CN111701602B - 一种复合催化剂及制备方法和其应用 - Google Patents

一种复合催化剂及制备方法和其应用 Download PDF

Info

Publication number
CN111701602B
CN111701602B CN202010515643.5A CN202010515643A CN111701602B CN 111701602 B CN111701602 B CN 111701602B CN 202010515643 A CN202010515643 A CN 202010515643A CN 111701602 B CN111701602 B CN 111701602B
Authority
CN
China
Prior art keywords
biocl
catalyst
composite catalyst
solution
graphene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010515643.5A
Other languages
English (en)
Other versions
CN111701602A (zh
Inventor
宋也男
吴文杰
孙卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN202010515643.5A priority Critical patent/CN111701602B/zh
Publication of CN111701602A publication Critical patent/CN111701602A/zh
Application granted granted Critical
Publication of CN111701602B publication Critical patent/CN111701602B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

本发明公开了一种复合催化剂及制备方法和其应用,复合催化剂由氧化石墨烯(GO)和氯氧铋(BiOCl)纳米片杂化构成。所述制备方法包括:将氧化石墨烯均匀分散到乙醇溶液中;将聚乙烯吡咯烷酮溶于上述混合溶液,离心去掉上清液后重新分散到乙醇溶液中;将Bi(NO3)3·5H2O溶解到甘露醇溶液中,混合均匀后,将上述两种混合溶液混合均匀后加入饱和的氯化钠溶液,然后转移至聚四氟乙烯衬底反应釜中,水热加热。经过离心、洗涤烘干后制得催化剂,命名为GO‑BiOCl(001)。在低温等离子体条件下,GO‑BiOCl(001)催化剂在高能电子的碰撞激发下产生氧化性极高的活性物种,实现了VOCs污染气体的高效净化。

