CN111522030A - 一种基于无人机组与北斗定位的山区失踪人员搜救*** - Google Patents

一种基于无人机组与北斗定位的山区失踪人员搜救*** Download PDF

Info

Publication number
CN111522030A
CN111522030A CN202010641885.9A CN202010641885A CN111522030A CN 111522030 A CN111522030 A CN 111522030A CN 202010641885 A CN202010641885 A CN 202010641885A CN 111522030 A CN111522030 A CN 111522030A
Authority
CN
China
Prior art keywords
unmanned aerial
module
aerial vehicle
rescue
missing person
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010641885.9A
Other languages
English (en)
Other versions
CN111522030B (zh
Inventor
阚瑷珂
杨枭
李源
王丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Univeristy of Technology
Original Assignee
Chengdu Univeristy of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Univeristy of Technology filed Critical Chengdu Univeristy of Technology
Priority to CN202010641885.9A priority Critical patent/CN111522030B/zh
Publication of CN111522030A publication Critical patent/CN111522030A/zh
Application granted granted Critical
Publication of CN111522030B publication Critical patent/CN111522030B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • G01S19/17Emergency applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Alarm Systems (AREA)
  • Multimedia (AREA)
  • Pulmonology (AREA)

Abstract

本发明公开了一种基于无人机组与北斗定位的山区失踪人员搜救***,涉及旅游安全技术领域,包括失踪人员救助终端与搜救通信集成***,所述失踪人员救助终端包含定位模块、体征监测模块、控制模块与信号发射模块;所述体征监测模块的输出端与所述控制模块双向连接,所述控制模块的输出端与所述发射模块连接;所述体征监测模块包括温度传感器与脉搏传感器,所述温度传感器、脉搏传感器分别与所述控制模块连接;本发明具有在失踪人员不能自主发送求救信息的情况下,会以最优的方式搜寻到失踪人员的优点。

Description

一种基于无人机组与北斗定位的山区失踪人员搜救***
技术领域
本发明涉及旅游安全技术领域,具体为一种基于无人机组与北斗定位的山区失踪人员搜救***。
背景技术
山地景区是旅游安全事故的多发区。由于山地景区具有地势高亢崎岖、人口稀少、天气多变、交通闭塞、景区观光游览可达性差等复杂性特征,游客容易发生跌落或坠崖、迷路、失踪或失联,等旅游安全事故。因游客逃票或故意探险未开放路线,近10年来,全国各山地景区游客失踪或伤亡事件屡见不鲜。复杂山地景区往往幅员广阔,安全监控和野外应急措施无法做到全覆盖和实时救助,失踪游客的搜救难度较一般景区大出近5倍。同时,遇险游客往往无法判断自身所处准确方位和身体健康的变化状态,贻误了救助的最佳时机。因此,针对山地旅游安全的应急救援一直是景区管理者、游客自身、专业高山救援队等共同面临的技术难题。
现有的技术方案通过无人机组和导航定位***,利用失踪人员持有的定位移动终端发出的信号来对失踪人员进行搜救,但是在复杂山地环境下,失踪人员有可能遭遇到各种意外导致处于非正常体征状态下难以自主启动定位移动终端,不能发送求救信息给搜索设备,以至于当无人机组途经失踪人员所在区域的时候也不能监测到失踪人员,甚至经过多次监测以后,可能会认定该区域不存在失踪人员,转向其它区域继续探测,使得失踪人员彻底错过被救助的机会。因此,人员佩戴的定位移动终端需要具备自动启动功能,在无人机飞越人员所在区域,可以自动启动与无人机进行通信。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于无人机组与北斗定位的山区失踪人员搜救***。
本发明的目的是通过以下技术方案来实现的:
一种基于无人机组与北斗定位的山区失踪人员搜救***,包括失踪人员救助终端与搜救通信集成***;
所述失踪人员救助终端包含电量监测单元、定位模块、体征监测模块、控制模块、信号接收单元、第一WiFi模块与发射模块;所述电量监测单元、定位模块、体征监测模块、信号接收单元、第一WiFi模块与发射模块分别与所述控制模块连接;
所述体征监测模块包括温度传感器、备用温度传感器、脉搏传感器与备用脉搏传感器,所述温度传感器、备用温度传感器、脉搏传感器与备用脉搏传感器分别与所述控制模块连接;
所述温度传感器、备用温度传感器均用于获取人体体温及体温变化速率;
所述脉搏传感器、备用脉搏传感器均用于获取人体脉搏及脉搏变化速率;
所述控制模块内设置有存储模块,所述存储模块内存储有正常体温范围数据、正常体温变化速率的范围数据、脉搏变化范围数据与脉搏变化速率范围数据;
所述失踪人员救助终端自主发送求救信息的工作步骤如下:
S1,温度传感器与脉搏传感器对人体进行监测,获取实时体温及体温变化速率、实时脉搏与脉搏变化速率并将这两种数据传输给控制模块;
S2,如果控制模块获取到的实时体温信号或实时脉搏信号没有波动,则执行S3,否则执行S4;
S3,如果控制模块获取到的实时体温信号没有波动,则控制备用温度传感器对人体进行监测,获取实时体温及体温变化速率,执行S4;如果控制模块获取到的实时脉搏信号没有波动,则控制备用脉搏传感器对人体进行监测,获取实时脉搏及脉搏变化速率,执行S4;
S4,控制模块将收到的实时体温变化速率和正常体温变化速率进行对比、将收到的实时脉搏变化速率与正常脉搏变化速率进行对比,如果实时体温变化速率不在正常体温变化速率范围之内或者实时脉搏变化速率不在正常的脉搏变化速率之内,则判定为非正常体征,执行下一步骤,如果实时体温变化速率在正常体温变化速率范围之内和实时脉搏变化速率在正常的脉搏变化速率之内,则执行步骤S1;
S5,控制模块控制信号发射模块按照时间间隔T1发送求救信号;
所述求救信号内包括第一位置信息坐标点、实时体温及体温变化速率、实时脉搏及脉搏变化速率;
所述搜救通信集成***包括北斗通信***、无人机搜救***和地面通信***;
所述北斗通信***包括北斗卫星导航定位***,所述地面通信***包括地面控制站,所述无人机搜救***包括无人机组,所述无人机组中的每个无人机均包括处理器及与处理器连接的北斗定位模块、无线数传模块、图像传输模块、若干无刷电机、AHRS模块、气压高度计、高清摄像头、电源与收发单元,北斗定位模块与北斗卫星导航定位***连接,无线数传模块、图像传输模块均与地面控制站连接,所述高清摄像头与所述图像传输模块连接,所述若干无刷电机、AHRS模块、气压高度计分别与所述处理器连接,所述的处理器为ARMCortex-M7嵌入式处理器,所述的无线数传模块为NRF24L01远距离无线传输模块,所述的ARMCortex-M7处理器的SPI接口上外接了一个NRF24L01远距离无线传输模块,该模块与地面控制站上另一个NRF24L01无线模块组成数据链路通讯***,实现地面控制站和无人机之间的数据交互,将导航定位信息和地面操控指令传输给无人机,同时地面控制站还可以实时接收无人机的反馈信息;
其中,无人机搜救***搜救过程如下:
S1,地面控制站将待搜救区域划分为多个方形区,
S2,控制无人机组在每个方形区内停留的时间为T2,T1<T2;
S3,当无人机组在飞行过程中通过信号接收单元接收到失踪人员救助终端的发射单元发送的求救信号以后,通过无线数传模块将求救信号传输给地面控制站;
S4,地面控制站接收无人机组发送的求救信号以后,控制无人机组向求救信号内的第一位置信息坐标点靠近;
S5,当无人机组到达第一位置信息坐标点以后,通过高清摄像头拍摄第一位置信息坐标点的图像,将图像通过图像传输模块传输给地面控制站;
S6,地面控制站通过接收到的图像,判断是否能看到失踪人员;如果看不到失踪人员,执行下一步骤,如果看到失踪人员,执行步骤S11,
S7,地面控制站控制无人机组发送激活信号;
S8,失踪人员救助终端的信号接收单元接收到激活信号并发送给控制模块,控制模块控制第一WiFi模块启动,无人机组通过信号接收单元在几个点收集第一WiFi模块发送的Wi-Fi数据包,然后通过三边定位算法,找到失踪人员救助终端的最新位置坐标信息并传输给地面控制站;
S9,地面控制站控制无人机组抵达最新位置坐标,并控制无人机组通过高清摄像头拍摄最新位置坐标的图像,将图像通过图像传输模块传输给地面控制站;
S10,地面控制站通过接收到的图像,判断是否能看到失踪人员;如果看不到失踪人员,执行步骤S7,如果看到失踪人员,执行步骤S11;
S11,地面控制站发出指令派遣搜救人员前往营救;
其中无人机内设置有第二WiFi模块、Wi-Fi天线,无人机通过第一WiFi模块还包括以下内容:
1.无人机通过第二WiFi模块为失踪人员救助终端提供Wi-Fi连接。
2.无人机利用搭载的Wi-Fi天线收集失踪人员救助终端发送的Wi-Fi数据包。
3.处理器对这些Wi-Fi数据包进行解析,进而确定失踪人员的位置;
综上,将失踪人员救助终端与无人机搜救***协同起来完成救援的过程为:
步骤1,体征监测模块实时采集人体体征数据;
步骤2,判断体征监测模块内部传感器是否存在故障,如果是执行下一步骤,否则执行步骤4;
步骤3,启用备用传感器,执行步骤4
步骤4,通过采集的实时人体体征数据判断人体是否处于非正常体征状态;如果是执行步骤5,否则执行步骤1;
步骤5,失踪人员救助终端按照时间间隔T1发送求救信号;
步骤6,无人机接收到求救信号并在地面控制站的控制下抵达求救信号中的第一位置信息坐标点并拍照传输给地面控制站;
步骤7,地面控制站通过图像判断能否看到失踪人员,如果不能,执行下一步骤,如果能,则执行步骤9;
步骤8,无人机通过发送激活信号和WiFi定位找到最新位置信息并在地面控制站的控制下抵达该位置并拍照传输给地面控制站,执行步骤7;
步骤9,地面控制站派遣搜救人员前往营救。
进一步的,所述存储模块内还存储有体温等级数据,所述体温等级数据包括正常体温下限温度C1、正常体温上限温度C2、危险体温下限温度C3与危险体温上限温度C4;其中C3<C1<C2<C4;
所述时间间隔T1会发生改变,其过程如下:
步骤1,控制模块接收到温度传感器监测的实时体温Ci;
步骤2,判断是否C1≤Ci≤C2,如果是,执行步骤3,否则,执行步骤4;
步骤3,控制模块通过电量监测单元实时监控失踪人员救助终端的剩余电量,剩余电量越多,时间间隔T1越短,剩余电量越少,时间间隔T1越长;
步骤4,判断是否C3≤Ci<C1或C2<Ci≤C4,如果是,执行步骤5,否则执行步骤6;
步骤5,Ci越靠近C3或Ci越靠近C4,时间间隔TI越短;
步骤6,控制模块控制发射单元不间断的发射求救信号。
进一步的,所述北斗通信***、无人机搜救***和地面通信***及相关信息基础设施,根据山地景区的地形地貌特征选择合适的通信***集成方式,利用景区地面已经构建起的通信***作为公网覆盖区域的搜索救援通信传输链路。
优选的,所述的AHRS模块包括三轴陀螺仪、三轴加速度计、三轴磁强计。
优选的,所述的高清摄像头为CCD摄像头。
优选的,所述无人机组内无人机的数量不少于三个。
本发明的有益效果是:
1、本发明的一个创新点在于,在温度传感器与脉搏传感器对人体进行监测的过程中,有一个对温度传感器和脉搏传感器进行故障判断的过程,如果温度传感器或脉搏传感器出现故障,则启动相应的备用温度传感器或备用脉搏传感器进行监测,如果监测到失踪人员处于非正常体征状态,则通过控制模块控制发射单元按照时间间隔T1发射求救信号,也是考虑到尽可能的节省电量。
2、本发明的另一个创新点在于,将待搜救区域划分成多个方形区,无人机在每个方形区搜救的时间为T2,T2大于T1保证无人机能够接收到求救信号,体现了无人机搜救***与失踪人员救助终端的协同作用,同时考虑到失踪人员救助终端的第一位置信息坐标点的定位存在误差,所以当无人机飞到第一位置信息坐标点的时候会对第一位置信息坐标点进行拍照并传输给地面控制站,地面控制站如果在图片中没有看到失踪人员,则证明第一位置信息坐标点确实有误,如果此时失踪人员救助终端又刚好处于不发送求救信号的时间段,则还需要等待,会错过最佳救援时间,所以通过无人机发送激活信号,失踪人员救助终端的信号接收单元接收到激活信号并发送给控制模块,控制模块控制第一WiFi模块启动,无人机组通过信号接收单元在几个点收集第一WiFi模块发送的Wi-Fi数据包,然后通过三边定位算法,找到失踪人员救助终端的最新位置坐标信息并传输给地面控制站,地面控制站控制无人机组抵达最新位置坐标,并控制无人机组通过高清摄像头拍摄最新位置坐标的图像,将图像通过图像传输模块传输给地面控制站,如果还是看不到救援人员,就继续定位、移动、拍照,直到找到失踪人员,这同样体现了无人机搜救***与失踪人员救助终端的协同作用。
3、本发明的一个创新点在于,如果人体的温度低于某个极限值或者高于某个极限值,很可能此时人体已经处于非常危险的状态,如果还是按照原来的时间间隔T1发送求救信号,就有可能当无人机得到求救信号的时候,失踪人员已经错过了最佳搜救机会,并且也没有考虑到电量和时间间隔T1的关系,所以通过在存储模块内还存储有体温等级数据,判断人体实时体温处于哪个区间,如果人体的体温处于正常的区间,只需要根据电量的多少来决定时间隔T1的长短;如果人体的体温已经处于非正常或者明显需要救治的危险状态,就不需要考虑电量的多少,根据危险程度决定时间间隔T1的发送频次。
附图说明
图1为本发明的失踪人员救助终端的方法流程图;
图2为本发明的无人机搜救***的方法流程图;
图3为本发明的时间间隔T1变化的方法流程图;
图4为本发明的三边定位算法的示意图。
具体实施方式
下面结合附图进一步详细描述本发明的技术方案,但本发明的保护范围不局限于以下所述。
现有的技术方案通过无人机组和导航定位***,利用失踪人员持有的定位移动终端发出的信号来对失踪人员进行搜救,但是在复杂山地环境下,失踪人员有可能遭遇到各种意外导致非正常体征或者受伤难以自主启动定位移动终端,不能发送求救信息给搜索设备,以至于当无人机组途经失踪人员所在区域的时候也不能监测到失踪人员,甚至经过多次监测以后,可能会认定该区域不存在失踪人员,转向其它区域继续探测,使得失踪人员彻底错过被救助的机会,因此提出以下技术方案:
一种基于无人机组与北斗定位的山区失踪人员搜救***,包括失踪人员救助终端与搜救通信集成***;
所述失踪人员救助终端包含电量监测单元、定位模块、体征监测模块、控制模块、信号信号接收单元、第一WiFi模块与发射模块;所述电量监测单元、定位模块、体征监测模块、信号接收单元、第一WiFi模块与发射模块分别与所述控制模块连接;
所述体征监测模块包括温度传感器、备用温度传感器、脉搏传感器与备用脉搏传感器,所述温度传感器、备用温度传感器、脉搏传感器与备用脉搏传感器分别与所述控制模块连接;
所述温度传感器、备用温度传感器均用于获取人体体温及体温变化速率;
所述脉搏传感器、备用脉搏传感器均用于获取人体脉搏及脉搏变化速率;
所述控制模块内设置有存储模块,所述存储模块内存储有正常体温范围数据、正常体温变化速率的范围数据、脉搏变化范围数据与脉搏变化速率范围数据;
所述失踪人员救助终端自主发送求救信息的工作步骤如下:如图1所示。
S1,温度传感器与脉搏传感器对人体进行监测,获取实时体温及体温变化速率、实时脉搏与脉搏变化速率并将这两种数据传输给控制模块;
S2,如果控制模块获取到的实时体温信号或实时脉搏信号没有波动,则执行S3,否则执行S4;
S3,如果控制模块获取到的实时体温信号没有波动,则控制备用温度传感器对人体进行监测,获取实时体温及体温变化速率;执行S4,如果控制模块获取到的实时脉搏信号没有波动,则控制备用脉搏传感器对人体进行监测,获取实时脉搏及脉搏变化速率;执行S4;
S4,控制模块将收到的实时体温变化速率和正常体温变化速率进行对比、将收到的实时脉搏变化速率与正常脉搏变化速率进行对比,如果实时体温变化速率不在正常体温变化速率范围之内或者实时脉搏变化速率不在正常的脉搏变化速率之内,则判定为非正常体征,执行下一步骤,如果实时体温变化速率在正常体温变化速率范围之内和实时脉搏变化速率在正常的脉搏变化速率之内,则执行步骤S1;
S5,控制模块控制发射单元按照时间间隔T1发送求救信号;
所述求救信号内包括第一位置信息坐标点、实时体温及体温变化速率、实时脉搏及脉搏变化速率;
所述搜救通信集成***包括北斗通信***、无人机搜救***和地面通信***;
所述北斗通信***包括北斗卫星导航定位***,所述地面通信***包括地面控制站,所述无人机搜救***包括无人机组,所述无人机组中的每个无人机均包括处理器及与处理器连接的北斗定位模块、无线数传模块、图像传输模块、若干无刷电机、AHRS模块、气压高度计、高清摄像头、电源与收发单元,北斗定位模块与北斗卫星导航定位***连接,无线数传模块、图像传输模块均与地面控制站连接,所述高清摄像头与所述图像传输模块连接,所述若干无刷电机、AHRS模块、气压高度计分别与所述处理器连接,所述的处理器为ARMCortex-M7嵌入式处理器,所述的无线数传模块为NRF24L01远距离无线传输模块,所述的ARMCortex-M7处理器的SPI接口上外接了一个NRF24L01远距离无线传输模块,该模块与地面控制站上另一个NRF24L01无线模块组成数据链路通讯***,实现地面控制站和无人机之间的数据交互,将导航定位信息和地面操控指令传输给无人机,同时地面控制站还可以实时接收无人机的反馈信息;
其中,如图2所示,无人机搜救***搜救过程如下:
S1,地面控制站将待搜救区域划分为多个方形区,
S2,控制无人机组在每个方形区内停留的时间为T2,T1<T2;
S3,当无人机组在飞行过程中通过信号接收单元接收到失踪人员救助终端的发射单元发送的求救信号以后,通过无线数传模块将求救信号传输给地面控制站;
S4,地面控制站接收无人机组发送的求救信号以后,控制无人机组向求救信号内的第一位置信息坐标点靠近;
S5,当无人机组到达第一位置信息坐标点以后,通过高清摄像头拍摄第一位置信息坐标点的图像,将图像通过图像传输模块传输给地面控制站;
S6,地面控制站通过接收到的图像,判断是否能看到失踪人员;如果看不到失踪人员,执行下一步骤,如果看到失踪人员,执行步骤S11;
S7,地面控制站控制无人机组发送激活信号;
S8,失踪人员救助终端的信号接收单元接收到激活信号并发送给控制模块,控制模块控制第一WiFi模块启动,无人机组通过信号接收单元在几个点收集第一WiFi模块发送的Wi-Fi数据包,然后通过三边定位算法,找到失踪人员救助终端的最新位置坐标信息并传输给地面控制站;
S9,地面控制站控制无人机组抵达最新位置坐标,并控制无人机组通过高清摄像头拍摄最新位置坐标的图像,将图像通过图像传输模块传输给地面控制站;
S10,地面控制站通过接收到的图像,判断是否能看到失踪人员;如果看不到失踪人员,执行步骤S7,如果看到失踪人员,执行步骤S11;
S11,地面控制站发出指令派遣搜救人员前往营救。
其中无人机内设置有第二WiFi模块、Wi-Fi天线,无人机通过第一WiFi模块还包括以下内容:
1.无人机通过第二WiFi模块为失踪人员救助终端提供Wi-Fi连接。
2.无人机利用搭载的Wi-Fi天线收集失踪人员救助终端发送的Wi-Fi数据包。
3.处理器对这些Wi-Fi数据包进行分析,进而确定失踪人员的位置。
其中,三边定位算法包括以下内容:
分别以已知位置的3个无人机的AP为圆心,以各个无人机到待测失踪人员救助终端的AP的最近距离为半径作圆,所得的3个圆的交点为D。示意图如图4所示,设位置节点D(x,y),已知A、B、C三点的坐标为(x1,y1),(x2,y2),(x3,y3),它们到D的距离分别是d1、d2、d3.则D的位置可以通过下列方程中的任意两个进行求解;
Figure DEST_PATH_IMAGE001
综上,将失踪人员救助终端与无人机搜救***协同起来完成救援的过程为:
步骤1,体征监测模块实时采集人体体征数据;
步骤2,判断体征监测模块内部传感器是否存在故障,如果是执行下一步骤,否则执行步骤4;
步骤3,启用备用传感器,执行步骤4
步骤4,通过采集的实时人体体征数据判断人体是否处于非正常体征状态;如果是执行步骤5,否则执行步骤1;
步骤5,失踪人员救助终端按照时间间隔T1发送求救信号;
步骤6,无人机接收到求救信号并在地面控制站的控制下抵达求救信号中的第一位置信息坐标点并拍照传输给地面控制站;
步骤7,地面控制站通过图像判断能否看到失踪人员,如果不能,执行下一步骤,如果能,则执行步骤9;
步骤8,无人机通过发送激活信号和WiFi定位找到最新位置信息并在地面控制站的控制下抵达该位置并拍照传输给地面控制站,执行步骤7;
步骤9,地面控制站派遣搜救人员前往营救。
同时无人机越靠近失踪人员,Wi-Fi连接越加强烈。
需要说明的是,失踪人员救助终端生成唯一MAC地址。
需要说明的是,所述北斗通信***、无人机搜救***和地面通信***及相关信息基础设施,根据山地景区的地形地貌特征选择合适的通信***集成方式,利用景区地面已经构建起的通信***作为公网覆盖区域的搜索救援通信传输链路。
其中,所述的AHRS模块包括三轴陀螺仪、三轴加速度计、三轴磁强计。
需要说明的是,所述的高清摄像头为CCD摄像头。
其中,所述无人机组内无人机的数量不少于三个。
在上述的大环境下,虽然已经考虑到了失踪人员救助终端温度传感器和脉搏传感器的故障监测,并且能够及时启动备用温度传感器和备用脉搏传感器,使得即使监测到失踪人员的体征状态并按照时间间隔T1发送求救信号,也考虑到了让无人机在每个搜救方形区域内停留的时间T2大于T1,保证无人机能够收到求救信号,但是如果人体的温度低于某个极限值或者高于某个极限值,很可能此时人体已经处于生命体征危险的状态,如果还是按照原来的时间间隔T1发送求救信号,就有可能当无人机得到求救信号的时候,失踪人员已经错过了最佳搜救机会,并且也没有考虑到电量和时间间隔T1的关系,因此,在上述的基础之上,提出以下方案:
所述存储模块内还存储有体温等级数据,所述体温等级数据包括正常体温下限温度C1、正常体温上限温度C2、危险体温下限温度C3与危险体温上限温度C4;其中C3<C1<C2<C4,
所述时间间隔T1会发生改变,其过程如下;如图3所示。
步骤1,控制模块接收到温度传感器监测的实时体温Ci;
步骤2,判断是否C1≤Ci≤C2,如果是,执行步骤3,否则,执行步骤4;
步骤3,控制模块通过电量监测单元实时监控失踪人员救助终端的剩余电量,剩余电量越多,时间间隔T1越短,剩余电量越少,时间间隔T1越长;
步骤4,判断是否C3≤Ci<C1或C2<Ci≤C4,如果是,执行步骤5,否则执行步骤6;
步骤5,Ci越靠近C3或Ci越靠近C4,时间间隔TI越短;
步骤6,控制模块控制发射单元不间断的发射求救信号。
需要说明的是,可以将电量按照百分比的形式与时间间隔T1对应,比如电量每减少百分之十,时间间隔T1增加二分之一。
综上,失踪人员救助终端发射求救信号的过程为:
S1,温度传感器与脉搏传感器对人体进行监测,获取实时体温及体温变化速率、实时脉搏与脉搏变化速率并将这两种数据传输给控制模块;
S2,如果控制模块获取到的实时体温信号或实时脉搏信号没有波动,则执行S3,否则执行S4;
S3,如果控制模块获取到的实时体温信号没有波动,则控制备用温度传感器对人体进行监测,获取实时体温及体温变化速率,执行S4;如果控制模块获取到的实时脉搏信号没有波动,则控制备用脉搏传感器对人体进行监测,获取实时脉搏及脉搏变化速率,执行S4;
S4,控制模块将收到的实时体温变化速率和正常体温变化速率进行对比、将收到的实时脉搏变化速率与正常脉搏变化速率进行对比,如果实时体温变化速率不在正常体温变化速率范围之内或者实时脉搏变化速率不在正常的脉搏变化速率之内,则判定为非正常体征,执行下一步骤,如果实时体温变化速率在正常体温变化速率范围之内和实时脉搏变化速率在正常的脉搏变化速率之内,则执行步骤S1;
S5,控制模块接收到温度传感器监测的实时体温Ci;
S6,判断是否C1≤Ci≤C2,如果是,执行步骤3,否则,执行步骤4;
S7,控制模块通过电量监测单元实时监控失踪人员救助终端的剩余电量,剩余电量越多,时间间隔T1越短,剩余电量越少,时间间隔T1越长;
S8,判断是否C3≤Ci<C1或C2<Ci≤C4,如果是,执行步骤5,否则执行步骤6;
S9,Ci越靠近C3或Ci越靠近C4,时间间隔TI越短;
S10,控制模块控制发射单元不间断的发射求救信号控制模块控制发射单元按照时间间隔T1发送求救信号。
因为人体正常的体温是36-37度,如果体温高于41度或低于35度时将严重影响各***(特别是神经***)的机能活动,甚至危害生命,因此需要判断人体的体温处于哪个区间,当人体处于危险体温下限温度以下或者危险体温上限温度以上的时候,完全不需要考虑电量,必须不间断的发送求救信号才有可能得到紧急救援机会。
以上所述仅是本发明的优选实施方式,应当理解所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (6)

1.一种基于无人机组与北斗定位的山区失踪人员搜救***,其特征在于,包括失踪人员救助终端与搜救通信集成***;
所述失踪人员救助终端包含电量监测单元、定位模块、体征监测模块、控制模块、信号接收单元、第一WiFi模块与信号发射模块;所述电量监测单元、定位模块、体征监测模块、信号接收单元、第一WiFi模块与信号发射模块分别与所述控制模块连接;
所述体征监测模块包括温度传感器、备用温度传感器、脉搏传感器与备用脉搏传感器,所述温度传感器、备用温度传感器、脉搏传感器与备用脉搏传感器分别与所述控制模块连接;
所述温度传感器、备用温度传感器均用于获取人体体温及体温变化速率;
所述脉搏传感器、备用脉搏传感器均用于获取人体脉搏及脉搏变化速率;
所述控制模块内设置有存储模块,所述存储模块内存储有正常体温范围数据、正常体温变化速率的范围数据、脉搏变化范围数据与脉搏变化速率范围数据;
所述失踪人员救助终端自主发送求救信息的工作步骤如下:
S1,温度传感器与脉搏传感器对人体进行关键体征指标监测,获取实时体温及体温变化速率、实时脉搏与脉搏变化速率并将这两种数据传输给控制模块;
S2,如果控制模块获取到的实时体温信号或实时脉搏信号没有波动,则执行S3,否则执行S4;
S3,如果控制模块获取到的实时体温信号没有波动,则控制备用温度传感器对人体进行监测,获取实时体温及体温变化速率,执行S4;如果控制模块获取到的实时脉搏信号没有波动,则控制备用脉搏传感器对人体进行监测,获取实时脉搏及脉搏变化速率,执行S4;
S4,控制模块将收到的实时体温变化速率和正常体温变化速率进行对比、将收到的实时脉搏变化速率与正常脉搏变化速率进行对比,如果实时体温变化速率不在正体温变化速率范围之内或者实时脉搏变化速率不在正常的脉搏变化速率之内,则判定为非正常体征,执行下一步骤,如果实时体温变化速率在正常体温变化速率范围之内和实时脉搏变化速率在正常的脉搏变化速率之内,则执行步骤S1;
S5,控制模块控制信号发射模块按照时间间隔T1发送求救信号;
所述求救信号内包括第一位置信息坐标点、实时体温及体温变化速率、实时脉搏及脉搏变化速率;
所述搜救通信集成***包括北斗通信***、无人机搜救***和地面通信***;
所述北斗通信***包括北斗卫星导航定位***,所述地面通信***包括地面控制站,所述无人机搜救***包括无人机组,所述无人机组中的每个无人机均包括处理器及与处理器连接的北斗定位模块、无线数传模块、图像传输模块、若干无刷电机、AHRS模块、气压高度计、高清摄像头、电源与收发单元,北斗定位模块与北斗卫星导航定位***连接,无线数传模块、图像传输模块均与地面控制站连接,所述高清摄像头与所述图像传输模块连接,所述若干无刷电机、AHRS模块、气压高度计分别与所述处理器连接,所述的处理器为ARMCortex-M7嵌入式处理器,所述的无线数传模块为NRF24L01远距离无线传输模块,所述的ARMCortex-M7处理器的SPI接口上外接了一个NRF24L01远距离无线传输模块,该模块与地面控制站上另一个NRF24L01无线模块组成数据链路通讯***,实现地面控制站和无人机之间的数据交互,将导航定位信息和地面操控指令传输给无人机,同时地面控制站还可以实时接收无人机的反馈信息;
其中,无人机搜救***搜救过程如下;
S1,地面控制站将待搜救区域划分为多个方形区;
S2,控制无人机组在每个方形区内停留的时间为T2,T1<T2;
S3,当无人机组在飞行过程中通过信号接收单元接收到失踪人员救助终端的发射单元发送的求救信号以后,通过无线数传模块将求救信号传输给地面控制站;
S4,地面控制站接收无人机组发送的求救信号以后,控制无人机组向求救信号内的第一位置信息坐标点靠近;
S5,当无人机组到达第一位置信息坐标点以后,通过高清摄像头拍摄第一位置信息坐标点的图像,将图像通过图像传输模块传输给地面控制站;
S6,地面控制站通过接收到的图像,判断是否能看到失踪人员;如果看不到失踪人员,执行下一步骤,如果看到失踪人员,执行步骤S11;
S7,地面控制站控制无人机组发送激活信号;
S8,失踪人员救助终端的信号接收单元接收到激活信号并发送给控制模块,控制模块控制第一WiFi模块启动,无人机组通过信号接收单元在几个点收集第一WiFi模块发送的Wi-Fi数据包,然后通过三边定位算法,找到失踪人员救助终端的最新位置坐标信息并传输给地面控制站;
S9,地面控制站控制无人机组抵达最新位置坐标,并控制无人机组通过高清摄像头拍摄最新位置坐标的图像,将图像通过图像传输模块传输给地面控制站;
S10,地面控制站通过接收到的图像,判断是否能看到失踪人员;如果看不到失踪人员,执行步骤S7,如果看到失踪人员,执行步骤S11;
S11,地面控制站发出指令派遣搜救人员前往营救;
其中无人机内设置有第二WiFi模块、Wi-Fi天线,无人机通过第一WiFi模块还包括以下内容,
1.无人机通过第二WiFi模块为失踪人员救助终端提供Wi-Fi连接;
2.无人机利用搭载的Wi-Fi天线收集失踪人员救助终端发送的Wi-Fi数据包;
3.处理器对这些Wi-Fi数据包进行解析,进而确定失踪人员的位置;
综上,将失踪人员救助终端与无人机搜救***协同起来完成救援的过程为:
步骤1,体征监测模块实时采集人体体征数据;
步骤2,判断体征监测模块内部传感器是否存在故障,如果是则执行下一步骤,否则执行步骤4;
步骤3,启用备用传感器,执行步骤4;
步骤4,通过采集的实时人体体征数据判断人体是否处于非正常体征状态;如果是则执行步骤5,否则执行步骤1;
步骤5,失踪人员救助终端按照时间间隔T1发送求救信号;
步骤6,无人机接收到求救信号并在地面控制站的控制下抵达求救信号中的第一位置信息坐标点并拍照传输给地面控制站;
步骤7,地面控制站通过图像判断能否看到失踪人员,如果不能,执行下一步骤,如果能,则执行步骤9;
步骤8,无人机通过发送激活信号和WiFi定位找到最新位置信息并在地面控制站的控制下抵达该位置并拍照传输给地面控制站,执行步骤7;
步骤9,地面控制站派遣搜救人员前往营救。
2.根据权利要求1所述的一种基于无人机组与北斗定位的山区失踪人员搜救***,其特征在于,所述存储模块内还存储有体温等级数据,所述体温等级数据包括正常体温下限温度C1、正常体温上限温度C2、危险体温下限温度C3与危险体温上限温度C4;其中C3<C1<C2<C4,
所述时间间隔T1会发生改变,其过程如下:
步骤1,控制模块接收到温度传感器监测的实时体温Ci;
步骤2,判断是否C1≤Ci≤C2,如果是,执行步骤3,否则,执行步骤4;
步骤3,控制模块通过电量监测单元实时监控失踪人员救助终端的剩余电量,剩余电量越多,时间间隔T1越短,剩余电量越少,时间间隔T1越长;
步骤4,判断是否C3≤Ci<C1或C2<Ci≤C4,如果是,执行步骤5,否则执行步骤6;
步骤5,Ci越靠近C3或Ci越靠近C4,时间间隔TI越短;
步骤6,控制模块控制信号发射模块不间断的发射求救信号。
3.根据权利要求1所述的一种基于无人机组与北斗定位的山区失踪人员搜救***,其特征在于,所述北斗通信***、无人机搜救***和地面通信***及相关信息基础设施,根据山地景区的地形地貌特征选择合适的通信***集成方式,利用景区地面已经构建起的通信***作为公网覆盖区域的搜索救援通信传输链路。
4.根据权利要求1所述的一种基于无人机组与北斗定位的山区失踪人员搜救***,其特征在于,所述的AHRS模块包括三轴陀螺仪、三轴加速度计、三轴磁强计。
5.根据权利要求1所述的一种基于无人机组与北斗定位的山区失踪人员搜救***,其特征在于,所述的高清摄像头为CCD摄像头。
6.根据权利要求1所述的一种基于无人机组与北斗定位的山区失踪人员搜救***,其特征在于,所述无人机组内无人机的数量不少于三个。
CN202010641885.9A 2020-07-06 2020-07-06 一种基于无人机组与北斗定位的山区失踪人员搜救*** Active CN111522030B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010641885.9A CN111522030B (zh) 2020-07-06 2020-07-06 一种基于无人机组与北斗定位的山区失踪人员搜救***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010641885.9A CN111522030B (zh) 2020-07-06 2020-07-06 一种基于无人机组与北斗定位的山区失踪人员搜救***

Publications (2)

Publication Number Publication Date
CN111522030A true CN111522030A (zh) 2020-08-11
CN111522030B CN111522030B (zh) 2020-10-02

Family

ID=71911984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010641885.9A Active CN111522030B (zh) 2020-07-06 2020-07-06 一种基于无人机组与北斗定位的山区失踪人员搜救***

Country Status (1)

Country Link
CN (1) CN111522030B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788719A (zh) * 2020-12-28 2021-05-11 电子科技大学 一种高低速网络协同传输***和方法
CN112887669A (zh) * 2021-01-15 2021-06-01 李习平 基于太阳能路灯的山地景区救援***
CN113852879A (zh) * 2021-11-30 2021-12-28 北京理工大学前沿技术研究院 一种可穿戴设备的数据传输方法及***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204631252U (zh) * 2015-06-02 2015-09-09 成都理工大学 一种可对遇险游客体征进行监测的景区遇险游客搜寻***
CN106447579A (zh) * 2016-10-10 2017-02-22 成都理工大学 适用于复杂山地景区的天地空一体化协同搜救***
US20170320574A1 (en) * 2014-10-06 2017-11-09 James Sommerfield Richardson Methods and systems for providing a safety apparatus to distressed persons
KR101889816B1 (ko) * 2017-06-30 2018-09-20 전북대학교 산학협력단 레이더 센서를 이용한 재난 구조 시스템
CN108832997A (zh) * 2018-08-07 2018-11-16 湖南华诺星空电子技术有限公司 一种无人机群搜索救援方法及***
CN109952249A (zh) * 2016-09-09 2019-06-28 沃尔玛阿波罗有限责任公司 用于无人驾驶飞行任务优化的装置和方法
KR20190094854A (ko) * 2018-02-06 2019-08-14 주식회사 사람과기술 산악 조난자 구조를 위한 무인항공용 드론을 이용한 수색 시스템
US20200031437A1 (en) * 2018-07-25 2020-01-30 Thomas Lawrence Moses Unmanned Aerial Vehicle Search and Rescue System

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170320574A1 (en) * 2014-10-06 2017-11-09 James Sommerfield Richardson Methods and systems for providing a safety apparatus to distressed persons
CN204631252U (zh) * 2015-06-02 2015-09-09 成都理工大学 一种可对遇险游客体征进行监测的景区遇险游客搜寻***
CN109952249A (zh) * 2016-09-09 2019-06-28 沃尔玛阿波罗有限责任公司 用于无人驾驶飞行任务优化的装置和方法
CN106447579A (zh) * 2016-10-10 2017-02-22 成都理工大学 适用于复杂山地景区的天地空一体化协同搜救***
KR101889816B1 (ko) * 2017-06-30 2018-09-20 전북대학교 산학협력단 레이더 센서를 이용한 재난 구조 시스템
KR20190094854A (ko) * 2018-02-06 2019-08-14 주식회사 사람과기술 산악 조난자 구조를 위한 무인항공용 드론을 이용한 수색 시스템
US20200031437A1 (en) * 2018-07-25 2020-01-30 Thomas Lawrence Moses Unmanned Aerial Vehicle Search and Rescue System
CN108832997A (zh) * 2018-08-07 2018-11-16 湖南华诺星空电子技术有限公司 一种无人机群搜索救援方法及***

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李源: ""基于短距离无线通信技术的无人机搜索***研究"", 《中国优秀硕士学位论文全文数据库信息科技辑》 *
李源等: ""有体征监测功能的无人机野外搜救***的设计"", 《高技术通讯》 *
王瑞安: ""基于stackelberg均衡的运动目标多无人机协同搜索方法研究"", 《中国优秀硕士学位论文全文数据库工程科技||辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788719A (zh) * 2020-12-28 2021-05-11 电子科技大学 一种高低速网络协同传输***和方法
CN112788719B (zh) * 2020-12-28 2021-12-21 电子科技大学 一种高低速网络协同传输***和方法
CN112887669A (zh) * 2021-01-15 2021-06-01 李习平 基于太阳能路灯的山地景区救援***
CN113852879A (zh) * 2021-11-30 2021-12-28 北京理工大学前沿技术研究院 一种可穿戴设备的数据传输方法及***

Also Published As

Publication number Publication date
CN111522030B (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
CN111522030B (zh) 一种基于无人机组与北斗定位的山区失踪人员搜救***
CN111212384B (zh) 一种无人机多数据链智能切换方法
CN107481507A (zh) 一种智能交通管理方法及***
KR101647950B1 (ko) 드론을 이용한 안전 경로 안내장치 및 그 제어 방법
US20150282061A1 (en) Systems and methods for communication across multiple communications networks
US11401033B2 (en) Remote sensor data acquisition using autonomous drones
JP2003127994A (ja) 無人飛行物体の制御システム
CN101192350A (zh) 主动发射三维立体飞行信息的飞机防撞及导航***和方法
CN114422942B (zh) 一种基于无线自组网技术的移动应急通信***
CN110881061B (zh) 一种基于泛在电力物联网的臂式终端综合感知及智能交互应急处置方法
US20200314627A1 (en) Wireless discovery of wireless device using one or more drones
US20190244530A1 (en) Unmanned aerial vehicle and system having the same and method for searching for route of unmanned aerial vehicle
CN114023035A (zh) 一种全天候全自动森林火灾早期探测***及探测方法
JP6673811B2 (ja) 飛行装置、通報方法及びプログラム
US20220012496A1 (en) Security system and security method
CN108983809A (zh) 基于无人机的精准识别定位环绕的方法及无人机
CN113071697A (zh) 适用于无人机视觉引导着陆的无线充电装置及充电方法
US20210229804A1 (en) Traffic information processing equipment, system and method
CN106843252A (zh) 无人机及无人机控制方法
KR20140100611A (ko) 길안내 시스템의 동작 방법 및 휴대 기기의 길안내 방법
EP3223036A1 (en) Search and rescue system
CN210924925U (zh) 高速公路事故预警及自主求救智能行走警示牌
JP4669680B2 (ja) 携帯端末および移動体表示システム
CN110166992A (zh) 一种监控方法、监控设备和网关设备
CN110251863A (zh) 一种森林灭火机器人综合***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant