CN111889112A - 一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法 - Google Patents

一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法 Download PDF

Info

Publication number
CN111889112A
CN111889112A CN202010774780.0A CN202010774780A CN111889112A CN 111889112 A CN111889112 A CN 111889112A CN 202010774780 A CN202010774780 A CN 202010774780A CN 111889112 A CN111889112 A CN 111889112A
Authority
CN
China
Prior art keywords
graphene
substrate
mos
dimensional material
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010774780.0A
Other languages
English (en)
Inventor
程琳
郑海红
许为中
王顺利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Zixin Photoelectric Co ltd
Original Assignee
Hangzhou Zixin Photoelectric Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Zixin Photoelectric Co ltd filed Critical Hangzhou Zixin Photoelectric Co ltd
Priority to CN202010774780.0A priority Critical patent/CN111889112A/zh
Publication of CN111889112A publication Critical patent/CN111889112A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/02Single layer graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electrochemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法,通过CVD法在铜箔表面制备单层均匀石墨烯,通过湿法转移把单层石墨烯转移到二氧化硅基底表面,再通过两步CVD生长方法,在石墨烯表面生长MoS2,制备出MoS2/Graphene二维材料异质结可见光催化剂,其中,石墨烯具有优异的导电性能,能加速MoS2表面电子的传输,且异质结能够提高界面处电子空穴的分离效率,将提高复合材料的光电催化效率。

Description

一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法
技术领域
本发明属于光催化剂技术领域,具体涉及一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法。
背景技术
近年来,二维材料以其优异的电学、光学以及力学性质被广泛关注和研究。二维材料由于具有独特而优异的光电化学性能,在高性能晶体管、光电探测、柔性电子、能源转化和储存等方向都具有重要的应用价值。得益于二维材料层状结构及弱层间范德华相互作用,不同的二维材料可以像乐高积木一样相互组合形成各种二维材料异质结。正如乐高积木有无穷种搭建方式,二维材料也可以组合出具有不同性能的二维材料异质结,这为器件应用和诸多基础物理现象研究提供了一个绝佳的材料体系。另外,通过调节二维材料异质结堆叠结构,二维材料异质结的性能可以进一步被改变,甚至产生许多新奇的物理现象。其中石墨烯和不同的二维材可以组合成任意的2D/2D和2D/3D范德华异质结,同时不用考虑晶格匹配的问题,为实现超薄、柔性且高效的太阳能电池提供了可能。除了应用于太阳能电池领域,利用TMDs 优异的催化性能和稳定性,可以构建高效且稳定的范德华异质结光电极用于光电化学分解水。
然而二维材料异质结在太阳能转化应用方面还处在起步阶段,太阳能转化效率有待进一步提高,特别在表面及界面调控方面存在着诸多挑战。而化学气相沉积(CVD)法制备二维材料异质结是当前比较常用的制备方法,但是化学气相沉积对于生长条件的变化十分敏感,生长温度、衬底选择、前驱物选择、晶格失配、载气流速和载气成分都会直接对二维材料异质结的生长产生很大的影响。因此如何去得到可控的,高质量的大面积二维材料异质结成为当前的研究难点。
发明内容
为实现上述目的,本发明一方面提供一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法。
一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法,包括以下步骤:
步骤一;以SiO2/Si作为衬底并切片,依次放入丙酮、异丙醇溶液中超声清洗10-30min,后用高纯氩气吹干;
步骤二;把基底铜箔用丙酮清洗干净,放入管式炉中,通入氩气、氢气1:3-1:10混合气,加热到1000-1350摄氏度,保持恒温20-40min,然后停止通入保护气体,改通甲烷 20-50sccm,反应30-60min,反应完成,降温取出铜箔,即制得单层均匀石墨烯;
步骤三;使用聚甲基丙烯酸甲酯(PMMA)旋涂在单层均匀石墨烯表面,从而形成一层厚度的保护层;再将单层均匀石墨烯表面的聚甲基丙烯酸甲酯(PMMA)加热固化,再使用氧离子轰击铜箔背面去除背面多余的石墨烯与因为旋涂过程而渗入多余聚甲基丙烯酸甲酯(PMMA),再将铜箔片飘在腐蚀溶液液面上刻蚀铜基底,使石墨烯与铜基底分离,然后利用玻璃片从溶液下方将刻蚀干净的石墨烯从溶液中捞起放入去离子水中反复清洗2~3次,再使用二氧化硅基底将石墨烯捞起垂直晾干,利用重力使石墨烯与基底之间的水分慢慢流失,其中,水分控干之后加热基底,去除基底和石墨烯之间残留的水分并且加强石墨烯与基底的结合,然后使用丙酮或二氯甲烷等良有机溶剂去除石墨烯表面的聚甲基丙烯酸甲酯(PMMA),最后用异丙醇清洗样品表面,即制得SiO2/Graphene基底;
步骤四;把钼箔切成片,分别在丙酮,异丙醇中超声清洗,后放入配制的电解液,采用电化学工作站,采用恒电位模式,以钼箔作为工作电极,***参比电极,铂片为对电极,电镀钼箔;
步骤五;电镀后的钼箔放在SiO2/Graphene基底表面,然后放入管式炉高温区中,通入 20-150sccm的氩气,温度设定为750℃-850℃,硫粉放入低温区,温度设定为150-250℃,保持反应温度5min-20min,即可在单层石墨烯表面制备出大面积单层MoS2,即得到MoS2/Graphene二维材料异质结可见光催化剂。
进一步地,所述步骤一中的SiO2/Si衬底为为1x2 cm,然后依次放入丙酮、异丙醇溶液中超声10-30min,后用高纯氩气吹干。
进一步地,所述步骤四中的钼箔为1x2 cm的长片,然后分别在丙酮,异丙醇中超声清洗 10-30min,再放入500ml电解液中,再采用电化学工作站,采用恒电位模式,以钼箔作为工作电极,***参比电极,铂片为对电极,施加的电压0.4v-0.6v,电镀10-50min。
进一步地,所述电解液由0.2M-0.5M的氟化钠、2M-3M的草酸、1M-1.5M的硫酸钠配制而成。
为实现上述目的,本发明又一方面提供一种Cu2O/C3N4/TiO2异质结可见光催化剂。
一种MoS2/Graphene二维材料异质结可见光催化剂,采用上述制备方法制备而得。
本发明的有益效果如下:
1.本发明通过改变钼源,用钼箔来代替传统的三氧化钼做为钼源,通过控制钼箔的电镀条件,调控钼箔表面的氧化态,进而能很好的控制钼源的挥发速率,从而使CVD法制备MoS2的重复性得到提高;并且能制备出大面积单层MoS2,通过调控钼箔的高度可以调控MoS2的层数。
2.本发明通过湿法转移单层石墨烯到二氧化硅基底,一步法直接在单层石墨烯表面生长单层MoS2,使得这种方法制备的异质结界面接触良好,界面洁净度比较高,其电子传输性能良好。
3.本发明制备的单层MoS2/graphene异质结,其中,石墨烯具有优异的导电性能,能加速MoS2表面电子的传输,异质结提高了界面处电子空穴的分离效率,将提高复合材料的光电催化效率。
附图说明
图1为传统的CVD法制备MoS2的实物图。
图2为传统的CVD法制备MoS2的光学显微镜图。
图3为本发明气体流量在30sccm对制备MoS2的光学显微镜图。
图4为本发明气体流量在100sccm对制备MoS2的光学显微镜图。
图5为本发明气体流量在150sccm对制备MoS的光学显微镜图。
图6为本发明钼源温度的在700℃对制备MoS2的光学显微镜图。
图7为本发明钼源温度的在800℃对制备MoS2的光学显微镜图。
图8为本发明钼源温度的在850℃对制备MoS2的光学显微镜图。
图9为实施例3中单层石墨烯表面生长大面积单层MoS2的光学显微镜图。
图10为本发明单层MoS2和MoS2/graphene异质结的光致发光光谱图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发现。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
首先,传统的CVD法制备MoS2采用的是三氧化钼做为钼源,但是这种方法存在很大的缺点。在生长过程中三氧化钼先和硫反应生成硫氧化物,然后再进一步硫化生长二硫化钼,这种两步反应导致很难控制其硫化程度,在生长过程中很容易生成中间产物,导致制备的二硫化钼表面洁净度比较差如图1-2所示,MoS2只是在边缘生长,从右边两幅图可以看出MoS2表面洁净度比较差,有多余的成核点。同时因为三氧化钼的熔点比较高,其在600℃的时候就开始挥发,随着温度的升高其挥发速度越来越快,很难控制其钼源的挥发速率,这也导致了实验的重复率比较差。并且这种生长方法不能得到大面积均匀的二硫化钼,基本上只在基底的边缘位置有少部分二硫化钼生成。
实施例1
本发明提供一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法,由以下步骤制备:
步骤一:衬底切片;以300nm的SiO2/Si作为衬底,并把衬底切成1x2cm的长片尺寸,依次放入丙酮、异丙醇溶液中超声20min,并用高纯氩气吹干;
步骤二:制备单层均匀石墨烯;把基底铜箔用丙酮清洗干净,放入管式炉中,通入氩气/ 氢气为1:5的混合气,加热到1200摄氏度,保持恒温30min,然后停止通入保护气体,改通甲烷50sccm,反应30min,反应完成,降温取出铜箔,得到单层均匀石墨烯。
步骤三:湿法转移单层石墨烯;使用聚甲基丙烯酸甲酯(PMMA)旋涂在单层均匀石墨烯表面,从而形成一层厚度的保护层;再将单层均匀石墨烯表面的聚甲基丙烯酸甲酯(PMMA)加热固化,再使用氧离子轰击铜箔背面去除背面多余的石墨烯与因为旋涂过程而渗入多余聚甲基丙烯酸甲酯(PMMA),再将铜箔片飘在腐蚀溶液液面上刻蚀铜基底,使石墨烯与铜基底分离,然后利用玻璃片从溶液下方将刻蚀干净的石墨烯从溶液中捞起放入去离子水中反复清洗2~3 次,再使用二氧化硅基底将石墨烯捞起垂直晾干,利用重力使石墨烯与基底之间的水分慢慢流失,其中,水分控干之后加热基底,去除基底和石墨烯之间残留的水分并且加强石墨烯与基底的结合,然后使用丙酮或二氯甲烷等良有机溶剂去除石墨烯表面的聚甲基丙烯酸甲酯 (PMMA),最后用异丙醇清洗样品表面,即制得SiO2/Graphene基底;
步骤四:把钼箔切成1x2cm的长片,分别在丙酮,异丙醇中超声清洗20min,放入配制的电解液(取0.5M氟化钠,2M草酸,1M硫酸钠,配制成500ml的电解溶液),采用电化学工作站,采用恒电位模式,以钼箔作为工作电极,***参比电极,铂片为对电极,施加的电压0.4v,电镀30min;电镀钼箔;
步骤五:电镀后的钼箔放在二氧化硅/graphene基底表面,放入CVD管式炉高温区中,通入100sccm的氩气,温度设定为800℃,硫粉放入低温区,温度设定为200℃的时候,保持反应10min,即可在单层石墨烯表面制备出大面积单层MoS2,即得到MoS2/Graphene二维材料异质结可见光催化剂。如图3-5所示,MoS2/Graphene二维材料异质结可见光催化剂底层为一层石墨烯,呈现三角形状的为单层的MoS2
实施例2
一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法,由以下步骤制备:
步骤一:衬底切片;以300nm的SiO2/Si作为衬底,并把衬底切成1x2cm的长片尺寸,依次放入丙酮、异丙醇溶液中超声20min,并用高纯氩气吹干;
步骤二:制备单层均匀石墨烯;把基底铜箔用丙酮清洗干净,放入管式炉中,通入氩气/ 氢气为1:5的混合气,加热到1200摄氏度,保持恒温30min,然后停止通入保护气体,改通甲烷50sccm,反应30min,反应完成,降温取出铜箔,得到单层均匀石墨烯。
步骤三:湿法转移单层石墨烯;使用聚甲基丙烯酸甲酯(PMMA)旋涂在单层均匀石墨烯表面,从而形成一层厚度的保护层;再将单层均匀石墨烯表面的聚甲基丙烯酸甲酯(PMMA)加热固化,再使用氧离子轰击铜箔背面去除背面多余的石墨烯与因为旋涂过程而渗入多余聚甲基丙烯酸甲酯(PMMA),再将铜箔片飘在腐蚀溶液液面上刻蚀铜基底,使石墨烯与铜基底分离,然后利用玻璃片从溶液下方将刻蚀干净的石墨烯从溶液中捞起放入去离子水中反复清洗2~3 次,再使用二氧化硅基底将石墨烯捞起垂直晾干,利用重力使石墨烯与基底之间的水分慢慢流失,其中,水分控干之后加热基底,去除基底和石墨烯之间残留的水分并且加强石墨烯与基底的结合,然后使用丙酮或二氯甲烷等良有机溶剂去除石墨烯表面的聚甲基丙烯酸甲酯 (PMMA),最后用异丙醇清洗样品表面,即制得SiO2/Graphene基底;
步骤四:把钼箔切成1x2cm的长片,分别在丙酮,异丙醇中超声清洗20min,放入配制的电解液(取0.5M氟化钠,2M草酸,1M硫酸钠,配制成500ml的电解溶液),采用电化学工作站,采用恒电位模式,以钼箔作为工作电极,***参比电极,铂片为对电极,施加的电压0.4v,电镀30min;
步骤五:电镀后的钼箔放入CVD管式炉高温区中,分别通入30sccm,100sccm,150sccm 的氩气,温度设定为800℃,0.2g硫粉放入低温区,温度设定为200℃的时候,保持反应 10min,制备出大面积单层MoS2。如图3-5所示,当气体流量比较小的时候,不能将反应所需的硫蒸汽运输到高温区,进而导致制备的二硫化钼比较小,尺寸不均匀;当气体流速为100sccm的时候二硫化钼整体形貌比较好,尺寸均匀并且得到大面积的单层材料;继续增大气体流量到150sccm的时候,因为气体流速太快,前驱体的反应时间不够并且很容易被带走,导致生成的二硫化钼尺寸变小,并且其表面洁净度变差。氩气的流速对MoS2的生长有很大的影响。
此外,CVD法制备MoS2过程中,气体的流动无疑起到非常重要的作用。氩气在生长过程中起到两个比重要的作用:首先高纯氩气的通入可以阻挡氧气的混入,因为氧气对生长有不利影响;其次二硫化钼的沉积是用过氩气做为载体的,氩气能携带硫蒸汽进入高温区参加反应。因此氩气的流速对生长MoS2有很大的影响。
实施例3
一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法,由以下步骤制备:
步骤一:衬底切片;以300nm的SiO2/Si作为衬底,并把衬底切成1x2cm的长片尺寸,依次放入丙酮、异丙醇溶液中超声20min,并用高纯氩气吹干;
步骤二:制备单层均匀石墨烯;把基底铜箔用丙酮清洗干净,放入管式炉中,通入氩气/ 氢气为1:5的混合气,加热到1200摄氏度,保持恒温30min,然后停止通入保护气体,改通甲烷50sccm,反应30min,反应完成,降温取出铜箔,得到单层均匀石墨烯。
步骤三:湿法转移单层石墨烯;使用聚甲基丙烯酸甲酯(PMMA)旋涂在单层均匀石墨烯表面,从而形成一层厚度的保护层;再将单层均匀石墨烯表面的聚甲基丙烯酸甲酯(PMMA)加热固化,再使用氧离子轰击铜箔背面去除背面多余的石墨烯与因为旋涂过程而渗入多余聚甲基丙烯酸甲酯(PMMA),再将铜箔片飘在腐蚀溶液液面上刻蚀铜基底,使石墨烯与铜基底分离,然后利用玻璃片从溶液下方将刻蚀干净的石墨烯从溶液中捞起放入去离子水中反复清洗2~3 次,再使用二氧化硅基底将石墨烯捞起垂直晾干,利用重力使石墨烯与基底之间的水分慢慢流失,其中,水分控干之后加热基底,去除基底和石墨烯之间残留的水分并且加强石墨烯与基底的结合,然后使用丙酮或二氯甲烷等良有机溶剂去除石墨烯表面的聚甲基丙烯酸甲酯 (PMMA),最后用异丙醇清洗样品表面,即制得SiO2/Graphene基底;
步骤四:把钼箔切成1x2cm的长片,分别在丙酮,异丙醇中超声清洗20min,放入配制的电解液(取0.5M氟化钠,2M草酸,1M硫酸钠,配制成500ml的电解溶液),采用电化学工作站,采用恒电位模式,以钼箔作为工作电极,***参比电极,铂片为对电极,施加的电压0.4v,电镀30min;
步骤五:电镀后的钼箔放入CVD管式炉高温区中,通入100sccm的氩气,如图6-8所示,温度分别设定为700,800和850℃,0.2g硫粉放入低温区,温度设定为200℃的时候,保持反应10min,制备出大面积MoS2。从图3-5和图9所示,钼源温度为700℃的时候,因为钼源温度太低导致钼的挥发量比较少导致制备的MoS2尺寸比较小;随着温度的增加如图 (c,d),钼的挥发逐渐增多,制备的MoS2尺寸变大;当钼源温度过高时如图(e,f),在基底表面生长了很多双层的MoS2
此外,在生长过程中钼源的温度直接决定了钼源的挥发速率,温度越高其挥发速率越快。
实施例4
将实施例2中氩气流速为100sccm制备得到的单层MoS2和实施例1中制备的 MoS2/graphene异质结进行PL(光致发光)光谱表征,如图10所示,从光谱图中可以发现 MoS2/graphene异质结较单层MoS2的PL强度降低,说明异质结界面处电子空穴复合率比较低,异质结提高了界面处电子空穴的分离效率,将提高其光电催化效率。

Claims (5)

1.一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法,其特征在于:包括以下步骤:
步骤一;以SiO2/Si作为衬底并切片,依次放入丙酮、异丙醇溶液中超声清洗10-30min,后用高纯氩气吹干;
步骤二;把基底铜箔用丙酮清洗干净,放入管式炉中,通入氩气、氢气1:3-1:10混合气,加热到1000-1350摄氏度,保持恒温20-40min,然后停止通入保护气体,改通甲烷20-50sccm,反应30-60min,反应完成,降温取出铜箔,即制得单层均匀石墨烯;
步骤三;使用聚甲基丙烯酸甲酯(PMMA)旋涂在单层均匀石墨烯表面,从而形成一层厚度的保护层;再将单层均匀石墨烯表面的聚甲基丙烯酸甲酯(PMMA)加热固化,再使用氧离子轰击铜箔背面去除背面多余的石墨烯与因为旋涂过程而渗入多余聚甲基丙烯酸甲酯(PMMA),再将铜箔片飘在腐蚀溶液液面上刻蚀铜基底,使石墨烯与铜基底分离,然后利用玻璃片从溶液下方将刻蚀干净的石墨烯从溶液中捞起放入去离子水中反复清洗2~3次,再使用二氧化硅基底将石墨烯捞起垂直晾干,利用重力使石墨烯与基底之间的水分慢慢流失,其中,水分控干之后加热基底,去除基底和石墨烯之间残留的水分并且加强石墨烯与基底的结合,然后使用丙酮或二氯甲烷等良有机溶剂去除石墨烯表面的聚甲基丙烯酸甲酯(PMMA),最后用异丙醇清洗样品表面,即制得SiO2/Graphene基底;
步骤四;把钼箔切成片,分别在丙酮,异丙醇中超声清洗,后放入配制的电解液,采用电化学工作站,采用恒电位模式,以钼箔作为工作电极,***参比电极,铂片为对电极,电镀钼箔;
步骤五;电镀后的钼箔放在SiO2/Graphene基底表面,然后放入管式炉高温区中,通入20-150sccm的氩气,温度设定为750℃-850℃,硫粉放入低温区,温度设定为150-250℃,保持反应温度5min-20min,即可在单层石墨烯表面制备出大面积单层MoS2,即得到MoS2/Graphene二维材料异质结可见光催化剂。
2.根据权利要求1所述的一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法,其特征在于:所述步骤一中的SiO2/Si衬底为为1x2 cm,然后依次放入丙酮、异丙醇溶液中超声10-30min,后用高纯氩气吹干。
3.根据权利要求1所述的一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法,其特征在于:所述步骤四中的钼箔为1x2 cm的长片,然后分别在丙酮,异丙醇中超声清洗10-30min,再放入500ml电解液中,再采用电化学工作站,采用恒电位模式,以钼箔作为工作电极,***参比电极,铂片为对电极,施加的电压0.4v-0.6v,电镀10-50min。
4.根据权利要求3所述的一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法,其特征在于:所述电解液由0.2M-0.5M的氟化钠、2M-3M的草酸、1M-1.5M的硫酸钠配制而成。
5.一种MoS2/Graphene二维材料异质结可见光催化剂,其特征在于:采用权利要求1-4任一项制备方法制备而得。
CN202010774780.0A 2020-08-04 2020-08-04 一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法 Pending CN111889112A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010774780.0A CN111889112A (zh) 2020-08-04 2020-08-04 一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010774780.0A CN111889112A (zh) 2020-08-04 2020-08-04 一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN111889112A true CN111889112A (zh) 2020-11-06

Family

ID=73245521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010774780.0A Pending CN111889112A (zh) 2020-08-04 2020-08-04 一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN111889112A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112837996A (zh) * 2021-01-05 2021-05-25 上海应用技术大学 一种薄层二维材料的制备方法
CN114050200A (zh) * 2021-07-13 2022-02-15 山东大学 基于聚焦离子束辐照结合湿法转移制备二维半导体器件的方法
CN114574835A (zh) * 2022-02-27 2022-06-03 山东云海国创云计算装备产业创新中心有限公司 一种石墨烯/二硫化钼异质结半导体薄膜及其制备方法
CN114920239A (zh) * 2022-05-10 2022-08-19 北京理工大学 一种基于水蒸气的二维材料转移或堆垛方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409957A (zh) * 2016-11-21 2017-02-15 天津理工大学 一种大面积超薄石墨烯/二硫化钼超晶格异质材料
CN107818921A (zh) * 2017-10-20 2018-03-20 北京工业大学 一种基于二维平面异质结增强型场效应管的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409957A (zh) * 2016-11-21 2017-02-15 天津理工大学 一种大面积超薄石墨烯/二硫化钼超晶格异质材料
CN107818921A (zh) * 2017-10-20 2018-03-20 北京工业大学 一种基于二维平面异质结增强型场效应管的制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BEIYUN LIU ET AL: "High performance photodetector based on graphene/MoS2/grapheme lateral heterostrurcture with Schottky junctions", 《JOURNAL OF ALLOYS AND COMPOUNDS》, vol. 779, 30 March 2019 (2019-03-30), pages 1 - 2 *
JUN MA ET AL: "High efficiency graphene/MoS2/Si Schottky barrier solar cells using layercontrolled MoS2 films", 《SOLAR ENERGY》 *
JUN MA ET AL: "High efficiency graphene/MoS2/Si Schottky barrier solar cells using layercontrolled MoS2 films", 《SOLAR ENERGY》, vol. 160, 15 January 2018 (2018-01-15), pages 77 *
YINRUI WANG ET AL: "Electroactive FeS2-modified MoS2 nanosheet for high-performance supercapacitor", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
YINRUI WANG ET AL: "Electroactive FeS2-modified MoS2 nanosheet for high-performance supercapacitor", 《JOURNAL OF ALLOYS AND COMPOUNDS》, vol. 824, 21 January 2020 (2020-01-21), pages 2, XP086053764, DOI: 10.1016/j.jallcom.2020.153936 *
向斌等: "《二维过渡金属化合物》", 中国原子能出版社, pages: 85 - 86 *
强亮生等: "《新型功能材料制备技术与分析表征方法》", 30 September 2017, 哈尔滨工业大学出版社, pages: 156 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112837996A (zh) * 2021-01-05 2021-05-25 上海应用技术大学 一种薄层二维材料的制备方法
CN112837996B (zh) * 2021-01-05 2022-10-14 上海应用技术大学 一种薄层二维材料的制备方法
CN114050200A (zh) * 2021-07-13 2022-02-15 山东大学 基于聚焦离子束辐照结合湿法转移制备二维半导体器件的方法
CN114050200B (zh) * 2021-07-13 2023-12-05 山东大学 一种制备二维半导体器件的方法
CN114574835A (zh) * 2022-02-27 2022-06-03 山东云海国创云计算装备产业创新中心有限公司 一种石墨烯/二硫化钼异质结半导体薄膜及其制备方法
CN114920239A (zh) * 2022-05-10 2022-08-19 北京理工大学 一种基于水蒸气的二维材料转移或堆垛方法
CN114920239B (zh) * 2022-05-10 2023-10-20 北京理工大学 一种基于水蒸气的二维材料转移或堆垛方法

Similar Documents

Publication Publication Date Title
CN111889112A (zh) 一种MoS2/Graphene二维材料异质结可见光催化剂的制备方法
CN108017090B (zh) 一种高密度边界双层二硫化钼纳米片及其制备方法
KR101271249B1 (ko) 질소가 도핑된 투명 그래핀 필름 및 이의 제조방법
CN109809372B (zh) 一种基于空间限域策略制备单层二硒化钨纳米带的方法
CN112758950B (zh) 一种硼烯纳米片及其制备方法
CN106384811B (zh) 一种蓝磷/过渡金属二硫化物异质结阳极材料及制备方法
CN105540654B (zh) 一种多层次TiO2纳米结构阵列材料的制备方法
Bai et al. Template-free fabrication of silicon micropillar/nanowire composite structure by one-step etching
CN104795456B (zh) 电沉积法制备三带隙铁掺杂铜镓硫太阳能电池材料的方法
Goh et al. Low temperature grown ZnO@ TiO2 core shell nanorod arrays for dye sensitized solar cell application
CN103236324A (zh) 一种基于还原氧化石墨烯的柔性透明导电薄膜的制备方法
Wu et al. Soft processing of hierarchical oxide nanostructures for dye-sensitized solar cell applications
CN101499417B (zh) 用阳极氧化铝模板实现半导体材料上图形转移的方法
CN107253712A (zh) 包含具有密集部分和稀疏部分的单层碳纳米管的膜以及具有该膜的材料
CN104386676A (zh) 一种石墨烯的制备方法
CN111987169A (zh) 基于二维氧化镓薄膜的晶体管及制备方法
CN103526182A (zh) 非金属衬底表面制备氮掺杂石墨烯的方法
CN102709399A (zh) 一种高效纳米天线太阳能电池的制作方法
KR101087267B1 (ko) 실리콘 나노와이어/탄소나노튜브/징크옥사이드 코어/다중쉘 나노복합체의 제조방법 및 상기 나노복합체를 포함하는 태양전지
CN106374011A (zh) 一种硫化镉敏化硅纳米线复合材料及制备和应用
CN110098337A (zh) 一种二氧化锡/氧化锌复合纳米线材料及其制备方法
CN106966384A (zh) 一种二硫化钼/石墨烯层状组装体的制备方法
Houng et al. Characterization of the nanoporous template using anodic alumina method
CN105679848A (zh) 三维石墨烯泡沫复合纳米硫化镉光电化学电极的制备方法
CN112047327B (zh) 一种三维竖直石墨烯的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201106

RJ01 Rejection of invention patent application after publication