Description

一种复合催化剂及制备方法和其应用
技术领域
本发明属于空气处理净化领域,具体涉及一种具有优势接触界面GO-BiOCl(001)复合光催化剂的设计合成,特别涉及此种复合催化剂的合成制备方法以及其在低温等离子体驱动下在VOCs降解中的应用。
背景技术
在过去的二十年中,低温等离子体(NTP)技术作为一种先进的氧化技术被应用到降解VOCs方面。同传统的热去除方法相比,NTP技术中投入的能量几乎全部被用于电子的加速,而不会对整个气体进行加热,气体可以保持在室温条件下,故NTP技术的能量利用率更高,对于处理低浓度VOCs气体有着十分重要的应用前景。NTP技术主要利用产生的高能电子(1-10eV)通过直接或者间接作用将VOCs分子分解。主要有下面两种相互作用方式:(1)高能电子直接进攻VOCs分子的化学键,破坏其分子结构,实现VOCs污染物的降解。间接作用方式:(2)NTP反应器内部大量的高能电子与背景气体分子发生非弹性碰撞,将其部分的内能转移给背景气体分子,会产生一些化学反应性极高的活性物种(自由基、激发原子、离子和分子),通过氧化还原反应将VOCs分子间接降解转化,形成CO2、H2O和其他气体产物。然而,NTP在实际的应用过程中,往往存在氧化不完全、去除效率低、易产生副产物等问题。
将NTP技术同光催化复合材料结合在一起可以有效的解决上述问题。该技术将等离子的高反应性活性和光催化剂的高选择性完美整合在一起。在室温条件下通过等离子体激发活化催化剂,可以有效的提高VOCs的去除效率,同时抑制副产物的生产。当光催化剂放置在NTP反应器中时,催化剂会对等离子体的放电行为产生影响。相关研究证明,当催化剂放置于等离子体腔体内时,等离子体的放电模式从单纯的空间丝状放电变为表面放电和空间放电的结合,因此等离子体的内部的平均电子能量密度增加。此外,NTP腔体内部合适能量电子能诱导催化剂经历一个“伪光催化”的过程产生电子-空穴对,有效分离后的电子和空穴会与背景气体分子产生氧化性极高的活性物种(e.g.·O2 -·OH),这些活性物种可以作为一个很好的补充参与到降解VOCs分子的过程中。从光催化的角度来看,光催化剂的催化活性主要由其产生、分离、转移电子-空穴对的能力决定。
发明内容
本发明的目的是针对现有技术的不足设计合成了一种可以在等离子体系下驱动的GO-BiOCl复合催化剂,并且对两相接触界面进行了调控,合成了以001面接触的GO-BiOCl复合催化剂,获得了更高的电子、空穴分离和转移效率,并且合成的复合催化剂在等离子体的驱动下在VOCs的降解中表现出了优良的催化性能。
实现本发明目的的具体技术方案是:
一种GO-BiOCl复合催化剂的制备方法,该方法包括以下具体步骤:
步骤1:将氧化石墨烯加入到无水乙醇中均匀超声分散,得到混合溶液,缓慢加入的聚乙烯吡咯烷酮,搅拌分散均匀后,离心去掉上清液,重新分散到同体积的无水乙醇溶液中;其中,氧化石墨烯与聚乙烯吡咯烷酮物质量的比为1:5-20;
步骤2:将Bi(NO3)3·5H2O溶解到甘露醇溶液中,磁力搅拌分散均匀得到的混合溶液,其中,五水合硝酸铋与甘露醇物质量的比为1:1-4;
步骤3:将步骤1和步骤2得到的两份溶液混合均匀后,缓慢的加入饱和氯化钠溶液,甘露醇与氯化钠的质量比为1:1-3,在室温条件下搅拌20-40min;
步骤4:将混合溶液转移至水热釜中,在120-180℃条件下水热2-4小时,待温度恢复到室温条件下,离心机6000-8000r/min离心分离,用乙醇和去离子水洗2-4次后,置于鼓风干燥箱中40-80℃干燥,得到所述的GO-BiOCl复合催化剂即以(001)面接触的GO-BiOCl复合催化剂。
一种上述方法制得的以(001)面接触的GO-BiOCl复合催化剂。
所述复合催化剂中,氯氧铋纳米片以(001)面与氧化石墨烯接触。
一种上述以(001)面接触的GO-BiOCl复合催化剂在低温等离子体驱动下氧化去除VOCs的应用。
所述(001)面接触的GO-BiOCl催化剂在低温等离子体作用下能够将甲苯污染气体分子氧化降解,其对甲苯的去除效率达到60.08%
本发明与现有技术相比,具有以下有益效果:
(1)将催化剂与低温等离子体技术相结合,有效的增加了反应腔体内部活性物种的浓度,提高了VOCs气体的氧化处理效率;
(2)该GO-BiOCl(001)复合催化剂的制备原料简单易得,制备周期短、条件温和、制备成本低;
(3)选择BiOCl作为催化剂,由于其含有原子序数较高的原子Bi,其具有更高的质量吸收系数,在低温等离子体作用下,相比于常用的TiO2、ZnO等催化剂,对高能电子具有更高的吸收效率;
(4)以GO构筑电荷传输的快速通道,有效的降低了BiOCl晶格内部的电子和空穴的复合效率,提高了催化活性;
(5)采用聚乙烯吡咯烷酮对GO和BiOCl纳米片两相接触面进行调控,使其以优势界面进行接触,具有更快的电荷传输动力学。
附图说明
图1为合成样品GO-BiOCl(001)和GO-BiOCl(110)样品的扫描电子显微镜(SEM)图;
图2为NTP-催化剂降解VOCs的实验装置图;
图3为不同催化剂在等离子体驱动下降解甲苯的趋势图和降解率统计图。
具体实施方式
下面结合具体实施例,对本发明作进一步的详细说明。本发明的保护内容不局限于以下实施例。
实施例1:制备GO-BiOCl(001)复合催化剂
1)取4mg氧化石墨烯(GO)分散到10mL无水乙醇中,将40mg聚乙烯吡咯烷酮加入到上述溶液中,超声分散10min。然后在7000r/min的转速条件下去除上清液,将沉积物重新分散到10ml的无水乙醇中;
2)将93mg的Bi(NO3)3·5H2O溶解到甘露醇溶液(1mol/L)中,磁力搅拌分散均匀得到10mL的混合溶液;
3)将步骤1)和步骤2)得到的两份溶液混合均匀后,缓慢的加入5mL的饱和氯化钠溶液,在室温条件下搅拌20min;
4)将混合溶液转移至水热釜中,在160℃条件下水热3h,待温度恢复到室温条件下,离心机7000r/min离心分离,用乙醇和去离子水洗4次后,置于鼓风干燥箱中60℃干燥。制得样品GO-BiOCl(001)复合催化剂。
对比例1:制备GO-BiOCl(110)复合催化剂
本对比例与实施例1的不同之处在于,复合催化剂样品在合成过程中,氧化石墨烯未经过聚乙烯吡咯烷酮的前处理,其余合成方法与实施例1一致,此样品名称命名为GO-BiOCl(110)。
对比例2:制备纯的BiOCl纳米片
本对比例与实施例1的不同之处在于,在样品合成过程中,未加入氧化石墨烯,去掉步骤1,其余合成方法与实施例1一致,此样品为纯的BiOCl纳米片。
参阅图1,图(a)为GO-BiOCl(001)的SEM电镜照片;图(b)为GO-BiOCl(110)的SEM电镜照片。
针对合成的GO-BiOCl(001)样品的形貌和表面结构进行了SEM的表征,可以明显看到经过一步溶剂热处理以后BiOCl纳米片均匀的负载在GO的表面。BiOCl纳米片的尺度范围为50-100nm,厚度在20-40nm,呈现二维层状结构。该层状结构是由-Cl-Bi-O-Bi-Cl-重复单元通过Cl原子层间较小的非键(范德华键)结合,同时沿C轴交替堆积排列而成。在溶剂热条件下,GO的存在并没有对合成的BiOCl纳米片产生影响。当GO没有用聚乙烯吡咯烷酮前处理时,BiOCl纳米片在GO表面随机的生长,经过统计,图1(b)中站立的BiOCl纳米片与躺着的BiOCl纳米片的比例基本差不多,均保持在50%左右。当用PVP对氧化石墨烯进行前处理后,图1(a)中,GO表面负载的BiOCl纳米片几乎全部是躺着的,比例可以达到98%。充分说明PVP在两相的界面调控中扮演着十分重要的角色。
实施例2:低温等离子体作用下,合成的复合催化剂在氧化VOCs中的应用:
选用甲苯作为实验模型,采用低温离子体技术(NTP)复合催化剂进行降解VOCs的实验。采用介质阻挡放电的工作原理设计了NTP的反应器卷曲的不锈钢网分别置于石英管的内外侧,连接外部的高压交流电源(Y16J12516)充当放电的正负电极。取2-10mg合成的复合光催化剂分散到5-20μL的乙醇溶液中,后加入5-20μL的萘酚,分散均匀后涂布到1cm×4cm的ITO导电玻璃上,40-80℃烘干备用。按照此种方法将催化剂固定到ITO导电玻璃上,按照如图2所示,交替固定在NTP的反应腔体内部。选用甲苯作为测试气体。通过气体流量计控制将进气口的速率控制在1.5L/min,电源输入功率控制在10w,通过VOCs检测器(PGM-7320,华瑞-霍尼韦尔公司)来检测反应前后VOCs气体浓度的变化情况,VOCs的降解率通过如下的公式计算:
Figure BDA0002529980000000041
1)将实施例1中制备的GO-BiOCl(001)催化剂分散到10μL的无水乙醇溶液中,后加入10μL的萘酚,分散均匀后涂布到1cm×4cm的ITO导电玻璃上,60℃烘干备用;
2)按照如图2所示,图中,进气口1,不锈钢外电极2,石英管3,不锈钢内电极4,合成的复合催化剂5,ITO玻璃6,出气口7,聚四氟乙烯塞子8。
ITO玻璃6交替固定在NTP的反应腔体内部。选用甲苯作为测试气体。通过气体流量计控制将进气口的速率控制在1.5L/min,交流电源输入功率控制在10w,通过VOCs检测器(PGM-7320,华瑞-霍尼韦尔公司)来检测反应前后VOCs气体浓度变化情况。
降解率对比
对比例1:本对比例与实施例2的不同之处在于,未加催化剂,低温等离子体单独使用降解VOCs。
对比例2:本对比例与实施例2的不同之处在于,使用纯的BiOCl作为催化剂,复合低温等离子体降解VOCs。
对比例3:本对比例与实施例2的不同之处在于,使用GO-BiOCl(110)作为催化剂,复合低温等离子体降解VOCs。
如图3所示,不同催化剂在等离子体驱动下,图(a)降解甲苯的趋势图;图(b)降解率统计图。
将BiOCl置于等离子体中可以有效的提高作业效率。BiOCl可以作为等离子体的良好补充,当受到高能电子的撞击时,发生类似光催化的反应产生载流子参与到甲苯的氧化降解反应中去。通过这个路径,等离子体腔体内部的大量高能电子能够得到最大程度的利用,因此其去除效率也得到了明显的提升。而氧化石墨烯复合后的GO-BiOCl样品由于氧化石墨烯构筑的电子快速传输通道的存在,其具有更加优良的电子转移动力学,载流子复合的可能性大大降低。因此表现出了更好的催化活性。在将接触界面进行调控以后,获得了一个在此功率条件下达到的最好的甲苯去除效率60.08%。这主要是归功于两相之间具有更快的电子传递效率和更短的电子转移路径。BiOCl独特的层状结构具有较大的空间来极化相应的原子和原子轨道,从而可以诱导在(001)方向上产生内部电场,故光生载流子在内部电场作用下可以沿着(001)方向实现有效的分离和转移。其次,当BiOCl与氧化氧化石墨烯的接触界面为001面时,表面会有更多的活性位点提供给甲苯分子进行氧化降解。

Claims (3)

1.一种GO-BiOCl复合催化剂在低温等离子体驱动下氧化去除VOCs的应用,其特征在于,所述GO-BiOCl复合催化剂中,氯氧铋纳米片以(001)面与氧化石墨烯接触。
2.根据权利要求1所述的应用,其特征在于,所述GO-BiOCl催化剂在低温等离子体作用下能够将甲苯污染气体分子氧化降解,其对甲苯的去除效率达到60.08%。
3.根据权利要求1所述的应用,其特征在于,所述GO-BiOCl催化剂的制备,包括以下具体步骤:
步骤 1:将氧化石墨烯加入到无水乙醇中均匀超声分散,得到混合溶液,缓慢加入的聚乙烯吡咯烷酮,搅拌分散均匀后,离心去掉上清液,重新分散到同体积的无水乙醇溶液中;其中,氧化石墨烯与聚乙烯吡咯烷酮的质量比为1:5-20;
步骤2:将Bi(NO3)3·5H2O溶解到甘露醇溶液中,磁力搅拌分散均匀得到的混合溶液,其中,甘露醇与五水合硝酸铋的质量比为1:1- 4;
步骤3:将步骤1和步骤2得到的两份溶液混合均匀后,缓慢的加入饱和氯化钠溶液,在室温条件下搅拌20-40min;其中,甘露醇与氯化钠的质量比为1:1-3;
步骤4:将混合溶液转移至水热釜中,在120-180℃条件下水热2-4小时,待温度恢复到室温条件下,离心机6000-8000r/min离心分离,用乙醇和去离子水洗2-4次后,置于鼓风干燥箱中40-80℃干燥,得到所述的GO-BiOCl复合催化剂即以(001)面接触的GO-BiOCl复合催化剂。
CN202010515643.5A 2020-06-09 2020-06-09 一种复合催化剂及制备方法和其应用 Active CN111701602B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010515643.5A CN111701602B (zh) 2020-06-09 2020-06-09 一种复合催化剂及制备方法和其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010515643.5A CN111701602B (zh) 2020-06-09 2020-06-09 一种复合催化剂及制备方法和其应用

Publications (2)

Publication Number Publication Date
CN111701602A CN111701602A (zh) 2020-09-25
CN111701602B true CN111701602B (zh) 2022-10-28

Family

ID=72539456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010515643.5A Active CN111701602B (zh) 2020-06-09 2020-06-09 一种复合催化剂及制备方法和其应用

Country Status (1)

Country Link
CN (1) CN111701602B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112774699B (zh) * 2020-12-29 2022-06-07 湖南工程学院 一种氯氧化铋碳基复合材料的原位合成方法及其应用
CN113198494A (zh) * 2021-04-12 2021-08-03 华南理工大学 一种光催化抗菌氯氧化铋/石墨烯二维异质结及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105562040A (zh) * 2016-01-11 2016-05-11 安徽工业大学 一种BiOCl-(001)/GO纳米复合光催化剂的制备及应用
CN107649153A (zh) * 2017-08-25 2018-02-02 江苏大学 一种溶剂热法制备BiOCl光催化剂的方法
CN110550657A (zh) * 2019-08-28 2019-12-10 河海大学 一种水热法制备厚度可调的方形氯氧化铋的方法
CN110639610A (zh) * 2019-09-18 2020-01-03 江苏大学 一种富缺陷BiOCl/TPP复合光催化剂的制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105562040A (zh) * 2016-01-11 2016-05-11 安徽工业大学 一种BiOCl-(001)/GO纳米复合光催化剂的制备及应用
CN107649153A (zh) * 2017-08-25 2018-02-02 江苏大学 一种溶剂热法制备BiOCl光催化剂的方法
CN110550657A (zh) * 2019-08-28 2019-12-10 河海大学 一种水热法制备厚度可调的方形氯氧化铋的方法
CN110639610A (zh) * 2019-09-18 2020-01-03 江苏大学 一种富缺陷BiOCl/TPP复合光催化剂的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Interfacial synergism of Pd-decorated BiOCl ultrathin nanosheets for the selective oxidation of aromatic alcohols;Benxia Li,et.al.;《J. Mater. Chem. A》;20180309;第6卷;第6345页Experimental section *

Also Published As

Publication number Publication date
CN111701602A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
Li et al. Carbon dots-TiO2 nanosheets composites for photoreduction of Cr (VI) under sunlight illumination: favorable role of carbon dots
Bai et al. Uniformly distributed anatase TiO2 nanoparticles on graphene: Synthesis, characterization, and photocatalytic application
CN111701602B (zh) 一种复合催化剂及制备方法和其应用
CN109569684B (zh) 等离子体改性金属氧化物和g-氮化碳共修饰二氧化钛纳米棒复合光催化剂及其制备和应用
CN108671907B (zh) 一种铂/二氧化钛纳米花复合材料及其制备方法与应用
Dou et al. Ag nanoparticle-decorated 2D/2D S-scheme gC 3 N 4/Bi 2 WO 6 heterostructures for an efficient photocatalytic degradation of tetracycline
WO2023222143A1 (zh) 一种Fe2O3-MXenes复合催化剂及其制备方法与应用
CN112547092A (zh) 一种构建等离子体催化净化空气体系的钙钛矿基催化剂及其制备方法
CN111686770A (zh) 一种金属离子共掺杂BiOBr微球、制备方法及其应用
CN113769742B (zh) 一种铜网集成Cu2O@FeO纳米阵列的制备方法
CN107376905A (zh) 一种可降解甲醛的Ag/ZnO复合材料的制备方法
CN110841676A (zh) 一种碳化钛-氧化亚铜光催化材料及制备方法和应用
CN113058549B (zh) 一种碳纳米片复合材料及其制备方法和应用
CN107497427B (zh) 一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法
CN102500366A (zh) 一种光催化纳米材料
WO2023241152A1 (zh) 一种空心氮掺杂碳包裹二氧化钛光催化剂的制备方法
Xu et al. Synthesis and characterization of pyrochlore Bi 2 Sn 2 O 7 doping with praseodymium by hydrothermal method and its photocatalytic activity study
CN108499561B (zh) 一种银纳米颗粒/二氧化钛纳米花复合材料及其制备方法及应用
CN113304742B (zh) 一种活性炭负载Ti3+自掺杂TiO2光催化材料制备方法
CN112973757B (zh) 一种钒酸铋量子点/rgo/石墨相氮化碳三元复合光催化剂及其制备方法
CN114515590A (zh) 一种异质光催化材料及其制备和应用
Guan et al. Improvement of photocatalytic performance for the g-C3N4/MoS2 composite used for hypophosphite oxidation
CN112439403A (zh) 具柱撑结构的蒙脱石-二氧化钛-石墨烯复合光催化剂及制备方法
CN115253666B (zh) 类水滑石耦合低温等离子体去除VOCs的方法及应用
Rosman et al. Phenol degradation behavior via photocatalytic of ZnO/Ag2CO3/Ag2O nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant