CN112195503B - 一种碳热还原法合成大长径比碳化铪晶须的方法 - Google Patents

一种碳热还原法合成大长径比碳化铪晶须的方法 Download PDF

Info

Publication number
CN112195503B
CN112195503B CN202011015062.1A CN202011015062A CN112195503B CN 112195503 B CN112195503 B CN 112195503B CN 202011015062 A CN202011015062 A CN 202011015062A CN 112195503 B CN112195503 B CN 112195503B
Authority
CN
China
Prior art keywords
hfc
diameter ratio
whiskers
length
whisker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011015062.1A
Other languages
English (en)
Other versions
CN112195503A (zh
Inventor
张守阳
郭瑶
张磊磊
宋强
何松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202011015062.1A priority Critical patent/CN112195503B/zh
Publication of CN112195503A publication Critical patent/CN112195503A/zh
Application granted granted Critical
Publication of CN112195503B publication Critical patent/CN112195503B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/02Production of homogeneous polycrystalline material with defined structure directly from the solid state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/62Whiskers or needles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种碳热还原法合成大长径比碳化铪晶须的方法,采用碳热还原法,不借助催化剂,无金属杂质引入,得到的HfC晶须纯度较高、长径比大,文献报道的HfC晶须的长径比分布在5~180,而本发明制备的HfC晶须的长径比为50~500。与文献报道的HfC晶须相比,本发明制备的HfC晶须的最大长径比提高了178%。HfC晶须既可作为增强体材料制备多孔HfC晶须预制体,也可作为第二增强相应用于超高温陶瓷基或碳基复合材料,还可作为功能材料用于阴极场发射器,具有广泛的应用前景。碳热还原法具有工艺过程简单,参数易于控制,对设备要求低,成本低,可靠性和重复性好,易于实现规模化生产HfC晶须的优势。

Description

一种碳热还原法合成大长径比碳化铪晶须的方法
技术领域
本发明属于晶须材料制备技术,涉及一种碳热还原法合成大长径比碳化铪(HfC)晶须的方法。
背景技术
HfC作为超高温陶瓷,具有超高熔点、高硬度、良好的导电、导热、力学性能和耐高温、耐腐蚀性等诸多优异的性能,在抗氧化、抗烧蚀涂层及基体改性高温结构复合材料等方面发挥了有效作用,在航空航天领域有良好的应用前景。HfC晶须除了兼具HfC陶瓷的优良性能外,还具备一维材料的优异的力学性能和独特的几何特性。这些性质使其既可作为增强体材料制备多孔HfC晶须预制体,也可作为第二增强相引入超高温陶瓷基或碳基复合材料增强其力学性能,还可引入抗烧蚀涂层发挥增韧作用,减少涂层开裂,提高涂层的抗烧蚀性能。此外,HfC晶须作为功能材料,在阴极场发射器具有更大的优势和潜力。
目前,有关HfC晶须的制备方法报道较少,主要的制备方法为化学气相沉积法。
文献1“M.Futamoto,I.Yuito and U.Kawabe.Hafnium carbide and nitridewhiskers growth by chemical vapor deposition.Journal of Crystal Growth,1983,61:69-74.”采用Ni作为催化剂在HfCl4-CH4-H2反应体系,通过在相对较低温度区域(1000-1450℃)中采用化学气相沉积法生长了HfC晶须。该文献制备的HfC晶须的最大直径为25μm,最大长度为4.5mm,最大长径比为180。
文献2“S.Motojima,Y.Kawashima.Chemical vapour growth of HfC whiskersand their morphology.Journal of Materials Science,1996,31:3697-3700.”在金属催化剂存在下,由HfCl4-CH4-H2-Ar反应体系通过化学气相沉积法制备HfC晶须,研究了不同金属催化剂对晶须生长的影响,发现使用钴作为催化剂,在1250℃时获得了有球形尖端的HfC晶须,其球形尖端的形成是由于钴的存在。HfC晶须直径分布在3~5μm,长度分布在60~170μm,长径比分布在20~57,最大长径比为57。
文献3“Song Tian,Hejun Li,Yulei Zhang,et al.The effects of the elementoxygen on hafnium carbide whiskers synthesized by CVD.Materials Chemistry andPhysics,2013,140:323-329.”在含有少量氧杂质的反应性气氛中,采用HfCl4-C3H6-H2-Ar反应体系,通过Ni(NO3)2-CH3CH2OH催化剂辅助真空化学气相沉积工艺在石墨基底上获得了HfC晶须。所得的HfC晶须直径为2~10μm,晶须的长度约为50μm,长径比分布在5~25,最大长径比约为25。
综合分析,化学气相沉积工艺制备HfC晶须均需要金属催化剂,而催化剂的引入降低了晶须的纯度。而且,该工艺参数调控复杂,对设备要求相对较高,周期较长,不利于批量生产。另外,从上述文献可以看出,化学气相沉积法制备的HfC晶须长径比分布在5~180。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种碳热还原法合成大长径比碳化铪晶须的方法,制备的HfC晶须长径比分布在50~500,且无催化剂引入,晶须纯度较高。同时,制备工艺简单,可靠性和重复性好,周期较短。
技术方案
一种碳热还原法合成大长径比碳化铪晶须的方法,其特征在于步骤如下:
步骤1:将活性炭C、氧化铪HfO2、氟化钠NaF和氯化铵NH4Cl粉末,放入陶瓷研钵中研磨混合,过筛粉体均匀铺入石墨坩埚;所述C∶HfO2∶NaF∶NH4Cl的摩尔比为1∶0.5~1.5∶0.5~2∶0.4~1.2;
步骤2:将石墨坩埚置于横卧式管式电阻炉中,然后通入惰性气体Ar作为保护气,以3~5℃/min升温速率升至1500~1700℃,保温1~4h;以3~5℃/min降温速率降至室温后,取出石墨坩埚即得到HfC晶须。
所述混合粉末通过100目过筛。
所述步骤1的氯化铵NH4Cl采用氯化钠NaCl所替代。
有益效果
本发明提出的一种碳热还原法合成大长径比碳化铪晶须的方法,碳热还原法具有工艺过程简单,参数易于控制,对设备要求低,成本低,可靠性和重复性好,易于实现规模化生产HfC晶须的优势。本发明工艺方法不借助催化剂,无金属杂质引入,得到的HfC晶须纯度较高、长径比大,文献报道的HfC晶须的长径比分布在5~180,而本发明制备的HfC晶须的长径比为50~500。与文献报道的HfC晶须相比,本发明制备的HfC晶须的最大长径比提高了178%。HfC晶须既可作为增强体材料制备多孔HfC晶须预制体,也可作为第二增强相应用于超高温陶瓷基或碳基复合材料,还可作为功能材料用于阴极场发射器,具有广泛的应用前景。
附图说明
图1为实施例1合成的HfC晶须的X射线衍射谱图
图2为实施例1合成的HfC晶须的低倍扫描电子显微镜图
图3为实施例1合成的HfC晶须的高倍扫描电子显微镜图
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1:
步骤1:按照摩尔比C:HfO2:NaF:NH4Cl=1:0.5:1:1.2配制原料,放入陶瓷研钵中研磨使其混合均匀。混合粉末通过100目过筛,过筛粉体均匀铺入石墨坩埚。
步骤2:将步骤2中盛有混合粉末的石墨坩埚,置于横卧式管式电阻炉中,然后通入惰性气体Ar作为保护气,以3℃/min升温速率升至1600℃,保温2h。以3℃/min降温速率降至室温后,取出石墨坩埚即可得到HfC晶须。
采用实施例1成功制备出了HfC晶须,该HfC晶须的X射线衍射谱图见图1,扫描电子显微镜图见图2、3。该HfC晶须直径为1~2μm,晶须的长度约为200~500μm,长径比约为100~500,且晶须纯度较高,从图3可以看出,晶须无金属球形尖端。
实施例2:
步骤1:按照摩尔比C:HfO2:NaF:NH4Cl=1:0.8:2:0.4配制原料,放入陶瓷研钵中研磨使其混合均匀。混合粉末通过100目过筛,过筛粉体均匀铺入石墨坩埚。
步骤2:将步骤2中盛有混合粉末的石墨坩埚,置于横卧式管式电阻炉中,然后通入惰性气体Ar作为保护气,以3℃/min升温速率升至1700℃,保温1h。以3℃/min降温速率降至室温后,取出石墨坩埚即可得到HfC晶须。
实例2制备的HfC晶须长径比为75~400。
实施例3:
步骤1:按照摩尔比C:HfO2:NaF:NaCl=1:1.2:0.5:1配制原料,放入陶瓷研钵中研磨使其混合均匀。混合粉末通过100目过筛,过筛粉体均匀铺入石墨坩埚。
步骤2:将步骤2中盛有混合粉末的石墨坩埚,置于横卧式管式电阻炉中,然后通入惰性气体Ar作为保护气,以5℃/min升温速率升至1500℃,保温3h。以4℃/min降温速率降至室温后,取出石墨坩埚即可得到HfC晶须。
实例3制备的HfC晶须长径比为70~250。
实施例4:
步骤1:按照摩尔比C:HfO2:NaF:NaCl=1:1.5:1.5:0.8配制原料,放入陶瓷研钵中研磨使其混合均匀。混合粉末通过100目过筛,过筛粉体均匀铺入石墨坩埚。
步骤2:将步骤2中盛有混合粉末的石墨坩埚,置于横卧式管式电阻炉中,然后通入惰性气体Ar作为保护气,以5℃/min升温速率升至1500℃,保温4h。以4℃/min降温速率降至室温后,取出石墨坩埚即可得到HfC晶须。
实例4制备的HfC晶须长径比为50~200。

Claims (3)

1.一种碳热还原法合成大长径比碳化铪晶须的方法,其特征在于步骤如下:
步骤1:将活性炭C、氧化铪 HfO2、氟化钠NaF和氯化铵NH4Cl粉末,放入陶瓷研钵中研磨混合,过筛粉体均匀铺入石墨坩埚;所述C∶HfO2∶NaF∶NH4Cl的摩尔比为1∶0.5~1.5∶ 0.5~2∶0.4~1.2;
步骤2:将石墨坩埚置于横卧式管式电阻炉中,然后通入惰性气体Ar作为保护气,以3~5℃/min升温速率升至1500~1700℃,保温1~4h;以3~5℃/min降温速率降至室温后,取出石墨坩埚即得到长径比为50~500的HfC晶须。
2.根据权利要求1所述碳热还原法合成大长径比碳化铪晶须的方法,其特征在于:混合粉末通过100目过筛。
3.根据权利要求1所述碳热还原法合成大长径比碳化铪晶须的方法,其特征在于:所述步骤1的氯化铵NH4Cl采用氯化钠NaCl所替代。
CN202011015062.1A 2020-09-24 2020-09-24 一种碳热还原法合成大长径比碳化铪晶须的方法 Active CN112195503B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011015062.1A CN112195503B (zh) 2020-09-24 2020-09-24 一种碳热还原法合成大长径比碳化铪晶须的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011015062.1A CN112195503B (zh) 2020-09-24 2020-09-24 一种碳热还原法合成大长径比碳化铪晶须的方法

Publications (2)

Publication Number Publication Date
CN112195503A CN112195503A (zh) 2021-01-08
CN112195503B true CN112195503B (zh) 2022-07-26

Family

ID=74016180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011015062.1A Active CN112195503B (zh) 2020-09-24 2020-09-24 一种碳热还原法合成大长径比碳化铪晶须的方法

Country Status (1)

Country Link
CN (1) CN112195503B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959905A (zh) * 2022-03-07 2022-08-30 西北工业大学 一种无催化剂合成碳化钽纳米晶须及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105780123A (zh) * 2016-02-04 2016-07-20 武汉科技大学 一种碳化铪纳米晶须及其制备方法
CN106882977A (zh) * 2017-02-22 2017-06-23 西北工业大学 碳化锆晶须改性碳/碳复合材料的制备方法
CN108298540A (zh) * 2018-01-22 2018-07-20 浙江理工大学 一种碳化钛纳米线的制备方法
CN110042468A (zh) * 2019-04-08 2019-07-23 西北工业大学 一种微米碳化锆晶须的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120321892A1 (en) * 2011-06-17 2012-12-20 Babcock & Wilcox Technical Services Y-12, Llc Titanium-Group Nano-Whiskers and Method of Production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105780123A (zh) * 2016-02-04 2016-07-20 武汉科技大学 一种碳化铪纳米晶须及其制备方法
CN106882977A (zh) * 2017-02-22 2017-06-23 西北工业大学 碳化锆晶须改性碳/碳复合材料的制备方法
CN108298540A (zh) * 2018-01-22 2018-07-20 浙江理工大学 一种碳化钛纳米线的制备方法
CN110042468A (zh) * 2019-04-08 2019-07-23 西北工业大学 一种微米碳化锆晶须的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Synthesis and Growth Mechanism of TiC Whiskers by Carbothermal Reduction of Titania/Microcrystalline Cellulose;Xiong, Huiwen等;《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》;20150630;第98卷(第6期);第1951-1958页 *

Also Published As

Publication number Publication date
CN112195503A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
CN103964883B (zh) 一维纳米纤维增强增韧碳陶复合材料薄壁或楔形构件的制备方法
CN106006644A (zh) 一种制备纳米碳化硼粉末的方法
CN110496969B (zh) 纳米钨粉及其制备方法
CN115058885B (zh) 一种碳纤维布表面定向SiC纳米线阵列及制备方法
CN112195503B (zh) 一种碳热还原法合成大长径比碳化铪晶须的方法
CN115259900B (zh) 一种极长(TaxHf1-x)C超高温陶瓷固溶体纳米线及制备方法
CN107675260A (zh) 一种AlN‑SiC固溶体晶须及其制备方法
CN108560058B (zh) 一种碳化锆晶须的制备方法
CN113336564A (zh) 一种高效制备连续纤维增强碳化硅陶瓷基复合材料的方法
CN113279249B (zh) 一种碳纤维表面原位自生弥散分布碳化物晶须及制备方法
CN111943678A (zh) 一种HfxZr1-xC陶瓷固溶体纳米线及制备方法
CN104446501A (zh) 一种氮化硅陶瓷纤维的制备方法
CN112794330A (zh) 一种碳化硼纳米线的制备方法
Yuan et al. Microstructure and thermal stability of low-oxygen SiC fibers prepared by an economical chemical vapor curing method
JP2004107152A (ja) 金属性セラミック粉末及びその製造方法
CN114032607B (zh) 一种采用碳化锆籽晶制备碳化锆晶须的方法
CN105780123A (zh) 一种碳化铪纳米晶须及其制备方法
CN113353899B (zh) 一种氮化硼纳米管的制备方法、氮化硼纳米管及其应用
CN109957859B (zh) 一种碳化硅纤维及其制备方法
CN109825901B (zh) 铝、锆共掺杂的碳化硅/氮化硼纤维及其制备方法
Wang et al. Freeze casting fabrication of porous ZrC/SiC decorated with SiC whiskers using polymeric precursors
CN108622911B (zh) 一种超细二硼化锆-碳化硅复合粉体及其制备方法
CN111549378A (zh) 一种采用化学气相沉积法制备碳化锆晶须的方法
CN113088923A (zh) 一种高长径比碳化锆纳米线的制备方法
CN114585777A (zh) 用于制备碳化硅粉末和单晶碳化硅的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant