CN113644116B - 栅极与源极并联可调电阻型超结功率器件及其制造方法 - Google Patents

栅极与源极并联可调电阻型超结功率器件及其制造方法 Download PDF

Info

Publication number
CN113644116B
CN113644116B CN202110918978.6A CN202110918978A CN113644116B CN 113644116 B CN113644116 B CN 113644116B CN 202110918978 A CN202110918978 A CN 202110918978A CN 113644116 B CN113644116 B CN 113644116B
Authority
CN
China
Prior art keywords
grid
electrode
source
parallel
source electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110918978.6A
Other languages
English (en)
Other versions
CN113644116A (zh
Inventor
胡玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Wanguo Semiconductor Technology Co ltd
Original Assignee
Chongqing Wanguo Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Wanguo Semiconductor Technology Co ltd filed Critical Chongqing Wanguo Semiconductor Technology Co ltd
Priority to CN202110918978.6A priority Critical patent/CN113644116B/zh
Publication of CN113644116A publication Critical patent/CN113644116A/zh
Priority to PCT/CN2022/109826 priority patent/WO2023016304A1/zh
Priority to EP22855287.3A priority patent/EP4386861A1/en
Application granted granted Critical
Publication of CN113644116B publication Critical patent/CN113644116B/zh
Priority to US18/432,078 priority patent/US20240178275A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0688Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions characterised by the particular shape of a junction between semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/3115Doping the insulating layers
    • H01L21/31155Doping the insulating layers by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明涉及功率器件半导体制造领域,公开了一种栅极与源极并联可调电阻型超结功率器件的制造方法,包括如下步骤:A、超结型功率器件元胞结构和栅极、源极之间并联可调电阻结构的制备;B、接触孔的制备;C、金属导线的制备;D、钝化层的制备;还公开了由上述制造方法制备得到的栅极与源极并联可调电阻型超结功率器件。本发明,将功率器件应用中需要通过外接的形式并联在栅极和源极间的电阻直接集成在功率器件中,提高了器件集成度和稳定性,简化了电路设计的复杂度节省了电路设计和制造成本,避免了因不同的栅极与源极之间并联电阻应用需求导致的栅极、接触通孔、金属导线层版图变更和重新制作掩模版,减少成本支出,提高器件的通用性。

Description

栅极与源极并联可调电阻型超结功率器件及其制造方法
技术领域
本发明涉及功率器件半导体制造领域,具体是一种栅极与源极并联可调电阻型超结功率器件及其制造方法。
背景技术
超结型功率器件相较传统功率器件中引入超结结构在达到相同耐压前提下将导通电阻下降50%~65%,有效降低功耗提高了***产品的效率,尤其在大功率的电源产品上,其优势表现得更为突出。
超结型功率器件在电路应用中需要在栅极和源极之间额外并联一颗电阻来避免电路中的漏电流引起的功率器件误开启,同时作为栅极的静电保护结构保护栅极免受外来静电的损伤,然而这种结构通过增加额外的并联电阻会导致电路设计和制造成本增加,同时会引入因电路制造过程异常引起的电阻失效风险,另外该并联电阻会按照电路性能需求而使用不同的阻值,采用固定阻值的电阻会降低电路的通用性,因此,需要进一步的改进。
发明内容
本发明的目的在于提供一种栅极与源极并联可调电阻型超结功率器件及其制造方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种栅极与源极并联可调电阻型超结功率器件的制造方法,包括如下步骤:
A、超结型功率器件元胞结构和栅极、源极之间并联可调电阻结构的制备;
B、接触孔的制备;
C、金属导线的制备;
D、钝化层的制备。
作为本发明进一步的方案:步骤A具体包括如下步骤:
步骤S1、在硅衬底上表面化学气相沉积一层本征外延层;通过离子注入在所述本征外延层掺杂五价元素;
步骤S2、在所述本征外延层的上表面沉积掩膜,所述掩膜的成分为光刻胶或光刻胶与其它绝缘体掩模组成的多层组合结构;
步骤S3、通过光刻工艺在掩膜上定义柱状掺杂区图形;通过离子注入在所述本征外延层掺杂三价元素;然后通过干蚀刻搭配湿法蚀刻去除掩膜;
步骤S4、重复步骤S1-S3;
步骤S5、通过热氧化方法生长栅极氧化层,然后通过低压化学气相淀积原位掺杂的栅极多晶硅;
步骤S6、在所述栅极多晶硅上面沉积掩膜,所述掩膜的成分为光刻胶或光刻胶与其它绝缘体掩模组成的多层组合结构;通过光刻工艺在掩膜上定义栅极图形,然后通过干法蚀刻形成栅极结构;然后通过干蚀刻搭配湿法蚀刻去除掩膜;
栅极图形定义元胞区金属氧化物场效应晶体管的栅极图形和栅极与源极之间并联可调电阻结构的图形,所述栅极与源极之间并联可调电阻结构的可调范围介于5千欧姆与20千欧姆间,通过设计独立的1-10um线宽的栅极与源极之间并联可调电阻图形,平行并联2个到5个独立的栅极与源极之间并联可调电阻来实现;
步骤S7、在本征外延层上表面通过离子注入三价元素杂质得到体区,同时离子注入到多晶硅上,然后通过热工艺对体区的杂质进行激活;
步骤S8、在本征外延层上表面沉积掩膜,所述掩膜的成分为光刻胶或光刻胶与其它绝缘体掩模组成的多层组合结构;通过光刻工艺在掩膜上定义源区图形,通过离子注入五价元素杂质在体区上表面得到源极,同时用掩膜阻挡多晶硅电阻结构区域被离子注入五价元素杂质,然后通过干蚀刻搭配湿法蚀刻去除掩膜,再通过热工艺对源区的杂质进行激活;
步骤S9、在本征外延层上表面通过离子注入三价元素得到高掺杂的欧姆接触区,同时离子注入三价元素到多晶硅电阻结构区域,最终得到元胞结构和栅极与源极之间并联可调电阻结构。
作为本发明进一步的方案:步骤S1、S3、S7、S8和S9中所述三价元素包括硼元素,所述五价元素包括砷、磷。
作为本发明进一步的方案:步骤S4中每重复步骤S1-S3均按照器件设计需求单独定义三价元素和五价元素离子注入的工艺条件至本征外延层总的厚度为30um-70um。
作为本发明进一步的方案:步骤S5中所述栅极氧化层的厚度为50~200nm;所述步骤S5中所述栅极多晶硅的厚度为500~1000nm。
作为本发明进一步的方案:步骤B具体包括如下步骤:
步骤S10、通过化学气相淀积形成二氧化硅介质层;
步骤S11、通过光刻工艺使用光刻胶定义源区接触孔图形、栅极区域接触孔图形和栅极与源极之间并联可调电阻结构的栅极端接触孔图形和源极端接触孔图形;所述源区接触孔图形位于源极和体区的上方,用于将源极和体区一同引出;所述栅极区域接触孔图形位于栅极多晶硅的上方,同时在源区中定义没有源区接触孔的区域用于放置栅极金属导线;所述栅极与源极之间并联可调电阻结构的栅极端接触孔和源极端接触孔位于栅极与源极之间并联可调电阻结构的上方,用于栅极和源极与栅极与源极之间并联可调电阻结构并联;
步骤S12、通过干法蚀刻二氧化硅介质层,得到源区接触孔、栅极区域接触孔和栅极与源极之间并联可调电阻结构的栅极端接触孔和源极端接触孔;
步骤S13、通过物理气相淀积工艺淀积金属作为粘合层,淀积金属氮化物作为阻挡层,再利用快速热退火工艺形成硅化物,所述金属包括钛、钴、钽中的一种或多种;
步骤S14、通过钨栓工艺淀积金属钨,通过干法刻蚀方法去除掉接触孔以外的金属钨,在源区接触孔、栅极区域接触孔和栅极与源极之间并联可调电阻结构的接触孔中形成钨栓。
作为本发明进一步的方案:步骤C具体包括如下步骤:
步骤S15、在钨栓上方通过物理气相淀积铝铜化合物,通过光刻工艺使用光刻胶定义源极金属导线图形、栅极金属导线图形和栅极与源极之间并联可调电阻控制极图形;通过干法蚀刻得到源极、栅极、栅极与源极之间并联可调电阻控制极;
所述源极金属导线图形位于源区上方;
所述栅极金属导线图形通过围绕着元胞区边缘走线将栅极经由栅极区域接触孔互联至源区无源区接触孔的区域形成栅极金属块;
所述栅极与源极之间并联可调电阻控制极图形通过该可调电阻的栅极端接触孔与独立的栅极与源极之间并联可调电阻结构连接,同时在每个独立的栅极与源极之间并联可调电阻与栅极金属导线之间引出独立的栅极与源极之间并联可调电阻控制极,该控制极数量与设计的独立的栅极与源极之间并联可调电阻数量一一对应,钨栓会填充到体区/源区接触孔、栅极互联区域接触孔、并联可调电阻栅极端接触孔和并联可调电阻源极端接触孔中。
作为本发明进一步的方案:步骤S15中所述栅极与源极之间并联可调电阻控制极图形会将在可调电阻栅极端接触孔连接金属导线与独立的栅极与源极之间并联可调电阻控制极金属导线交汇点之后的用于与栅极金属导线互联的金属导线局部线宽设计为1~2um。
作为本发明进一步的方案:步骤D具体包括如下步骤:
步骤S16、淀积钝化层,通过光刻工艺使用光刻胶定义源极金属接触区、栅极金属接触区和栅极与源极之间并联可调电阻控制极接触区;
通过干法蚀刻得到源极金属接触区、栅极金属接触区、栅极与源极之间并联可调电阻控制极接触区;栅极与源极之间并联可调电阻控制极接触区数量与独立栅极与源极之间并联可调电阻数量一一对应;
所述钝化层包括氮化硅或二氧化硅;
第一型掺杂和第二型掺杂为相反掺杂类型,第一型为N型则第二型为P型,第一型为P型则第二型为N型。
一种栅极与源极并联可调电阻的超结型功率器件,由上述所述的栅极与源极并联可调电阻型超结功率器件的制造方法制备得到。
与现有技术相比,本发明的有益效果是:
(1)、通过将功率器件应用中需要通过外接的形式并联在栅极和源极间的电阻直接集成在功率器件中,提高了器件集成度和稳定性,简化了电路设计的复杂度节省了电路设计和制造成本;
(2)、通过栅极与源极之间并联可调电阻控制极分别对每个独立的栅极与源极之间并联可调电阻进行开路控制以实现对栅极与源极之间并联可调电阻阻值的调整,进一步提高器件的应用范围;
(3)、通过栅极与源极之间引入电阻控制极分别对每个独立的栅极与源极之间并联电阻进行开路控制以实现对栅极与源极之间并联电阻的阻值调整,避免了因不同的栅极与源极之间并联电阻应用需求导致的栅极、接触通孔、金属导线层版图变更和重新制作掩模版,减少成本支出,提高器件的通用性。
附图说明
图1为栅极与源极并联可调电阻型超结功率器件的结构示意图。
图2为栅极与源极并联可调电阻型超结功率器件中栅极金属导线的剖面结构示意图。
图中:1、硅衬底;2、本征外延层;3、柱状掺杂区;4、可调电阻控制极;5、源极;6、栅极;7、栅极氧化层;8、栅极多晶硅;9、体区;10、源区;11、并联可调电阻;12、二氧化硅介质层;13、欧姆接触区;14、体区/源区接触孔;15、栅极区域接触孔;16、栅极端接触孔;17、源极端接触孔;18、钨栓;19、铝铜化合物;20、钝化层;21、栅极金属导线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
请参阅图1和图2,本发明实施例中,一种栅极与源极并联可调电阻型超结功率器件的制造方法,包括如下步骤:
步骤S1、在硅衬底1上表面化学气相沉积一层本征外延层2;通过离子注入在所述本征外延层2掺杂五价元素;所述五价元素包括砷、磷,本实施例具体为砷元素。
步骤S2、在所述本征外延层2的上表面沉积掩膜,所述掩膜的成分为光刻胶或光刻胶与其它绝缘体掩模组成的多层组合结构。
步骤S3、通过光刻工艺在掩膜上定义柱状掺杂区3图形;通过离子注入在所述本征外延层2掺杂三价元素硼元素;然后通过干蚀刻搭配湿法蚀刻去除掩膜;
步骤S4、重复步骤S1-S3至本征外延层2总的厚度为50um;步骤S4中每重复步骤S1-S3均按照器件设计需求单独定义三价元素和五价元素离子注入的工艺条件。
步骤S5、通过热氧化方法生长栅极氧化层7,然后通过低压化学气相淀积原位掺杂的栅极多晶硅8;所述栅极氧化层7的厚度为80nm;所述栅极多晶硅8的厚度为700nm。
步骤S6、在所述栅极多晶硅8上面沉积掩膜,所述掩膜的成分为光刻胶或光刻胶与其它绝缘体掩模组成的多层组合结构;通过光刻工艺在掩膜上定义栅极6图形,然后通过干法蚀刻形成栅极6结构;然后通过干蚀刻搭配湿法蚀刻去除掩膜;
定义元胞区金属氧化物场效应晶体管的栅极6图形和栅极6与源极5之间并联可调电阻11结构的图形,所述栅极6与源极5之间并联可调电阻11结构的可调范围介于7千欧姆与20千欧姆间,通过设计独立的5um线宽的栅极6与源极5之间并联可调电阻11图形,平行并联3个独立的栅极6与源极5之间并联可调电阻11来实现。
步骤S7、在本征外延层2上表面通过离子注入三价元素杂质得到体区9,所述三价元素包括硼,同时离子注入到多晶硅上,然后通过热工艺对体区9的杂质进行激活;
步骤S8、在本征外延层2上表面沉积掩膜,所述掩膜的成分为光刻胶或光刻胶与其它绝缘体掩模组成的多层组合结构;通过光刻工艺在掩膜上定义源区10图形,通过离子注入五价元素杂质在体区9上表面得到源极5,所述五价元素包括砷、磷,本实施例具体为砷元素,同时用掩膜阻挡多晶硅电阻结构区域被离子注入五价元素杂质,然后通过干蚀刻搭配湿法蚀刻去除掩膜,再通过热工艺对源区10的杂质进行激活;
步骤S9、在本征外延层2上表面通过离子注入三价元素硼元素得到高掺杂的欧姆接触区13,同时离子注入三价元素到多晶硅电阻结构区域,最终得到元胞结构和栅极6与源极5之间并联可调电阻11结构。
步骤S10、通过化学气相淀积形成二氧化硅介质层12;
步骤S11、通过光刻工艺使用光刻胶定义源区接触孔14图形、栅极区域接触孔15图形和栅极6与源极5之间并联可调电阻11结构的栅极端接触孔16图形和源极端接触孔17图形;所述源区接触孔14图形位于源极5和体区9的上方,用于将源极5和体区9一同引出;所述栅极区域接触孔15图形位于栅极多晶硅8的上方,同时在源区10中定义没有源区接触孔14的区域用于放置栅极金属导线21;所述栅极6与源极5之间并联可调电阻11结构的栅极端接触孔16和源极端接触孔17位于栅极6与源极5之间并联可调电阻11结构的上方,用于栅极6和源极5与栅极6与源极5之间并联可调电阻11结构并联;
步骤S12、通过干法蚀刻二氧化硅介质层12,得到源区接触孔14、栅极区域接触孔15和栅极6与源极5之间并联可调电阻11结构的栅极端接触孔16和源极端接触孔17;
步骤S13、通过物理气相淀积工艺淀积金属作为粘合层,淀积金属氮化物作为阻挡层,再利用快速热退火工艺形成硅化物,所述金属包括钛、钴、钽中的一种或多种;本实施例具体为金属钛。
步骤S14、通过钨栓18工艺淀积金属钨,通过干法刻蚀方法去除掉接触孔以外的金属钨,在源区接触孔14、栅极区域接触孔15和栅极6与源极5之间并联可调电阻11结构的接触孔中形成钨栓18。
步骤S15、在钨栓18上方通过物理气相淀积铝铜化合物19,通过光刻工艺使用光刻胶定义源极5金属导线图形、栅极金属导线21图形和栅极6与源极5之间并联可调电阻11结构控制极图形;通过干法蚀刻得到源极5、栅极6、栅极6与源极5之间并联可调电阻控制极4;
所述源极5金属导线图形位于源区10上方;
所述栅极金属导线21图形通过围绕着元胞区边缘走线将栅极6经由栅极区域接触孔15互联至源区10无源区10接触孔的区域形成栅极金属导线21;
所述栅极6与源极5之间并联可调电阻控制极4图形通过该可调电阻的栅极端接触孔16与独立的栅极6与源极5之间并联可调电阻11结构连接,同时在每个独立的栅极6与源极5之间并联可调电阻11与栅极金属导线21之间引出独立的栅极6与源极5之间并联可调电阻控制极4,该控制极数量与设计的独立的栅极6与源极5之间并联可调电阻11数量一一对应。
步骤S15中所述栅极6与源极5之间并联可调电阻控制极4图形会将在可调电阻栅极端接触孔16的金属导线与独立的栅极6与源极5之间并联可调电阻控制极4金属导线交汇点之后的用于与栅极金属导线21互联的金属导线局部线宽设计为1.5um。
步骤S16、淀积钝化层20,通过光刻工艺使用光刻胶定义源极5金属接触区、栅极6金属接触区和栅极6与源极5之间并联可调电阻控制极4接触区;
通过干法蚀刻得到源极5金属接触区、栅极6金属接触区、栅极6与源极5之间并联可调电阻控制极4接触区;栅极6与源极5之间并联可调电阻控制极4接触区数量与独立栅极6与源极5之间并联可调电阻11数量一一对应;所述钝化层20为氮化硅。
最终得到一种栅极与源极并联可调电阻型超结型功率器件。
实施例2
请参阅图1和图2,本发明实施例中,一种栅极与源极并联可调电阻型超结功率器件的制造方法,包括如下步骤:
步骤S1、在硅衬底1上表面化学气相沉积一层本征外延层2;通过离子注入在所述本征外延层2掺杂五价元素;所述五价元素包括砷、磷,本实施例具体为磷元素。
步骤S2、在所述本征外延层2的上表面沉积掩膜,所述掩膜的成分为光刻胶或光刻胶与其它绝缘体掩模组成的多层组合结构。
步骤S3、通过光刻工艺在掩膜上定义柱状掺杂区3图形;通过离子注入在所述本征外延层2掺杂三价元素硼元素;然后通过干蚀刻搭配湿法蚀刻去除掩膜;
步骤S4、重复步骤S1-S3至本征外延层2总的厚度为60um;步骤S4中每重复步骤S1-S3均按照器件设计需求单独定义三价元素和五价元素离子注入的工艺条件。
步骤S5、通过热氧化方法对生长栅极氧化层7,然后通过低压化学气相淀积原位掺杂的栅极多晶硅8;所述栅极氧化层7的厚度为100nm;所述栅极多晶硅8的厚度为600nm。
步骤S6、在所述栅极多晶硅8上面沉积掩膜,所述掩膜的成分为光刻胶或光刻胶与其它绝缘体掩模组成的多层组合结构;通过光刻工艺在掩膜上定义栅极6图形,然后通过干法蚀刻形成栅极6结构;然后通过干蚀刻搭配湿法蚀刻去除掩膜;
定义元胞区金属氧化物场效应晶体管的栅极6图形和栅极6与源极5之间并联可调电阻11结构的图形,所述栅极6与源极5之间并联可调电阻11结构的可调范围介于7千欧姆与10千欧姆间,通过设计独立的3um线宽的栅极6与源极5之间并联可调电阻11图形,平行并联3个独立的栅极6与源极5之间并联可调电阻11来实现。
步骤S7、在本征外延层2上表面通过离子注入三价元素杂质得到体区9,所述三价元素包括硼,同时离子注入到多晶硅上,然后通过热工艺对体区9的杂质进行激活;
步骤S8、在本征外延层2上表面沉积掩膜,所述掩膜的成分为光刻胶或光刻胶与其它绝缘体掩模组成的多层组合结构;通过光刻工艺在掩膜上定义源区10图形,通过离子注入五价元素杂质在体区9上表面得到源极5,所述五价元素包括砷、磷,本实施例具体为磷元素,同时用掩膜阻挡多晶硅电阻结构区域被离子注入五价元素杂质,然后通过干蚀刻搭配湿法蚀刻去除掩膜,再通过热工艺对源区10的杂质进行激活;
步骤S9、在本征外延层2上表面通过离子注入三价元素硼元素得到高掺杂的欧姆接触区13,同时离子注入三价元素到多晶硅电阻结构区域,最终得到元胞结构和栅极6与源极5之间并联可调电阻11结构。
步骤S10、通过化学气相淀积形成二氧化硅介质层12;
步骤S11、通过光刻工艺使用光刻胶定义源区接触孔14图形、栅极区域接触孔15图形和栅极6与源极5之间并联可调电阻11结构的栅极端接触孔16图形和源极端接触孔17图形;所述源区接触孔14图形位于源极5和体区9的上方,用于将源极5和体区9一同引出;所述栅极区域接触孔15图形位于栅极多晶硅8的上方,同时在源区10中定义没有源区接触孔14的区域用于放置栅极金属导线21;所述栅极6与源极5之间并联可调电阻11结构的栅极端接触孔16和源极端接触孔17位于栅极6与源极5之间并联可调电阻11结构的上方,用于栅极6和源极5与栅极6与源极5之间并联可调电阻11结构并联;
步骤S12、通过干法蚀刻二氧化硅介质层12,得到源区接触孔14、栅极区域接触孔15和栅极6与源极5之间并联可调电阻11结构的栅极端接触孔16和源极端接触孔17;
步骤S13、通过物理气相淀积工艺淀积金属作为粘合层,淀积金属氮化物作为阻挡层,再利用快速热退火工艺形成硅化物,所述金属包括钛、钴、钽中的一种或多种;本实施例具体为金属钴。
步骤S14、通过钨栓18工艺淀积金属钨,通过干法刻蚀方法去除掉接触孔以外的金属钨,在源区接触孔14、栅极区域接触孔15和栅极6与源极5之间并联可调电阻11结构的接触孔中形成钨栓18。
步骤S15、在钨栓18上方通过物理气相淀积铝铜化合物19,通过光刻工艺使用光刻胶定义源极5金属导线图形、栅极金属导线21图形和栅极6与源极5之间并联可调电阻11结构控制极图形;通过干法蚀刻得到源极5、栅极6、栅极6与源极5之间并联可调电阻控制极4;
所述源极5金属导线图形位于源区10上方;
所述栅极金属导线21图形通过围绕着元胞区边缘走线将栅极6经由栅极区域接触孔15互联至源区10无源区10接触孔的区域形成栅极金属导线21;
所述栅极6与源极5之间并联可调电阻控制极4图形通过该可调电阻的栅极端接触孔16与独立的栅极6与源极5之间并联可调电阻11结构连接,同时在每个独立的栅极6与源极5之间并联可调电阻11与栅极金属导线21之间引出独立的栅极6与源极5之间并联可调电阻控制极4,该控制极数量与设计的独立的栅极6与源极5之间并联可调电阻11数量一一对应。
步骤S15中所述栅极6与源极5之间并联可调电阻控制极4图形会将在可调电阻栅极端接触孔16的金属导线与独立的栅极6与源极5之间并联可调电阻控制极4金属导线交汇点之后的用于与栅极金属导线21互联的金属导线局部线宽设计为1um。
步骤S16、淀积钝化层20,通过光刻工艺使用光刻胶定义源极5金属接触区、栅极6金属接触区和栅极6与源极5之间并联可调电阻控制极4接触区;
通过干法蚀刻得到源极5金属接触区、栅极6金属接触区、栅极6与源极5之间并联可调电阻控制极4接触区;栅极6与源极5之间并联可调电阻控制极4接触区数量与独立栅极6与源极5之间并联可调电阻11数量一一对应;所述钝化层20为氮化硅。
最终得到一种栅极与源极并联可调电阻型超结型功率器件。
实施例3
请参阅图1和图2,本发明实施例中,一种栅极与源极并联可调电阻型超结功率器件的制造方法,包括如下步骤:
步骤S1、在硅衬底1上表面化学气相沉积一层本征外延层2;通过离子注入在所述本征外延层2掺杂三价元素;所述三价元素包括硼,本实施例具体为硼元素。
步骤S2、在所述本征外延层2的上表面沉积掩膜,所述掩膜的成分为光刻胶或光刻胶与其它绝缘体掩模组成的多层组合结构。
步骤S3、通过光刻工艺在掩膜上定义柱状掺杂区3图形;通过离子注入在所述本征外延层2掺杂五价元素,所述五价元素包括砷、磷,本实施例具体为磷元素;然后通过干蚀刻搭配湿法蚀刻去除掩膜;
步骤S4、重复步骤S1-S3至本征外延层2总的厚度为55um;步骤S4中每重复步骤S1-S3均按照器件设计需求单独定义三价元素和五价元素离子注入的工艺条件。
步骤S5、通过热氧化方法对生长栅极氧化层7,然后通过低压化学气相淀积原位掺杂的栅极多晶硅8;所述栅极氧化层7的厚度为90nm;所述栅极多晶硅8的厚度为650nm。
步骤S6、在所述栅极多晶硅8上面沉积掩膜,所述掩膜的成分为光刻胶或光刻胶与其它绝缘体掩模组成的多层组合结构;通过光刻工艺在掩膜上定义栅极6图形,然后通过干法蚀刻形成栅极6结构;然后通过干蚀刻搭配湿法蚀刻去除掩膜;
定义元胞区金属氧化物场效应晶体管的栅极6图形和栅极6与源极5之间并联可调电阻11结构的图形,所述栅极6与源极5之间并联可调电阻11结构的可调范围介于7千欧姆与10千欧姆间,通过设计独立的7um线宽的栅极6与源极5之间并联可调电阻11图形,平行并联2个独立的栅极6与源极5之间并联可调电阻11来实现。
步骤S7、在本征外延层2上表面通过离子注入五价元素杂质得到体区9,所述五价元素包括砷、磷,本实施例具体为磷元素,同时离子注入到多晶硅上,然后通过热工艺对体区9的杂质进行激活;
步骤S8、在本征外延层2上表面沉积掩膜,所述掩膜的成分为光刻胶或光刻胶与其它绝缘体掩模组成的多层组合结构;通过光刻工艺在掩膜上定义源区10图形,通过离子注入三价元素杂质在体区9上表面得到源极5,所述三价元素包括硼,本实施例具体为硼元素,同时用掩膜阻挡多晶硅电阻结构区域被离子注入三价元素杂质,然后通过干蚀刻搭配湿法蚀刻去除掩膜,再通过热工艺对源区10的杂质进行激活;
步骤S9、在本征外延层2上表面通过离子注入五价元素得到高掺杂的欧姆接触区13,所述五价元素包括砷、磷,同时离子注入三价元素到多晶硅电阻结构区域,最终得到元胞结构和栅极6与源极5之间并联可调电阻11结构。
步骤S10、通过化学气相淀积形成二氧化硅介质层12;
步骤S11、通过光刻工艺使用光刻胶定义源区接触孔14图形、栅极区域接触孔15图形和栅极6与源极5之间并联可调电阻11结构的栅极端接触孔16图形和源极端接触孔17图形;所述源区接触孔14图形位于源极5和体区9的上方,用于将源极5和体区9一同引出;所述栅极区域接触孔15图形位于栅极多晶硅8的上方,同时在源区10中定义没有源区接触孔14的区域用于放置栅极金属导线21;所述栅极6与源极5之间并联可调电阻11结构的栅极端接触孔16和源极端接触孔17位于栅极6与源极5之间并联可调电阻11结构的上方,用于栅极6和源极5与栅极6与源极5之间并联可调电阻11结构并联;
步骤S12、通过干法蚀刻二氧化硅介质层12,得到源区接触孔14、栅极区域接触孔15和栅极6与源极5之间并联可调电阻11结构的栅极端接触孔16和源极端接触孔17;
步骤S13、通过物理气相淀积工艺淀积金属作为粘合层,淀积金属氮化物作为阻挡层,再利用快速热退火工艺形成硅化物,所述金属包括钛、钴、钽中的一种或多种;本实施例具体为金属钛。
步骤S14、通过钨栓18工艺淀积金属钨,通过干法刻蚀方法去除掉接触孔以外的金属钨,在源区接触孔14、栅极区域接触孔15和栅极6与源极5之间并联可调电阻11结构的接触孔中形成钨栓18。
步骤S15、在钨栓18上方通过物理气相淀积铝铜化合物19,通过光刻工艺使用光刻胶定义源极5金属导线图形、栅极金属导线21图形和栅极6与源极5之间并联可调电阻11结构控制极图形;通过干法蚀刻得到源极5、栅极6、栅极6与源极5之间并联可调电阻控制极4;
所述源极5金属导线图形位于源区10上方;
所述栅极金属导线21图形通过围绕着元胞区边缘走线将栅极6经由栅极区域接触孔15互联至源区10无源区10接触孔的区域形成栅极金属导线21;
所述栅极6与源极5之间并联可调电阻控制极4图形通过该可调电阻的栅极端接触孔16与独立的栅极6与源极5之间并联可调电阻11结构连接,同时在每个独立的栅极6与源极5之间并联可调电阻11与栅极金属导线21之间引出独立的栅极6与源极5之间并联可调电阻控制极4,该控制极数量与设计的独立的栅极6与源极5之间并联可调电阻11数量一一对应。
步骤S15中所述栅极6与源极5之间并联可调电阻控制极4图形会将在可调电阻栅极端接触孔16的金属导线与独立的栅极6与源极5之间并联可调电阻控制极4金属导线交汇点之后的用于与栅极金属导线21互联的金属导线局部线宽设计为2um。
步骤S16、淀积钝化层20,通过光刻工艺使用光刻胶定义源极5金属接触区、栅极6金属接触区和栅极6与源极5之间并联可调电阻控制极4接触区;
通过干法蚀刻得到源极5金属接触区、栅极6金属接触区、栅极6与源极5之间并联可调电阻控制极4接触区;栅极6与源极5之间并联可调电阻控制极4接触区数量与独立栅极6与源极5之间并联可调电阻11数量一一对应;所述钝化层20为二氧化硅。
最终得到一种栅极与源极并联可调电阻型超结型功率器件。
本发明无需在电路应用中额外增加并联在栅极和源极之间的电阻,减少成本支出提高器件集成度和稳定性;同时无需就不同的栅极与源极之间并联电阻需求而变更栅极、接触通孔、金属导线层的版图和重新制作掩模版并流片,减少成本支出;通过栅极与源极之间并联电阻控制极分别对每个独立的栅极与源极之间并联电阻进行开路控制以实现对栅极与源极之间并联电阻的调整;还能够提高器件在应用时的通用性。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (6)

1.一种栅极与源极并联可调电阻型超结功率器件的制造方法,其特征在于,包括如下步骤:
A、超结型功率器件元胞结构和栅极、源极之间并联可调电阻结构的制备:
步骤S1、在硅衬底上表面化学气相沉积一层本征外延层;通过离子注入在所述本征外延层掺杂五价元素;
步骤S2、在所述本征外延层的上表面沉积掩膜,所述掩膜的成分为光刻胶或光刻胶与其它绝缘体掩模组成的多层组合结构;
步骤S3、通过光刻工艺在掩膜上定义柱状掺杂区图形;通过离子注入在所述本征外延层掺杂三价元素;然后通过干蚀刻搭配湿法蚀刻去除掩膜;
步骤S4、重复步骤S1-S3至本征外延层总的厚度为30um-70um;
步骤S5、通过热氧化方法生长栅极氧化层,然后通过低压化学气相淀积原位掺杂的栅极多晶硅;
步骤S6、在所述栅极多晶硅上面沉积掩膜,所述掩膜的成分为光刻胶或光刻胶与其它绝缘体掩模组成的多层组合结构;通过光刻工艺在掩膜上定义栅极图形,然后通过干法蚀刻形成栅极结构;然后通过干蚀刻搭配湿法蚀刻去除掩膜;
定义元胞区金属氧化物场效应晶体管的栅极图形和栅极与源极之间并联可调电阻结构的图形,所述栅极与源极之间并联可调电阻结构的可调范围介于5千欧姆与20千欧姆间,通过设计独立的1-10um线宽的栅极与源极之间并联可调电阻图形,平行并联2个到5个独立的栅极与源极之间并联可调电阻来实现;
步骤S7、在本征外延层上表面通过离子注入三价元素杂质得到体区,同时离子注入到多晶硅上,然后通过热工艺对体区的杂质进行激活;
步骤S8、在本征外延层上表面沉积掩膜,所述掩膜的成分为光刻胶或光刻胶与其它绝缘体掩模组成的多层组合结构;通过光刻工艺在掩膜上定义源区图形,通过离子注入五价元素杂质在体区上表面得到源极,同时用掩膜阻挡多晶硅电阻结构区域被离子注入五价元素杂质,然后通过干蚀刻搭配湿法蚀刻去除掩膜,再通过热工艺对源区的杂质进行激活;
步骤S9、在本征外延层上表面通过离子注入三价元素得到高掺杂的欧姆接触区,同时离子注入三价元素到多晶硅电阻结构区域,最终得到元胞结构和栅极与源极之间并联可调电阻结构;
B、接触孔的制备;
步骤S10、通过化学气相淀积形成二氧化硅介质层;
步骤S11、通过光刻工艺使用光刻胶定义源区接触孔图形、栅极区域接触孔图形和栅极与源极之间并联可调电阻结构的栅极端接触孔图形和源极端接触孔图形;所述源区接触孔图形位于源极和体区的上方,用于将源极和体区一同引出;所述栅极区域接触孔图形位于栅极多晶硅的上方,同时在源区中定义没有源区接触孔的区域用于放置栅极金属导线;所述栅极与源极之间并联可调电阻结构的栅极端接触孔和源极端接触孔位于栅极与源极之间并联可调电阻结构的上方,用于栅极和源极与栅极与源极之间并联可调电阻结构并联;
步骤S12、通过干法蚀刻二氧化硅介质层,得到源区接触孔、栅极区域接触孔和栅极与源极之间并联可调电阻结构的栅极端接触孔和源极端接触孔;
步骤S13、通过物理气相淀积工艺淀积金属作为粘合层,淀积金属氮化物作为阻挡层,再利用快速热退火工艺形成硅化物,所述金属包括钛、钴、钽中的一种或多种;
步骤S14、通过钨栓工艺淀积金属钨,通过干法刻蚀方法去除掉接触孔以外的金属钨,在源区接触孔、栅极区域接触孔和栅极与源极之间并联可调电阻结构的接触孔中形成钨栓;
C、金属导线的制备;
步骤S15、在钨栓上方通过物理气相淀积铝铜化合物,通过光刻工艺使用光刻胶定义源极金属导线图形、栅极金属导线图形和栅极与源极之间并联可调电阻控制极图形;通过干法蚀刻得到源极、栅极、栅极与源极之间并联可调电阻控制极;
所述源极金属导线图形位于源区上方;
所述栅极金属导线图形通过围绕着元胞区边缘走线将栅极经由栅极区域接触孔互联至源区无源区接触孔的区域形成栅极金属导线;
所述栅极与源极之间并联可调电阻控制极图形通过该可调电阻的栅极端接触孔与独立的栅极与源极之间并联可调电阻结构连接,同时在每个独立的栅极与源极之间并联可调电阻与栅极金属导线之间引出独立的栅极与源极之间并联可调电阻控制极,该控制极数量与设计的独立的栅极与源极之间并联可调电阻数量一一对应;
步骤S15中所述栅极与源极之间并联可调电阻控制极图形会将在可调电阻栅极端接触孔的金属导线与独立的栅极与源极之间并联可调电阻控制极金属导线交汇点之后的用于与栅极金属导线互联的金属导线局部线宽设计为1~2um;
D、钝化层的制备;
通过栅极与源极之间并联电阻控制极分别对每个独立的栅极与源极之间并联电阻进行开路控制以实现对栅极与源极之间并联电阻的调整。
2.根据权利要求1所述的栅极与源极并联可调电阻型超结功率器件的制造方法,其特征在于,步骤S1、S3、S7、S8和S9中所述三价元素包括硼元素,所述五价元素包括砷、磷。
3.根据权利要求1所述的栅极与源极并联可调电阻型超结功率器件的制造方法,其特征在于,步骤S4中每重复步骤S1-S3均按照器件设计需求单独定义三价元素和五价元素离子注入的工艺条件至本征外延层总的厚度为30um-70um。
4.根据权利要求1所述的栅极与源极并联可调电阻型超结功率器件的制造方法,其特征在于,步骤S5中所述栅极氧化层的厚度为50~200nm;步骤S5中所述栅极多晶硅的厚度为500~1000nm。
5.根据权利要求1所述的栅极与源极并联可调电阻型超结功率器件的制造方法,其特征在于,步骤D具体包括如下步骤:
步骤S16、淀积钝化层,通过光刻工艺使用光刻胶定义源极金属接触区、栅极金属接触区和栅极与源极之间并联可调电阻控制极接触区;
通过干法蚀刻得到源极金属接触区、栅极金属接触区、栅极与源极之间并联可调电阻控制极接触区;栅极与源极之间并联可调电阻控制极接触区数量与独立栅极与源极之间并联可调电阻数量一一对应;
所述钝化层包括氮化硅或二氧化硅。
6.一种栅极与源极并联可调电阻的超结型功率器件,其特征在于,由权利要求1-5任一项所述的栅极与源极并联可调电阻型超结功率器件的制造方法制备得到。
CN202110918978.6A 2021-08-11 2021-08-11 栅极与源极并联可调电阻型超结功率器件及其制造方法 Active CN113644116B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202110918978.6A CN113644116B (zh) 2021-08-11 2021-08-11 栅极与源极并联可调电阻型超结功率器件及其制造方法
PCT/CN2022/109826 WO2023016304A1 (zh) 2021-08-11 2022-08-03 栅极与源极并联可调电阻型超结功率器件及其制造方法
EP22855287.3A EP4386861A1 (en) 2021-08-11 2022-08-03 Super-junction power device having adjustable resistor connected in parallel between gate and source, and manufacturing method therefor
US18/432,078 US20240178275A1 (en) 2021-08-11 2024-02-05 Super-junction power device having adjustable resistors connected in parallel between gates and sources and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110918978.6A CN113644116B (zh) 2021-08-11 2021-08-11 栅极与源极并联可调电阻型超结功率器件及其制造方法

Publications (2)

Publication Number Publication Date
CN113644116A CN113644116A (zh) 2021-11-12
CN113644116B true CN113644116B (zh) 2023-06-02

Family

ID=78420809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110918978.6A Active CN113644116B (zh) 2021-08-11 2021-08-11 栅极与源极并联可调电阻型超结功率器件及其制造方法

Country Status (4)

Country Link
US (1) US20240178275A1 (zh)
EP (1) EP4386861A1 (zh)
CN (1) CN113644116B (zh)
WO (1) WO2023016304A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644116B (zh) * 2021-08-11 2023-06-02 重庆万国半导体科技有限公司 栅极与源极并联可调电阻型超结功率器件及其制造方法
CN116779662A (zh) * 2023-08-22 2023-09-19 深圳芯能半导体技术有限公司 一种抗静电的igbt芯片及其制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825431B2 (en) * 2007-12-31 2010-11-02 Alpha & Omega Semicondictor, Ltd. Reduced mask configuration for power MOSFETs with electrostatic discharge (ESD) circuit protection
US8164114B2 (en) * 2009-05-18 2012-04-24 Force Mos Technology Co., Ltd. Semiconductor devices with gate-source ESD diode and gate-drain clamp diode
CN102842606B (zh) * 2012-08-24 2016-04-20 中国电力科学研究院 一种igbt芯片可变栅内阻及其设计方法
CN113035701B (zh) * 2021-03-12 2024-05-07 重庆万国半导体科技有限公司 一种栅极电阻可调型超结功率器件及其制造方法
CN113644116B (zh) * 2021-08-11 2023-06-02 重庆万国半导体科技有限公司 栅极与源极并联可调电阻型超结功率器件及其制造方法

Also Published As

Publication number Publication date
CN113644116A (zh) 2021-11-12
WO2023016304A1 (zh) 2023-02-16
US20240178275A1 (en) 2024-05-30
EP4386861A1 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
CN113035701B (zh) 一种栅极电阻可调型超结功率器件及其制造方法
CN113644116B (zh) 栅极与源极并联可调电阻型超结功率器件及其制造方法
TW583748B (en) The termination structure of DMOS device
JPS607764A (ja) 半導体装置
JPH09505689A (ja) セル型mosトランジスタアレイ用のダイヤモンド形状ゲートメッシュ
WO2022100412A1 (zh) 一种沟槽功率器件及其制造方法
CN111540685A (zh) 超级结器件的制造方法
WO2023016303A1 (zh) 一种集成电感的沟槽功率器件及其制造方法
CN112382613B (zh) 一种沟槽功率器件与源极电容集成及其制造方法
CN113035840A (zh) 一种sgt mosfet器件及其接触孔的制造方法
JP4894097B2 (ja) 半導体装置
CN111986997A (zh) 超级结器件的制造方法
US5801065A (en) Structure and fabrication of semiconductor device having merged resistive/capacitive plate and/or surface layer that provides ESD protection
US6162584A (en) Method of fabricating polysilicon structures with different resistance values for gate electrodes, resistors and capacitor plates in an integrated circuit
KR100280553B1 (ko) 반도체 장치 및 그 제조방법
CN110729196A (zh) 一种降低沟槽型金属氧化物半导体导通电阻的方法
US10720498B2 (en) Semiconductor device structure and method of manufacture
KR0157119B1 (ko) 반도체 장치 및 그 제조방법
TWI231571B (en) A power MOSFET structure and method thereof
CN114267716A (zh) 半导体器件及其制备方法
KR950008794B1 (ko) 캐패시터 제조방법
JPS5827340A (ja) 半導体集積回路装置の製造法
CN118231248A (zh) 一种低钳位电压单向tvs器件结构及其制备方法
CN112133743A (zh) 可控硅结构及其制造方法
KR930008870B1 (ko) 박막형 다결정 실리콘층들간의 전기적인 접속장치 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant