CN111905818A - 一种mof基二维超薄电催化剂及其制备方法与应用 - Google Patents

一种mof基二维超薄电催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN111905818A
CN111905818A CN202010669488.2A CN202010669488A CN111905818A CN 111905818 A CN111905818 A CN 111905818A CN 202010669488 A CN202010669488 A CN 202010669488A CN 111905818 A CN111905818 A CN 111905818A
Authority
CN
China
Prior art keywords
mof
electrocatalyst
salt
dimensional ultrathin
ultrasonic treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010669488.2A
Other languages
English (en)
Inventor
吴小帅
郭春显
史转转
李长明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University of Science and Technology
Original Assignee
Suzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University of Science and Technology filed Critical Suzhou University of Science and Technology
Priority to CN202010669488.2A priority Critical patent/CN111905818A/zh
Publication of CN111905818A publication Critical patent/CN111905818A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种MOF基二维超薄电催化剂及其制备方法,包括以下步骤:S1.将有机配体苯二甲酸溶于有机溶剂中,加入二价镍盐,搅拌30‑60min;再加入三乙胺,继续搅拌30‑60min;对上述溶液进行超声处理7‑10h,且每隔两小时换一次水;超声完毕后使用无水乙醇清洗沉淀;S2.将步骤S1得到的沉淀分散于无水乙醇中,加入铁盐、钴盐或锰盐,控制溶液中铁盐、钴盐或锰盐的浓度为5‑30mM,再进行超声处理;超声完毕后,使溶液在搅拌的条件下反应6‑10h,无水乙醇洗涤沉淀,即可得到MOF基二维超薄电催化剂。本发明还提供了所述MOF基二维超薄电催化剂在电解水中的应用。本发明的MOF基二维超薄电催化剂,具有良好的催化特性。

Description

一种MOF基二维超薄电催化剂及其制备方法与应用
技术领域
本发明涉及电催化材料合成技术领域,具体涉及一种基于超薄MOF纳米片的表面原位修饰合成电催化剂,其制备方法及其在电解水中的应用。
背景技术
随着全球环境污染及能源匮乏等问题的逐渐加剧,寻求高效的清洁能源代替现有的化石能源是目前的研究重点。煤炭石油天然气等传统化石能源的大量消耗不仅带来能源储量的急剧减低,还引发了严重的环境污染问题。因此,开发新型氢能源等新型清洁低碳的能源对于缓解环境污染问题、解决目前所面临的的能源危机并实现能源的可持续发展具有非常重大的意义。
目前,利用催化剂电解水制氢被认为是实现上述目标的有效途径之一。理论上电解水是生产氢气的有效策略,然而在工业上的应用很大程度上受限于贵金属催化剂,因此开发一种高效、稳定的非贵金属电催化剂取代现有的贵金属催化剂成为了研究热点,高效的电极催化剂对于实绿色可持续能源转化和储存至关重要。由金属离子与有机配体通过配位络合而成的具有有序拓扑结构的金属有机骨架材料(MOFs)具有周期性的多孔结构、高比表面积,结构可调控以及结构的多样性等特点,作为电催化剂在电催化领域表现出了其独特的优势。然而,MOFs类材料目前所面临的问题如导电性较差,结构易于坍塌等依然有待解决。
发明内容
本发明要解决的技术问题是提供一种MOF基二维超薄电催化剂,该电催化剂具有良好的催化特性。
为了解决上述技术问题,本发明提供了如下的技术方案:
本发明第一方面提供了一种MOF基二维超薄电催化剂的制备方法,包括以下步骤:
S1.将有机配体苯二甲酸溶于有机溶剂中,加入二价镍盐,搅拌30-60min;再加入三乙胺,继续搅拌30-60min;对上述溶液进行超声处理7-10h,且每隔两小时换一次水;超声完毕后使用无水乙醇清洗沉淀;
S2.将步骤S1得到的沉淀分散于无水乙醇中,加入铁盐、钴盐或锰盐,控制溶液中铁盐、钴盐或锰盐的浓度为5-30mM,再进行超声处理;超声完毕后,使溶液在搅拌的条件下反应6-10h,无水乙醇洗涤沉淀,即可得到MOF基二维超薄电催化剂。
进一步地,步骤S1中,所述有机溶剂为N,N-二甲基甲酰胺、乙醇和水的混合溶剂。
进一步地,步骤S1中,所述溶液中苯二甲酸的浓度为0.01-0.03mol/L,镍盐的浓度为0.015-0.025mol/L。
进一步地,步骤S1中,所述二价镍盐为氯化镍、硫酸镍、醋酸镍、醋酸镍或其水合物。
本发明中,三乙胺作为表面活性剂,能够控制合成的Ni-MOFs的形貌,从而得到超薄的Ni-MOFs纳米片。
进一步地,步骤S1中,使用细胞粉碎机进行超声处理,超声功率为50-100W,频率设定范围分别运行1-4s和停止2-5s。采用细胞粉碎机进行超声处理,能够使得沉淀分散的更加均匀。
进一步地,步骤S2中,所述铁盐包括氯化亚铁、硫酸亚铁或其水合物,所述钴盐包括氯化钴或其水合物,所述锰盐包括氯化锰或其水合物。
本发明第二方面提供了由第一方面所述的方法制备的MOF基二维超薄电催化剂。
本发明第三方面提供了第二方面所述的MOF基二维超薄电催化剂在电解水中的应用。
本发明的有益效果:
1.本发明通过原子置换反应,采用铁、钴或锰置换Ni-MOF纳米片中的Ni,从而得到了表面修饰有Fe、Co或Mn元素的MOF基二维超薄纳米材料,该纳米材料不仅具有超薄纳米结构,并且其界面上原子结构被优化,具有良好的电催化性能。
2.本发明的MOFs基纳米材料制备方法简单,原料廉价易得,可以作为商业的电催化材料进行推广使用。
附图说明
图1:Fe@Ni-MOFs的透射电镜图;
图2:Fe@Ni-MOFs与Ni-MOFs和共沉积Fe-Ni-MOFs的XPS对比图;
图3:Fe@Ni-MOFs与Ni-MOFs和共沉积Fe-Ni-MOFs在1mol/L氢氧化钾溶液中的CV曲线对比;
图4:Fe@Ni-MOFs与Ni-MOFs和共沉积Fe-Ni-MOFs在1mol/L氢氧化钾溶液中的LSV曲线对比;
图5:Fe@Ni-MOFs与Ni-MOFs和共沉积Fe-Ni-MOFs在1mol/L氢氧化钾溶液中的Tafel曲线对比。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法,所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1:超薄Ni-MOF纳米片的合成
(1)配置反应溶剂:将32ml N,N-二甲基甲酰胺(DMF)、2ml乙醇和2ml水加入到100ml烧杯中,搅拌至完全混合;
(2)称取0.75mmol苯二甲酸边搅拌边加入到上述溶液中,完成后再搅拌30-60min至溶液澄清,备用;
(3)在上述澄清溶液中加入0.75mmol的NiCl2·6H2O,继续搅拌30-60min;
(4)再在上述溶液中加入0.8ml三乙胺,继续搅拌30-60min;
(5)最后,将上述搅拌完毕的溶液利用细胞粉碎机进行超声处理,超声功率为60W,频率设定为运行2s+停止3s,总超声时间为8h,并且每隔两个小时换一次蒸馏水,处理完毕后,使用无水乙醇将得到的沉淀清洗3-5次,得到超薄Ni-MOF纳米片。
实施例2:Fe@Ni-MOFs纳米材料的制备
(1)将实施例1中得到的沉淀用50ml无水乙醇充分分散,超声30min后备用;
(2)向上述溶液中加入氯化亚铁,使得Fe2+的浓度范围为10mM,超声30min;
(3)将超声完毕后的溶液在磁力搅拌下反应6-10h后,利用无水乙醇洗涤沉淀,即可得到Fe@Ni-MOFs纳米材料。
如图1所示,Fe@Ni-MOFs为纳米片结构,并且厚度均匀。图2的结果显示,Fe成功地置换在纳米片的表面,并且Fe的掺杂量大于共掺杂制备得到的Fe-Ni-MOFs。
对比例1:共沉积Fe-Ni-MOFs纳米材料的制备
(1)配置反应溶剂:将32ml N,N-二甲基甲酰胺(DMF)、2ml乙醇和2ml水加入到100ml烧杯中,搅拌至完全混合;
(2)称取0.75mmol苯二甲酸边搅拌边加入到上述溶液中,完成后再搅拌30-60min至溶液澄清,备用;
(3)在上述澄清溶液中加入0.75mmol的NiCl2·6H2O和0.75mmol的氯化亚铁,继续搅拌30-60min;
(4)再在上述溶液中加入0.8ml三乙胺,继续搅拌30-60min;
(5)最后,将上述搅拌完毕的溶液利用细胞粉碎机进行超声处理,超声功率为60W,频率设定为运行2s+停止3s,总超声时间为8h,并且每隔两个小时换一次蒸馏水,处理完毕后,使用无水乙醇将得到的沉淀清洗3-5次,得到共沉积Fe-Ni-MOFs纳米材料。
实施例3:电催化测试
分别将Fe@Ni-MOFs、Ni-MOFs和Fe-Ni-MOFs使用炭黑和Nafion溶液做成糊状后,滴在玻碳电极上进行电化学测试,电解液为1mol/L氢氧化钾溶液,工作电极的转速为1600rpm。
图3为Fe@Ni-MOFs、Ni-MOFs和共沉积Fe-Ni-MOFs在1mol/L氢氧化钾溶液中的CV曲线对比,从图中可以看出,Fe@Ni-MOFs具有更高的极化电流。
图4为三者在的LSV曲线对比,经过IR矫正,Fe@Ni-MOFs表现出更好的电催化性能,在10mAcm-2的电流密度下,过电势为279mV,明显优于Ni-MOFs和共沉积Fe-Ni-MOFs。
图5为三者在的Tafel曲线对比,从图中可以看出,Ni-MOFs的塔菲尔斜率为90.05,Fe-Ni-MOFs的塔菲尔斜率为56.46,而本发明的Fe@Ni-MOFs的塔菲尔斜率为39.84,这表明本发明的Fe@Ni-MOFs具有更好的电催化性能。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (8)

1.一种MOF基二维超薄电催化剂的制备方法,其特征在于,包括以下步骤:
S1.将有机配体苯二甲酸溶于有机溶剂中,加入二价镍盐,搅拌30-60min;再加入三乙胺,继续搅拌30-60min;对上述溶液进行超声处理7-10h,且每隔两小时换一次水;超声完毕后使用无水乙醇清洗沉淀;
S2.将步骤S1得到的沉淀分散于无水乙醇中,加入铁盐、钴盐或锰盐,控制溶液中铁盐、钴盐或锰盐的浓度为5-30mM,再进行超声处理;超声完毕后,使溶液在搅拌的条件下反应6-10h,无水乙醇洗涤沉淀,即可得到MOF基二维超薄电催化剂。
2.根据权利要求1所述的一种MOF基二维超薄电催化剂的制备方法,其特征在于,步骤S1中,所述有机溶剂为N,N-二甲基甲酰胺、乙醇和水的混合溶剂。
3.根据权利要求1所述的一种MOF基二维超薄电催化剂的制备方法,其特征在于,步骤S1中,所述溶液中苯二甲酸的浓度为0.01-0.03mol/L,镍盐的浓度为0.015-0.025mol/L。
4.根据权利要求1所述的一种MOF基二维超薄电催化剂的制备方法,其特征在于,步骤S1中,所述二价镍盐为氯化镍、硫酸镍、醋酸镍、醋酸镍或其水合物。
5.根据权利要求1所述的一种MOF基二维超薄电催化剂的制备方法,其特征在于,步骤S1中,使用细胞粉碎机进行超声处理,超声功率为50-100W,频率设定范围分别运行1-4s和停止2-5s。
6.根据权利要求1所述的一种MOF基二维超薄电催化剂的制备方法,其特征在于,步骤S2中,所述铁盐包括氯化亚铁和硫酸亚铁,所述钴盐包括氯化钴,所述锰盐包括氯化锰。
7.根据权利要求1-6任一项所述的方法制备的MOF基二维超薄电催化剂。
8.权利要求7所述的MOF基二维超薄电催化剂在电解水中的应用。
CN202010669488.2A 2020-07-13 2020-07-13 一种mof基二维超薄电催化剂及其制备方法与应用 Pending CN111905818A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010669488.2A CN111905818A (zh) 2020-07-13 2020-07-13 一种mof基二维超薄电催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010669488.2A CN111905818A (zh) 2020-07-13 2020-07-13 一种mof基二维超薄电催化剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN111905818A true CN111905818A (zh) 2020-11-10

Family

ID=73226861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010669488.2A Pending CN111905818A (zh) 2020-07-13 2020-07-13 一种mof基二维超薄电催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN111905818A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112481639A (zh) * 2020-12-01 2021-03-12 中国海洋大学 分等级多孔镍基金属有机骨架电催化材料的制备方法及应用
CN115322387A (zh) * 2021-05-11 2022-11-11 南京理工大学 双调节剂竞争配位制备二维金属有机框架电催化剂的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140179514A1 (en) * 2012-12-26 2014-06-26 The Regents Of The University Of Michigan Rapid and enhanced activation of microporous coordination polymers by flowing supercritical co2
CN105294738A (zh) * 2015-10-27 2016-02-03 浙江工业大学 转化法制备金属有机骨架材料的方法
CN109267093A (zh) * 2018-10-09 2019-01-25 苏州大学 超薄Ni-Fe-MOF纳米片及其制备方法和应用
CN110467731A (zh) * 2019-07-25 2019-11-19 北京科技大学 一种稳定超薄介孔金属有机框架材料的制备方法
CN111111716A (zh) * 2020-01-19 2020-05-08 西北师范大学 一种mof指导的镍钴双金属磷化物的制备及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140179514A1 (en) * 2012-12-26 2014-06-26 The Regents Of The University Of Michigan Rapid and enhanced activation of microporous coordination polymers by flowing supercritical co2
CN105294738A (zh) * 2015-10-27 2016-02-03 浙江工业大学 转化法制备金属有机骨架材料的方法
CN109267093A (zh) * 2018-10-09 2019-01-25 苏州大学 超薄Ni-Fe-MOF纳米片及其制备方法和应用
CN110467731A (zh) * 2019-07-25 2019-11-19 北京科技大学 一种稳定超薄介孔金属有机框架材料的制备方法
CN111111716A (zh) * 2020-01-19 2020-05-08 西北师范大学 一种mof指导的镍钴双金属磷化物的制备及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUANGTONG HAI ET AL.,: "High-performance oxygen evolution catalyst using two-dimensional ultrathin metal-organic frameworks nanosheets" *
李金鹏等, 郑州:河南医科大学出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112481639A (zh) * 2020-12-01 2021-03-12 中国海洋大学 分等级多孔镍基金属有机骨架电催化材料的制备方法及应用
CN112481639B (zh) * 2020-12-01 2022-02-11 中国海洋大学 分等级多孔镍基金属有机骨架电催化材料的制备方法及应用
CN115322387A (zh) * 2021-05-11 2022-11-11 南京理工大学 双调节剂竞争配位制备二维金属有机框架电催化剂的方法
CN115322387B (zh) * 2021-05-11 2023-10-31 南京理工大学 双调节剂竞争配位制备二维金属有机框架电催化剂的方法

Similar Documents

Publication Publication Date Title
Gao et al. One-step preparation of cobalt-doped NiS@ MoS2 core-shell nanorods as bifunctional electrocatalyst for overall water splitting
CN110055557B (zh) 一种三维镍掺杂铁基析氧催化剂及其制备方法和应用
CN110838588B (zh) 一种可充式锌空电池双功能催化剂及其制备方法与应用
Wei et al. Hairy sphere-like Ni9S8/CuS/Cu2O composites grown on nickel foam as bifunctional electrocatalysts for hydrogen evolution and urea electrooxidation
CN110314690B (zh) 具有异质界面耦合的双金属硫化物Ni3S2/FeS复合材料及其制备方法与应用
CN113481534B (zh) 低结晶度的锆掺杂的钴铁层状双氢氧化物的制备方法及其应用于电解水制氢
CN109277104B (zh) 一种富硫的钒修饰的NiS2电催化剂及其制备方法
CN108823625B (zh) 一种复合金属氢氧化物及其制备方法和应用
CN111905818A (zh) 一种mof基二维超薄电催化剂及其制备方法与应用
CN113957456A (zh) 共掺杂结合异质结构的镍基碱性电解水催化剂及制备方法
Pan et al. Carbon-encapsulated Co3V decorated Co2VO4 nanosheets for enhanced urea oxidation and hydrogen evolution reaction
CN115505961A (zh) 一种应用于海水快速全电解制氢的低成本催化电极、制备及应用
CN110841658A (zh) 钴基硫化物纳米棒阵列的制备方法
CN116065185A (zh) 一种快速构筑纳米圆锥支撑纳米片电催化剂的制备方法
CN113293407B (zh) 一种富铁纳米带析氧电催化剂及其制备方法
CN112928271B (zh) 用于电催化小分子氧化耦合制氢的水滑石纳米片阵列的原位剥层方法
CN114892206A (zh) 一种多元金属氮化物异质结纳米棒阵列复合电催化剂及其制备方法和应用
CN114774983A (zh) 一种超小Ru纳米团簇负载于MoO3-x纳米带的双功能复合材料及其制备方法与应用
CN114797900A (zh) 一种金属有机骨架衍生的炭载硫化钴电催化剂及其制备方法和应用
Liu et al. Self‐supported bimetallic array superstructures for high‐performance coupling electrosynthesis of formate and adipate
CN112403503A (zh) 一种氮掺杂类mof结构修饰的两相硫化物材料制备方法
CN114196983B (zh) 一种金属氢氧化物复合电催化剂的制备方法及其产品
CN114990619B (zh) 一种非晶态NiOOH/Ni3S2异质结构型镍基复合物催化剂及其制备方法和应用
CN115110113B (zh) 一种棒状Co2C-MoN复合材料及其制备方法和应用
CN114622242B (zh) Ni/NiO纳米异质结多孔石墨碳复合材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination