高,限制了元胞密度的缩小。并且沟槽功率器件由于结构特点,对于栅极沟槽与源极沟槽的相对位置要求较高,集成度的进一步提高受限于光刻机台的工艺限制。
发明内容
为解决现有技术中的缺陷,本发明的目的在于提供一种沟槽功率器件及其制造方法。
本发明的目的是通过以下技术方案实现的:一种沟槽功率器件的制造方法,包括如下步骤:
A、元胞结构的制备;
B、接触孔、钨栓的制备;
C、蚀刻形成电路;
D、淀积钝化层,蚀刻钝化层。
优选地,所述步骤A具体包括如下步骤:
步骤S1、在硅衬底上表面化学气相沉积一层或多层外延层;所述外延层掺杂三价元素、五价元素;
步骤S2、在外延层上表面沉积掩膜,所述掩膜的成分为光刻胶或光刻胶与其它绝缘体掩模组成的多层组合结构,如:二氧化硅-氮化硅-二氧化硅,所述二氧化硅与氮化硅由化学气象淀积工艺进行制备;所述光刻胶由光刻工艺进行旋涂;
步骤S3、在掩膜上定义栅极沟槽图形以及源极沟槽图形;所述栅极沟槽包括元胞栅极沟槽、栅极互联沟槽;
所述元胞栅极沟槽图形、源极沟槽图形、栅极互联沟槽图形依次设置;所述栅极互联沟槽的关键尺寸大于元胞栅极沟槽的关键尺寸大于源极沟槽的关键尺寸;
由于此方法同时制造栅极与源极沟槽,突破了光刻工艺对集成度的限制。利用掩模版将电路曝光在光刻胶上。如果在光刻胶下层采用多层绝缘体结构,则需要接着使用干法蚀刻将电路图形形成到多层结构上。
步骤S4、在掩膜上形成电路图形后,利用干法蚀刻将电路图形制作到外延层上;
由于干法蚀刻的特性,关键尺寸较大的栅极沟槽会蚀刻得较深,源极沟槽会蚀刻得较浅,得到所述栅极互联沟槽的深度大于元胞栅极沟槽的深度大于源极沟槽的深度;
步骤S5、通过热氧化方法对元胞栅极沟槽、源极沟槽、栅极互联沟槽进行圆润化与等离子损伤修复,在元胞栅极沟槽、源极沟槽、栅极互联沟槽侧壁生长一层氧化层;通过湿法蚀刻处理氧化层,作为接下来氮化硅薄膜的垫层;
步骤S6、通过低压化学气象淀积进行氮化硅薄膜的生长;由于栅极沟槽蚀刻得较深,源极沟槽蚀刻得较浅,所述氮化硅薄膜在栅极沟槽的底部表面生长并填满整个源极沟槽;
步骤S7、通过热磷酸蚀刻氮化硅,至栅极沟槽中的氮化硅全部蚀刻完,源极沟槽中仍然保留氮化硅;
步骤S8、通过湿法蚀刻去除栅极沟槽中的自然氧化层,然后通过热氧化法生长栅氧化层;
步骤S9、通过低压化学气象淀积多晶硅,使栅极沟槽填满了多晶硅形成栅极;在淀积的过程中掺杂五价元素或在栅极形成后进行离子注入掺杂三价元素;
步骤S10、通过化学机械研磨或干法蚀刻去除高于外延层的多晶硅;
步骤S11、在外延层上表面通过离子注入杂质得到体区,然后通过热工艺对体区的杂质进行激活;所述杂质包括三价元素或五价元素;
步骤S12、在体区上表面通过离子注入杂质得到源区,离子注入的杂质可以是五价元素或三价元素,最终得到元胞结构。
优选地,所述步骤S1、S9、S11、S12中所述三价元素包括硼元素,所述五价元素包括砷、磷。
优选地,所述步骤S11中离子注入的元素极性应与步骤S1中的掺杂元素极性相反,所述步骤S12中离子注入的元素极性应与步骤S1中的掺杂元素极性相同。(三价元素和五价元素为极性相反)。
优选地,所述步骤S5中所述氧化层的厚度为20~100nm,湿法蚀刻处理后使氧化层的厚度为20纳米;所述步骤S6中所述氮化硅薄膜的厚度为500~1000nm;所述步骤S8中所述栅氧化层的厚度为10~100nm;所述步骤S9中所述多晶硅的厚度为500~1000nm。
优选地,所述步骤B具体包括如下步骤:
步骤S13、通过化学气象淀积形成二氧化硅介质层;所述二氧化硅介质层可进行硼磷杂质的掺杂,以提高薄膜流动性与外来杂质的吸附性;
步骤S14、通过光刻工艺,使用光刻胶定义源区沟槽接触孔图形以及栅极互联区域接触孔图形;所述源区沟槽接触孔图形位于源极沟槽上方,所述栅极互联区域接触孔图形位于栅极互联沟槽上方;
由于已在之前的工艺中制作了源区沟槽,此时要制作的源区沟槽接触孔图形以及栅极互联区域接触孔图形的关键宽度可以较大,具有很好的光刻工艺容忍度;
步骤S15、通过干法蚀刻二氧化硅介质层,得到源区沟槽接触孔以及栅极互联区域接触孔;
步骤S16、通过热磷酸蚀刻源区沟槽内的氮化硅;
步骤S17、通过离子注入掺杂高浓度杂质到源区沟槽的底部,制作源区沟槽接触孔的欧姆接触,通过快速热退火激活杂质;
通过物理气象淀积工艺淀积金属以及氮化物作为保护层。并利用快速热退化形成硅化物,所述金属包括钛、钴、钽中的一种或多种;
步骤S18、通过钨栓工艺淀积金属钨,通过干法刻蚀方法去除掉接触孔以外的金属钨,在接触孔里形成钨栓。
优选地,所述步骤S12中离子注入的杂质元素极性应与第17步注入元素极性相同。
优选地,所述步骤C具体包括如下步骤:步骤S19、在两个钨栓上方分别通过物理气象淀积铝铜化合物,之后利用光刻工艺与干法蚀刻形成电路。
优选地,所述步骤D具体包括如下步骤:步骤S20、淀积钝化层,并用光刻工艺将钝化层蚀刻开;所述钝化层包括氮化硅或二氧化硅。
一种沟槽功率器件,所述沟槽功率器件根据所述的沟槽功率器件的制造方法制备得到。
综上所述,与现有技术相比,本发明具有如下的有益效果:
(1)克服工厂的光刻机台的工艺能力,对栅极沟槽与源极沟槽的相对位置的工艺限制,进一步提高集成度;
(2)通过同时制造栅极沟槽与源极沟槽,克服了上述光刻工艺难点;
(3)由于没有增加掩模版,成本可控;
(4)可以进一步缩小元胞密度,减少导通电阻,提高器件效率。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S1的工艺流程示意图;
图2为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S2的工艺流程示意图;
图3为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S3的工艺流程示意图;
图4为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S4的工艺流程示意图;
图5为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S5的工艺流程示意图;
图6为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S6的工艺流程示意图;
图7为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S7的工艺流程示意图;
图8为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S8的工艺流程示意图;
图9为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S9的工艺流程示意图;
图10为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S10的工艺流程示意图;
图11为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S11的工艺流程示意图;
图12为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S12的工艺流程示意图;
图13为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S13的工艺流程示意图;
图14为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S14的工艺流程示意图;
图15为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S15的工艺流程示意图;
图16为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S16的工艺流程示意图;
图17为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S17的工艺流程示意图;
图18为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S18的工艺流程示意图;
图19为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S19的工艺流程示意图;
图20为本发明实施例1-3一种沟槽功率器件与源极电容集成及其制造方法的步骤S20的工艺流程示意图;
附图标记:
1、硅衬底;2、外延层;3、掩膜;4、元胞栅极;5、源极沟槽;6、栅极互联沟槽;7、氧化层;8、氮化硅薄膜;9、栅氧化层;10、多晶硅;11、体区;12、源区;13、二氧化硅介质层;14、源区沟槽接触孔;15、栅极互联区域接触孔;16、欧姆接触;17、钨栓;18、铝铜化合物;19、钝化层。
具体实施方式
以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进,这些都属于本发明的保护范围。在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开,下面结合具体实施例对本发明进行详细说明:
实施例1
一种沟槽功率器件及其制造方法,包括如下步骤:
步骤S1、如图1所示,在硅组成的基片1上生长外延层2,外延层2生长采取化学气象淀积的方式。外延层2根据器件极性的不同,可以掺杂三价元素硼或五价元素砷、磷,本实施例掺杂三价元素硼。外延层2根据工作电压的不同,厚度可以有微米级的变化或采取多层结构。
步骤S2、如图2所示,接下来沉积形成沟槽所用的掩模3。该掩模3可以是光刻胶或光刻胶与其它绝缘体掩模的多层组合结构。如:二氧化硅-氮化硅-二氧化硅。二氧化硅与氮化硅由化学气象淀积工艺进行制备;光刻胶由光刻工艺进行旋涂。本实施例掩模3为光刻胶。
步骤S3、如图3所示,接下来定义栅极以及源极沟槽进行定义。由于此方法同时制造栅极与源极沟槽,突破了光刻工艺对集成度的限制。其中源极沟槽5的关键尺寸比源极沟槽要窄;其中栅极沟槽有两种,一种是用于元胞栅极4,一种用于栅极互联6。利用掩模版将电路曝光在光刻胶上。如果在光刻胶下层采用多层绝缘体结构,则需要接着使用干法蚀刻将电路图形形成到多层结构上。
步骤S4、如图4所示,在掩模上形成电路图形后,利用干法蚀刻将电路图形制作到外延层上。由于干法蚀刻的特性,关键尺寸较大的栅极沟槽4、6会蚀刻得较深,源极沟槽5会蚀刻得较浅。
步骤S5、如图5所示,利用热氧化工艺对沟槽进行圆润化与等离子损伤修复;生长氧化层7厚度为20纳米,作为接下来氮化硅薄膜的垫层。
步骤S6、如图6所示,接着利用低压化学气象淀积进行氮化硅薄膜8的生长500纳米。由于栅极沟槽蚀刻得较深,氮化硅薄膜只会在栅极沟槽的底部生长4、6;由于源极沟槽5蚀刻得较浅,氮化硅薄膜会填满整个源极沟槽并超过硅表面。
步骤S7、如图7所示,使用热磷酸蚀刻氮化硅,时间需要精确控制。栅极沟槽中的氮化硅全部蚀刻完,源极沟槽的氮化硅仍然保留。
步骤S8、如图8所示,接着制作栅极沟槽的栅氧化层9。先使用湿法蚀刻,去掉栅极沟槽中存在的自然氧化层;然后利用热氧化工艺,根据应用的不同,生长10纳米栅氧化层。
步骤S9、如图9所示,利用低压化学气象淀积形成栅极;淀积500纳米厚度的多晶硅10。根据功率器件极性的不同,在淀积的过程中掺杂五价元素或在栅极形成后进行离子注入参杂三价元素。这时栅极沟槽填满了多晶硅,而源极沟槽由于氮化硅的阻挡,不会在沟槽中形成多晶硅。
步骤S10、如图10所示,利用化学机械研磨或干法蚀刻以去除高于外延层的多晶硅。
步骤S11、如图11所示,接下来利用离子注入制作体区11。根据功率器件极性的不同,离子注入的杂质可以是三价元素硼或五价元素砷,磷,本实施例中离子注入的杂质为三价元素硼。然后用热工艺对体区杂质进行激活。
步骤S12、如图12所示,利用离子注入制作源区12。根据功率器件极性的不同,离子注入的杂质可以是五价元素砷,磷或三价元素硼,本实施例中离子注入的杂质为五价元素砷。
至此,基本的元胞结构已经形成。接下来的工艺主要是为了制作器件隔绝与金属互连。
步骤S13、如图13所示,利用化学气象淀积形成二氧化硅介质层13。介质层可进行硼磷杂质的掺杂,以提高薄膜流动性与外来杂质的吸附性。
步骤S14、如图14所示,利用光刻工艺,使用光刻胶定义源区沟槽接触孔14,以及栅极互联区域的接触孔15。由于已在之前的工艺中制作了源区沟槽,此时要制作的接触孔的关键宽度可以较大,具有很好的光刻工艺容忍度。
步骤S15、如图15所示,利用干法蚀刻二氧化硅介质层,蚀刻制作出源区沟槽接触孔14,以及栅极互联区域的接触孔15。
步骤S16、如图16所示,利用热磷酸蚀刻源区沟槽内的氮化硅。
步骤S17、如图17所示,接下来利用离子注入掺杂高浓度杂质到源区沟槽的底部,以制作源区沟槽接触孔的欧姆接触16,利用快速热退火激活杂质。
利用物理气象淀积工艺淀积金属(钛,钴,钽等),以及氮化物作为保护层。并利用快速热退化形成硅化物。
步骤S18、如图18所示,利用钨栓工艺淀积钨在接触孔里,并利用干法蚀刻把接触孔以外的钨去除,得到钨栓17。
步骤S19、如图19所示,接下来利用物理气象淀积铝铜化合物18。之后利用光刻工艺与干法蚀刻形成电路。
步骤S20、如图20所示,然后淀积钝化层19(氮化硅或二氧化硅)。并用光刻工艺将钝化层蚀刻开。
最后进行合金工艺。至此整个工艺流程完成。
实施例2
一种沟槽功率器件及其制造方法,包括如下步骤:
步骤S1、如图1所示,在硅组成的基片1上生长外延层2,外延层2生长采取化学气象淀积的方式。外延层2根据器件极性的不同,可以掺杂三价元素硼或五价元素砷、磷,本实施例掺杂五价元素砷。外延层2根据工作电压的不同,厚度可以有微米级的变化或采取多层结构。
步骤S2、如图2所示,接下来沉积形成沟槽所用的掩模3。该掩模3可以是光刻胶或光刻胶与其它绝缘体掩模的多层组合结构。如:二氧化硅-氮化硅-二氧化硅。二氧化硅与氮化硅由化学气象淀积工艺进行制备;光刻胶由光刻工艺进行旋涂。本实施例掩模3为光刻胶与二氧化硅-氮化硅-二氧化硅多层组合结构。
步骤S3、如图3所示,接下来定义栅极以及源极沟槽进行定义。由于此方法同时制造栅极与源极沟槽,突破了光刻工艺对集成度的限制。其中源极沟槽5的关键尺寸比源极沟槽要窄;其中栅极沟槽有两种,一种是用于元胞栅极4,一种用于栅极互联6。利用掩模版将电路曝光在光刻胶上。如果在光刻胶下层采用多层绝缘体结构,则需要接着使用干法蚀刻将电路图形形成到多层结构上。
步骤S4、如图4所示,在掩模上形成电路图形后,利用干法蚀刻将电路图形制作到外延层上。由于干法蚀刻的特性,关键尺寸较大的栅极沟槽4、6会蚀刻得较深,源极沟槽5会蚀刻得较浅。
步骤S5、如图5所示,利用热氧化工艺对沟槽进行圆润化与等离子损伤修复;生长氧化层7厚度从50纳米。接着利用湿法蚀刻去除改氧化层的大部分,留下20纳米左右的氧化层,作为接下来氮化硅薄膜的垫层。
步骤S6、如图6所示,接着利用低压化学气象淀积进行氮化硅薄膜8的生长800纳米左右。由于栅极沟槽蚀刻得较深,氮化硅薄膜只会在栅极沟槽的底部生长4、6;由于源极沟槽5蚀刻得较浅,氮化硅薄膜会填满整个源极沟槽并超过硅表面。
步骤S7、如图7所示,使用热磷酸蚀刻氮化硅,时间需要精确控制。栅极沟槽中的氮化硅全部蚀刻完,源极沟槽的氮化硅仍然保留。
步骤S8、如图8所示,接着制作栅极沟槽的栅氧化层9。先使用湿法蚀刻,去掉栅极沟槽中存在的自然氧化层;然后利用热氧化工艺,根据应用的不同,生长50纳米之间的栅氧化层。
步骤S9、如图9所示,利用低压化学气象淀积形成栅极;淀积800纳米厚度的多晶硅10。根据功率器件极性的不同,在淀积的过程中掺杂五价元素或在栅极形成后进行离子注入参杂三价元素。这时栅极沟槽填满了多晶硅,而源极沟槽由于氮化硅的阻挡,不会在沟槽中形成多晶硅。
步骤S10、如图10所示,利用化学机械研磨或干法蚀刻以去除高于外延层的多晶硅。
步骤S11、如图11所示,接下来利用离子注入制作体区11。根据功率器件极性的不同,离子注入的杂质可以是三价元素硼或五价元素砷,磷,本实施例中离子注入的杂质为五价元素砷。然后用热工艺对体区杂质进行激活。
步骤S12、如图12所示,利用离子注入制作源区12。根据功率器件极性的不同,离子注入的杂质可以是五价元素砷,磷或三价元素硼,本实施例中离子注入的杂质为三价元素硼。
至此,基本的元胞结构已经形成。接下来的工艺主要是为了制作器件隔绝与金属互连。
步骤S13、如图13所示,利用化学气象淀积形成二氧化硅介质层13。介质层可进行硼磷杂质的掺杂,以提高薄膜流动性与外来杂质的吸附性。
步骤S14、如图14所示,利用光刻工艺,使用光刻胶定义源区沟槽接触孔14,以及栅极互联区域的接触孔15。由于已在之前的工艺中制作了源区沟槽,此时要制作的接触孔的关键宽度可以较大,具有很好的光刻工艺容忍度。
步骤S15、如图15所示,利用干法蚀刻二氧化硅介质层,蚀刻制作出源区沟槽接触孔14,以及栅极互联区域的接触孔15。
步骤S16、如图16所示,利用热磷酸蚀刻源区沟槽内的氮化硅。
步骤S17、如图17所示,接下来利用离子注入掺杂高浓度杂质到源区沟槽的底部,以制作源区沟槽接触孔的欧姆接触16,利用快速热退火激活杂质。
利用物理气象淀积工艺淀积金属(钛,钴,钽等),以及氮化物作为保护层。并利用快速热退化形成硅化物。
步骤S18、如图18所示,利用钨栓工艺淀积钨在接触孔里,并利用干法蚀刻把接触孔以外的钨去除,得到钨栓17。
步骤S19、如图19所示,接下来利用物理气象淀积铝铜化合物18。之后利用光刻工艺与干法蚀刻形成电路。
步骤S20、如图20所示,然后淀积钝化层19(氮化硅或二氧化硅)。并用光刻工艺将钝化层蚀刻开。
最后进行合金工艺。至此整个工艺流程完成。
实施例3
一种沟槽功率器件及其制造方法,包括如下步骤:
步骤S1、如图1所示,在硅组成的基片1上生长外延层2,外延层2生长采取化学气象淀积的方式。外延层2根据器件极性的不同,可以掺杂三价元素硼或五价元素砷、磷,本实施例掺杂五价元素磷。外延层2根据工作电压的不同,厚度可以有微米级的变化或采取多层结构。
步骤S2、如图2所示,接下来沉积形成沟槽所用的掩模3。该掩模3可以是光刻胶或光刻胶与其它绝缘体掩模的多层组合结构。如:二氧化硅-氮化硅-二氧化硅。二氧化硅与氮化硅由化学气象淀积工艺进行制备;光刻胶由光刻工艺进行旋涂。本实施例掩模3为光刻胶。
步骤S3、如图3所示,接下来定义栅极以及源极沟槽进行定义。由于此方法同时制造栅极与源极沟槽,突破了光刻工艺对集成度的限制。其中源极沟槽5的关键尺寸比源极沟槽要窄;其中栅极沟槽有两种,一种是用于元胞栅极4,一种用于栅极互联6。利用掩模版将电路曝光在光刻胶上。如果在光刻胶下层采用多层绝缘体结构,则需要接着使用干法蚀刻将电路图形形成到多层结构上。
步骤S4、如图4所示,在掩模上形成电路图形后,利用干法蚀刻将电路图形制作到外延层上。由于干法蚀刻的特性,关键尺寸较大的栅极沟槽4、6会蚀刻得较深,源极沟槽5会蚀刻得较浅。
步骤S5、如图5所示,利用热氧化工艺对沟槽进行圆润化与等离子损伤修复;生长氧化层7厚度从100纳米。接着利用湿法蚀刻去除改氧化层的大部分,留下20纳米左右的氧化层,作为接下来氮化硅薄膜的垫层。
步骤S6、如图6所示,接着利用低压化学气象淀积进行氮化硅薄膜8的生长1000纳米左右。由于栅极沟槽蚀刻得较深,氮化硅薄膜只会在栅极沟槽的底部生长4、6;由于源极沟槽5蚀刻得较浅,氮化硅薄膜会填满整个源极沟槽并超过硅表面。
步骤S7、如图7所示,使用热磷酸蚀刻氮化硅,时间需要精确控制。栅极沟槽中的氮化硅全部蚀刻完,源极沟槽的氮化硅仍然保留。
步骤S8、如图8所示,接着制作栅极沟槽的栅氧化层9。先使用湿法蚀刻,去掉栅极沟槽中存在的自然氧化层;然后利用热氧化工艺,根据应用的不同,生长100纳米之间的栅氧化层。
步骤S9、如图9所示,利用低压化学气象淀积形成栅极;淀积1000纳米厚度的多晶硅10。根据功率器件极性的不同,在淀积的过程中掺杂五价元素或在栅极形成后进行离子注入参杂三价元素。这时栅极沟槽填满了多晶硅,而源极沟槽由于氮化硅的阻挡,不会在沟槽中形成多晶硅。
步骤S10、如图10所示,利用化学机械研磨或干法蚀刻以去除高于外延层的多晶硅。
步骤S11、如图11所示,接下来利用离子注入制作体区11。根据功率器件极性的不同,离子注入的杂质可以是三价元素硼或五价元素砷,磷,本实施例中离子注入的杂质为五价元素磷。然后用热工艺对体区杂质进行激活。
步骤S12、如图12所示,利用离子注入制作源区12。根据功率器件极性的不同,离子注入的杂质可以是五价元素砷,磷或三价元素硼,本实施例中离子注入的杂质为三价元素硼。
至此,基本的元胞结构已经形成。接下来的工艺主要是为了制作器件隔绝与金属互连。
步骤S13、如图13所示,利用化学气象淀积形成二氧化硅介质层13。介质层可进行硼磷杂质的掺杂,以提高薄膜流动性与外来杂质的吸附性。
步骤S14、如图14所示,利用光刻工艺,使用光刻胶定义源区沟槽接触孔14,以及栅极互联区域的接触孔15。由于已在之前的工艺中制作了源区沟槽,此时要制作的接触孔的关键宽度可以较大,具有很好的光刻工艺容忍度。
步骤S15、如图15所示,利用干法蚀刻二氧化硅介质层,蚀刻制作出源区沟槽接触孔14,以及栅极互联区域的接触孔15。
步骤S16、如图16所示,利用热磷酸蚀刻源区沟槽内的氮化硅。
步骤S17、如图17所示,接下来利用离子注入掺杂高浓度杂质到源区沟槽的底部,以制作源区沟槽接触孔的欧姆接触16,利用快速热退火激活杂质。
利用物理气象淀积工艺淀积金属(钛,钴,钽等),以及氮化物作为保护层。并利用快速热退化形成硅化物。
步骤S18、如图18所示,利用钨栓工艺淀积钨在接触孔里,并利用干法蚀刻把接触孔以外的钨去除,得到钨栓17。
步骤S19、如图19所示,接下来利用物理气象淀积铝铜化合物18。之后利用光刻工艺与干法蚀刻形成电路。
步骤S20、如图20所示,然后淀积钝化层19(氮化硅或二氧化硅)。并用光刻工艺将钝化层蚀刻开。
最后进行合金工艺。至此整个工艺流程完成。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (9)

1.一种沟槽功率器件的制造方法,其特征在于,包括如下步骤:
A、元胞结构的制备;
B、接触孔、钨栓的制备;
C、蚀刻形成电路;
D、淀积钝化层,蚀刻钝化层;
所述步骤A具体包括如下步骤:
步骤S1、在硅衬底上表面化学气相沉积一层或多层外延层;所述外延层掺杂三价元素、五价元素;
步骤S2、在外延层上表面沉积掩膜,所述掩膜的成分为光刻胶或光刻胶与其它绝缘体掩模组成的多层组合结构;
步骤S3、在掩膜上定义栅极沟槽图形以及源极沟槽图形;所述栅极沟槽包括元胞栅极沟槽、栅极互联沟槽;
所述元胞栅极沟槽图形、源极沟槽图形、栅极互联沟槽图形依次设置;所述栅极互联沟槽的关键尺寸大于元胞栅极沟槽的关键尺寸大于源极沟槽的关键尺寸;
步骤S4、在掩膜上形成电路图形后,利用干法蚀刻将电路图形制作到外延层上;
得到所述栅极互联沟槽的深度大于元胞栅极沟槽的深度大于源极沟槽的深度;
步骤S5、通过热氧化方法对元胞栅极沟槽、源极沟槽、栅极互联沟槽进行圆润化与等离子损伤修复,在元胞栅极沟槽、源极沟槽、栅极互联沟槽侧壁生长一层氧化层;通过湿法蚀刻处理氧化层;
步骤S6、通过低压化学气象淀积进行氮化硅薄膜的生长;所述氮化硅薄膜在栅极沟槽的底部表面生长并填满整个源极沟槽;
步骤S7、通过热磷酸蚀刻氮化硅,至栅极沟槽中的氮化硅全部蚀刻完,源极沟槽中仍然保留氮化硅;
步骤S8、通过湿法蚀刻去除栅极沟槽中的自然氧化层,然后通过热氧化法生长栅氧化层;
步骤S9、通过低压化学气象淀积多晶硅,使栅极沟槽填满了多晶硅形成栅极;在淀积的过程中掺杂五价元素或在栅极形成后进行离子注入掺杂三价元素;
步骤S10、通过化学机械研磨或干法蚀刻去除高于外延层的多晶硅;
步骤S11、在外延层上表面通过离子注入杂质得到体区,然后通过热工艺对体区的杂质进行激活;所述杂质包括三价元素或五价元素;
步骤S12、在体区上表面通过离子注入杂质得到源区,离子注入的杂质是五价元素或三价元素,最终得到元胞结构。
2.根据权利要求1所述的沟槽功率器件的制造方法,其特征在于,所述步骤S1、S9、S11、S12中所述三价元素包括硼元素,所述五价元素包括砷、磷。
3.根据权利要求1所述的沟槽功率器件的制造方法,其特征在于,所述步骤S11中离子注入的元素极性应与步骤S1中的掺杂元素极性相反,所述步骤S12中离子注入的元素极性应与步骤S1中的掺杂元素极性相同。
4.根据权利要求1所述的沟槽功率器件的制造方法,其特征在于,所述步骤S5中所述氧化层的厚度为10~100nm,湿法蚀刻处理后使氧化层的厚度为20纳米;所述步骤S6中所述氮化硅薄膜的厚度为500~1000nm;所述步骤S8中所述栅氧化层的厚度为10~100nm;所述步骤S9中所述多晶硅的厚度为500~1000nm。
5.根据权利要求1所述的沟槽功率器件的制造方法,其特征在于,所述步骤B具体包括如下步骤:
步骤S13、通过化学气象淀积形成二氧化硅介质层;
步骤S14、通过光刻工艺,使用光刻胶定义源区沟槽接触孔图形以及栅极互联区域接触孔图形;所述源区沟槽接触孔图形位于源极沟槽上方,所述栅极互联区域接触孔图形位于栅极互联沟槽上方;
步骤S15、通过干法蚀刻二氧化硅介质层,得到源区沟槽接触孔以及栅极互联区域接触孔;
步骤S16、通过热磷酸蚀刻源区沟槽内的氮化硅;
步骤S17、通过离子注入掺杂高浓度杂质到源区沟槽的底部,制作源区沟槽接触孔的欧姆接触,通过快速热退火激活杂质;
通过物理气象淀积工艺淀积金属以及氮化物作为保护层,并利用快速热退化形成硅化物,所述金属包括钛、钴、钽中的一种或多种;
步骤S18、通过钨栓工艺淀积金属钨,通过干法刻蚀方法去除掉接触孔以外的金属钨,在接触孔里形成钨栓。
6.根据权利要求5所述的沟槽功率器件的制造方法,其特征在于,所述步骤S12中离子注入的杂质元素极性应与第17步注入元素极性相同。
7.根据权利要求1所述的沟槽功率器件的制造方法,其特征在于,所述步骤C具体包括如下步骤:步骤S19、在两个钨栓上方分别通过物理气象淀积铝铜化合物,之后利用光刻工艺与干法蚀刻形成电路。
8.根据权利要求1所述的沟槽功率器件的制造方法,其特征在于,所述步骤D具体包括如下步骤:步骤S20、淀积钝化层,并用光刻工艺将钝化层蚀刻开;所述钝化层包括氮化硅或二氧化硅。
9.一种沟槽功率器件,其特征在于,所述沟槽功率器件根据权利要求1-8所述的沟槽功率器件的制造方法制备得到。
CN202011264302.1A 2020-11-12 2020-11-12 一种沟槽功率器件及其制造方法 Active CN112382566B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202011264302.1A CN112382566B (zh) 2020-11-12 2020-11-12 一种沟槽功率器件及其制造方法
PCT/CN2021/125685 WO2022100412A1 (zh) 2020-11-12 2021-10-22 一种沟槽功率器件及其制造方法
EP21890939.8A EP4246595A4 (en) 2020-11-12 2021-10-22 TRENCH PERFORMANCE DEVICE AND MANUFACTURING METHOD THEREFOR
US18/316,247 US20230282713A1 (en) 2020-11-12 2023-05-12 Trench type power device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011264302.1A CN112382566B (zh) 2020-11-12 2020-11-12 一种沟槽功率器件及其制造方法

Publications (2)

Publication Number Publication Date
CN112382566A CN112382566A (zh) 2021-02-19
CN112382566B true CN112382566B (zh) 2023-06-16

Family

ID=74583589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011264302.1A Active CN112382566B (zh) 2020-11-12 2020-11-12 一种沟槽功率器件及其制造方法

Country Status (4)

Country Link
US (1) US20230282713A1 (zh)
EP (1) EP4246595A4 (zh)
CN (1) CN112382566B (zh)
WO (1) WO2022100412A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112382566B (zh) * 2020-11-12 2023-06-16 重庆万国半导体科技有限公司 一种沟槽功率器件及其制造方法
CN113644027B (zh) * 2021-08-11 2023-10-03 重庆万国半导体科技有限公司 一种集成电感的沟槽功率器件及其制造方法
CN116110804B (zh) * 2023-04-12 2023-07-21 粤芯半导体技术股份有限公司 半导体器件的制备方法
CN116429300B (zh) * 2023-06-12 2023-09-22 之江实验室 基于单晶硅和微流道冷却的超高温压力传感芯片及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083265A (zh) * 2006-05-31 2007-12-05 万国半导体股份有限公司 用单层多晶硅工艺形成高薄层电阻量电阻器和高电容量电容器
CN102034712A (zh) * 2009-09-23 2011-04-27 万国半导体股份有限公司 在带有三掩膜屏蔽栅工艺的沟槽中直接接触
CN106298941A (zh) * 2016-09-13 2017-01-04 上海华虹宏力半导体制造有限公司 屏蔽栅沟槽功率器件及其制造方法
CN106876449A (zh) * 2017-04-12 2017-06-20 上海格瑞宝电子有限公司 一种沟槽金属-氧化物半导体及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060273385A1 (en) * 2005-06-06 2006-12-07 M-Mos Semiconductor Sdn. Bhd. Trenched MOSFET device with contact trenches filled with tungsten plugs
WO2008139897A1 (ja) * 2007-04-27 2008-11-20 Rohm Co., Ltd. 半導体装置の製造方法および半導体装置
US20090267140A1 (en) * 2008-04-29 2009-10-29 Fu-Yuan Hsieh Mosfet structure with guard ring
US7786528B2 (en) * 2009-01-14 2010-08-31 Force Mos Technology Co., Ltd. Metal schemes of trench MOSFET for copper bonding
CN101924130A (zh) * 2009-06-09 2010-12-22 上海韦尔半导体股份有限公司 具有沟槽式接触孔的沟槽式mosfet及其制备方法
US8394702B2 (en) * 2010-03-24 2013-03-12 Alpha And Omega Semiconductor Incorporated Method for making dual gate oxide trench MOSFET with channel stop using three or four masks process
CN102956481B (zh) 2011-08-18 2015-08-19 科轩微电子股份有限公司 具有源极沟槽的沟槽式功率半导体元件的制造方法
US9059256B2 (en) * 2012-09-13 2015-06-16 Infineon Technologies Ag Method for producing a controllable semiconductor component
CN104733377B (zh) * 2013-12-24 2017-10-24 上海华虹宏力半导体制造有限公司 实现沟槽场效应晶体管源极接触槽自对准结构的方法
US20150221733A1 (en) * 2014-02-03 2015-08-06 Force Mos Technology Co., Ltd. Trench mosfet with self-aligned source and contact regions using three masks process
US10056461B2 (en) * 2016-09-30 2018-08-21 Alpha And Omega Semiconductor Incorporated Composite masking self-aligned trench MOSFET
CN112382566B (zh) * 2020-11-12 2023-06-16 重庆万国半导体科技有限公司 一种沟槽功率器件及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083265A (zh) * 2006-05-31 2007-12-05 万国半导体股份有限公司 用单层多晶硅工艺形成高薄层电阻量电阻器和高电容量电容器
CN102034712A (zh) * 2009-09-23 2011-04-27 万国半导体股份有限公司 在带有三掩膜屏蔽栅工艺的沟槽中直接接触
CN106298941A (zh) * 2016-09-13 2017-01-04 上海华虹宏力半导体制造有限公司 屏蔽栅沟槽功率器件及其制造方法
CN106876449A (zh) * 2017-04-12 2017-06-20 上海格瑞宝电子有限公司 一种沟槽金属-氧化物半导体及其制备方法

Also Published As

Publication number Publication date
EP4246595A1 (en) 2023-09-20
EP4246595A4 (en) 2024-05-29
US20230282713A1 (en) 2023-09-07
WO2022100412A1 (zh) 2022-05-19
CN112382566A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
CN112382566B (zh) 一种沟槽功率器件及其制造方法
CN113644028B (zh) 一种分离栅功率器件及其制造方法
CN103151309B (zh) 深沟槽功率mos器件及其制备方法
WO2022100410A1 (zh) 一种沟槽功率器件与源极电容集成及其制造方法
CN113644027B (zh) 一种集成电感的沟槽功率器件及其制造方法
CN113035840A (zh) 一种sgt mosfet器件及其接触孔的制造方法
JPS61179568A (ja) 半導体記憶装置の製造方法
CN103151310B (zh) 深沟槽功率mos器件及其制造方法
CN113035701B (zh) 一种栅极电阻可调型超结功率器件及其制造方法
CN113644116B (zh) 栅极与源极并联可调电阻型超结功率器件及其制造方法
JPH0673370B2 (ja) 集積回路のコンタクト製造方法
KR960006718B1 (ko) 반도체 기억장치의 커패시터 및 그 제조방법
CN115662902A (zh) 沟槽型场效应晶体管的制作方法
KR100313543B1 (ko) 플랫 롬 제조방법
KR100427441B1 (ko) 반도체소자의 제조방법
KR0164070B1 (ko) 반도체소자의 전하보존전극 제조방법
KR20030054746A (ko) 반도체 소자 형성 방법
RU2244985C1 (ru) Способ изготовления комплементарных вертикальных биполярных транзисторов в составе интегральных схем
KR890003831B1 (ko) 디램(dram)셀의 제조방법
KR970000714B1 (ko) 반도체 기억장치 및 그 제조방법
KR0150103B1 (ko) 포스포-실리케이트글래스막제조방법및이를적용한반도체소자의전하저장전극제조방법
CN118136510A (zh) 具有屏蔽栅的沟槽型功率器件的制备方法
KR100215884B1 (ko) 반도체 메모리소자 및 그 제조방법
CN114975123A (zh) Trench MOS结构及其制作方法
KR100253322B1 (ko) 모스 트랜지스터 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant