CN111416586A - 负载结构及其构成的射频放大器 - Google Patents

负载结构及其构成的射频放大器 Download PDF

Info

Publication number
CN111416586A
CN111416586A CN202010258430.9A CN202010258430A CN111416586A CN 111416586 A CN111416586 A CN 111416586A CN 202010258430 A CN202010258430 A CN 202010258430A CN 111416586 A CN111416586 A CN 111416586A
Authority
CN
China
Prior art keywords
parallel
connection end
radio frequency
load structure
frequency amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010258430.9A
Other languages
English (en)
Inventor
刘磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Yibaide Microelectronics Co ltd
Original Assignee
Hangzhou Yibaide Microelectronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Yibaide Microelectronics Co ltd filed Critical Hangzhou Yibaide Microelectronics Co ltd
Priority to CN202010258430.9A priority Critical patent/CN111416586A/zh
Publication of CN111416586A publication Critical patent/CN111416586A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种用于射频放大器的负载结构包括:N个顺序串联的并联型RLC电路,第一个并联型RLC电路的第一连接端作为该负载结构的第一连接端,第N个并联型RLC电路的第二连接端作为该负载结构的第二连接端,第
Figure DDA0002438347870000011
个并联型RLC电路的第二连接端连接电源电压;第M个并联型RLC电路器件参数和第(N‑M+1)个并联型RLC电路器件构成一级RLC并联谐振网络,同级RLC并联谐振网络中同种器件参数相同,该负载结构具有
Figure DDA0002438347870000012
级RLC并联谐振网络,N为2的倍数,N>M。本发明提供的负载结构及其构成的射频放大器,相对现有技术能对电压增益至少带来4.4dB~6.3dB的提升,或在相同同增益下本发明能对带宽至少带来2.5倍的提升,对增益平坦度至少带来2.6倍的提升。

Description

负载结构及其构成的射频放大器
技术领域
本发明涉及通信领域,特别是涉及一种用于射频放大器的负载结构。本发明还涉及一种由所述负载结构构成的射频放大器。
背景技术
射频放大器是射频芯片设计中必不可少的模块,比如接收机中的低噪声放大器,发射机中的功率放大器等。射频放大器可以分成有源放大管和负载两个部分,有源放大管根据工艺的不同可能是MOSFET或BJT等。负载部分负责提供一定的阻抗,现在技术大多采用单级RLC并联谐振网络,如图1所示。
增益,带宽及增益平坦度是射频放大器最重要的指标之一。射频***根据应用场景的不同都会对增益,带宽及增益平坦度提出相应的指标要求。现有技术射频放大器的设计中,大多时采用单级RLC并联谐振网络作为负载,但单级RLC并联谐振网络是一个窄带***,很难满足对增益,带宽及增益平坦度要求比较高的***,比如超宽带通信***。
发明内容
在发明内容部分中引入了一系列简化形式的概念,该简化形式的概念均为本领域现有技术简化,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
本发明要解决的技术问题是提供一种用于射频放大器能提高带宽及增益平坦度的负载结构。
本发明要解决的另一技术问题是提供一种具有所述负载结构的射频放大器。
射频放大器的增益,带宽及增益平坦度主要由有源放大管的增益和负载阻抗决定。有源放大管的增益由设计所选用的器件类型,尺寸及偏置点决定。本发明主要的设计思路是优化射频放大器的负载阻抗部分。
为解决上述技术问题,本发明提供用于射频放大器的负载结构,包括:
N个顺序串联的并联型RLC电路,第一个并联型RLC电路的第一连接端作为该负载结构的第一连接端,第N个并联型RLC电路的第二连接端作为该负载结构的第二连接端,第
Figure BDA0002438347850000021
个并联型RLC电路的第二连接端连接电源电压;
其中,第M个并联型RLC电路器件参数和第(N-M+1)个并联型RLC电路器件构成一级RLC并联谐振网络,同级RLC并联谐振网络中同种器件参数相同,该负载结构具有
Figure BDA0002438347850000022
级RLC并联谐振网络,N为2的倍数,N>M。
可选择的,进一步改进所述的负载结构,不同级RLC并联谐振网络的同种器件参数不相同。
可选择的,进一步改进所述的负载结构,N为4或6。
可选择的,进一步改进所述的负载结构,所述并联型RLC电路由并联的电感、电阻和电容组成。
本发明提供一种具有上述任意一项所述负载结构的射频放大器,包括:
所述负载结构的第一连接端连接该射频放大器第一输出端(OUTN),其第二连接端连接该射频放大器第二输出端(OUTP);
有源放大结构,其第一连接端连接该射频放大器第一输入端(INN),其第二连接端连接该射频放大器第二输入端(INP),其第三连接端连接该射频放大器第一输出端(OUTN),其第四连接端连接该射频放大器第二输出端(OUTP)。
可选择的,进一步改进所述的射频放大器,所述有源放大结构包括:
第一晶体管,其第一连接端连接该有源放大结构第三连接端,其第二连接端连接该有源放大结构第二连接端,其第三连接端连接地;
第二晶体管,其第一连接端连接该有源放大结构第四连接端,其第二连接端连接该有源放大结构第一连接端,其第三连接端连接地;
可选择的,进一步改进所述的射频放大器,所述第一晶体管是MOSFET或BJT。
可选择的,进一步改进所述的射频放大器,所述第二晶体管是MOSFET或BJT。
MOSFET,金属-氧化物半导体场效应晶体管,简称金氧半场效晶体管,包括NMOS、PMOS。
BJT,双极结型晶体管,包括PNP和NPN。
射频放大器中常见的RLC并联谐振网络如图1所示,其阻抗可以表示为
Figure BDA0002438347850000031
Figure BDA0002438347850000032
时,阻抗达到最大值,如图4所示(预设RLC取值下的结果)。同时也意味着射频放大器在此频率增益达到最大值。
如果将多级RLC并联谐振网络串联,如图2所示,其阻抗可以表示为
Figure BDA0002438347850000033
Figure BDA0002438347850000034
时,阻抗均存在峰值,曲线如图5所示(存在3个串联的RLC并联谐振电路,预设RLC取值下的结果)。此时,意味着射频放大器在连续的n个谐振频率增益达峰值。也就是说射频放大器的增益,带宽和增益平坦度得到了极大的改善。实际设计中增益,带宽和增益平坦度之间的优化是一个互相牵制和不断折衷的过程。比如提高增益往往带来带宽的变窄,提高带宽可能会导致增益平坦度的恶化等。所以实际设计过程需要根据不同***的具体需求取值。
本发明的射频放大器采用多级RLC并联谐振网络串联结构作为负载,带宽和增益平坦度的提升效果可由图10所示。其中图10用来说明本发明负载架构对于电压增益的提升。图10中1-stage代表单级RLC并联谐振网络作为负载时的电压增益曲线;2-stage代表采用本发明负载结构(N=4)作为负载时的电压增益曲线;3-stage代表采用新负载结构(N=6)作为负载时的电压增益曲线。由图10中仿真结果可见,本发明负载结构对电压增益至少带来4.4~6.3dB的提升。
图11所示是将电压增益(25dB)作为基准来说明本发明负载架构对带宽及增益平坦度的提升。图11中1-stage代表单级RLC并联谐振网络作为负载时的电压增益曲线;2-stage代表采用本发明负载结构(N=4)作为负载时的电压增益曲线;3-stage代表采用本发明负载结构(N=6)作为负载时的电压增益曲线。由图11中仿真结果可见,相同增益下新负载结构对带宽至少带来2.5倍的提升,对增益平坦度至少带来2.6倍的提升。
本发明提供的负载结构及其构成的射频放大器,相对现有技术能对电压增益至少带来4.4~6.3dB的提升,或在相同同增益下本发明能对带宽至少带来2.5倍的提升,对增益平坦度至少带来2.6倍的提升。
附图说明
本发明附图旨在示出根据本发明的特定示例性实施例中所使用的方法、结构和/或材料的一般特性,对说明书中的描述进行补充。然而,本发明附图是未按比例绘制的示意图,因而可能未能够准确反映任何所给出的实施例的精确结构或性能特点,本发明附图不应当被解释为限定或限制由根据本发明的示例性实施例所涵盖的数值或属性的范围。下面结合附图与具体实施方式对本发明作进一步详细的说明:
图1是现有单级RLC并联谐振网络结构示意图。
图2是采用现有单级RLC并联谐振网络射频放大器的结构示意图。
图3是采用现有多级RLC并联谐振网络射频放大器的结构示意图。
图4是图2所示射频放大器阻抗效果示意图。
图5是图3所示射频放大器阻抗效果示意图。
图6是本发明负载结构第一实施例结构示意图。
图7是本发明负载结构第二实施例结构示意图。
图8是本发明射频放大器第一实施例结构示意图。
图10是本发明射频放大器第二实施例结构示意图。
图9是本发明射频放大器带宽和增益平坦度的提升效果示意图。
图11是电压增益(25dB)为基准来本发明负载结构对带宽及增益平坦度的提升效果示意图。
附图标记说明
C1、C2……Cn表示不同的电容
L1、L2……Ln表示不同的电感
R1、R2……Rn表示不同的电阻
M1表示第一晶体管
M2表示第二晶体管
A-F表示不同的电气节点
1-stage、2-stage、3-stage表示不同的曲线。
具体实施方式
以下通过特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所公开的内容充分地了解本发明的其他优点与技术效果。本发明还可以通过不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点加以应用,在没有背离发明总的设计思路下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。本发明下述示例性实施例可以多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的具体实施例。应当理解的是,提供这些实施例是为了使得本发明的公开彻底且完整,并且将这些示例性具体实施例的技术方案充分传达给本领域技术人员。
如图6所示,本发明提供用于射频放大器的负载结构第一实施例,包括:
N个顺序串联的并联型RLC电路,第一个并联型RLC电路的第一连接端作为该负载结构的第一连接端A,第N个并联型RLC电路的第二连接端作为该负载结构的第二连接端B,第
Figure BDA0002438347850000051
个并联型RLC电路的第二连接端(即第
Figure BDA0002438347850000052
个并联型RLC电路的第一连接端)连接电源电压VDD;
其中,第M个并联型RLC电路器件参数和第(N-M+1)个并联型RLC电路器件构成一级RLC并联谐振网络,同级RLC并联谐振网络中同种器件参数相同,该负载结构具有
Figure BDA0002438347850000053
级RLC并联谐振网络,N为2的倍数,N>M。实际设计中,考虑到设计难度及芯片面积,N值不宜取值过大。
本实施例中,N=4,即形成2级并联谐振网络,应当注意的是,本发明对于并联谐振网络对于级的划分,本发明每一级并联谐振网络由2个两个结构和参数完全相同的并联型RLC电路组成。
本实施例中,第一级并联谐振网络包括两个结构和参数完全相同的并联型RLC电路,每个并联型RLC电路由并联的第一电阻R0、第一电容C0和第一电感L0组成。
第二级并联谐振网络包括两个结构和参数完全相同的并联型RLC电路,每个并联型RLC电路由并联的第二电阻R1、第二电容C1和第二电感L1组成。
其中,R0≠R1,C0≠C1,L0≠L1;
如图7所示,本发明提供用于射频放大器的负载结构第二实施例,包括:
N个顺序串联的并联型RLC电路,第一个并联型RLC电路的第一连接端作为该负载结构的第一连接端,第N个并联型RLC电路的第二连接端作为该负载结构的第二连接端,第
Figure BDA0002438347850000061
个并联型RLC电路的第二连接端连接电源电压VDD;
其中,第M个并联型RLC电路器件参数和第(N-M+1)个并联型RLC电路器件构成一级RLC并联谐振网络,同级RLC并联谐振网络中同种器件参数相同,该负载结构具有
Figure BDA0002438347850000062
级RLC并联谐振网络,N为2的倍数,N>M。实际设计中,考虑到设计难度及芯片面积,N值不宜取值过大。
本实施例中,N=6,即形成3级并联谐振网络,应当注意的是,本发明对于并联谐振网络对于级的划分,本发明每一级并联谐振网络由2个两个结构和参数完全相同的并联型RLC电路组成。
本实施例中,第一级并联谐振网络包括两个结构和参数完全相同的并联型RLC电路,每个并联型RLC电路由并联的第一电阻R0、第一电容C0和第一电感L0组成。
第二级并联谐振网络包括两个结构和参数完全相同的并联型RLC电路,每个并联型RLC电路由并联的第二电阻R1、第二电容C1和第一二电感L1组成。
第三级并联谐振网络包括两个结构和参数完全相同的并联型RLC电路,每个并联型RLC电路由并联的第三电阻R2、第三电容C2和第三电感L2组成。
其中,R0≠R1≠R2,C0≠C1≠C2,L0≠L1≠L2;
应当理解的是,当元件被称作“连接”或“结合”到另一元件时,该元件可以直接连接或结合到另一元件,或者可以存在中间元件。不同的是,当元件被称作“直接连接”或“直接结合”到另一元件时,不存在中间元件。在全部附图中,相同的附图标记始终表示相同的元件。如在这里所使用的,术语“和/或”包括一个或多个相关所列项目的任意组合和所有组合。应当以相同的方式解释用于描述元件或层之间的关系的其他词语(例如,“在……之间”和“直接在……之间”、“与……相邻”和“与……直接相邻”、“在……上”和“直接在……上”等)。
此外,还应当理解的是,尽管在这里可以使用术语“第一”、“第二”等来描述不同的元件、组件、区域、层和/或部分,但是这些元件、组件、区域、层和/或部分不应当受这些术语的限制。这些术语仅是用来将一个元件、组件、区域、层或部分与另一个元件、组件、区域、层或部分区分开来。因此,在不脱离根据本发明的示例性实施例的教导的情况下,以下所讨论的第一元件、组件、区域、层或部分也可以被称作第二元件、组件、区域、层或部分。
如图8所示,本发明提供一种所述负载结构第一实施例构成的射频放大器第一实施例,包括:
所述负载结构的第一连接端A连接该射频放大器第一输出端OUTN,其第二连接端B连接该射频放大器第二输出端OUTP;该实施例中,负载结构N=2,即形成2级并联谐振网络;
有源放大结构,其第一连接端C连接该射频放大器第一输入端INN,其第二连接端D连接该射频放大器第二输入端INP,其第三连接端E连接该射频放大器第一输出端OUTN,其第四连接端F连接该射频放大器第二输出端OUTP。
所述有源放大结构包括:
第一晶体管M1,其第一连接端M1A连接该有源放大结构第三连接端E,其第二连接端M1B连接该有源放大结构第二连接端D,其第三连接端M1C连接地GND;
第二晶体管M2,其第一连接端M2A连接该有源放大结构第四连接端F,其第二连接端M2B连接该有源放大结构第一连接端C,其第三连接端M2C连接地GND;
可选择的,所述第一晶体管M1和第二晶体管M2是MOSFET或BJT。
如图9所示,本发明提供一种所述负载结构第一实施例构成的射频放大器第二实施例,包括:
所述负载结构的第一连接端A连接该射频放大器第一输出端OUTN,其第二连接端B连接该射频放大器第二输出端OUTP;该实施例中,负载结构N=6,即形成3级并联谐振网络;
有源放大结构,其第一连接端C连接该射频放大器第一输入端INN,其第二连接端D连接该射频放大器第二输入端INP,其第三连接端E连接该射频放大器第一输出端OUTN,其第四连接端F连接该射频放大器第二输出端OUTP。
所述有源放大结构包括:
第一晶体管M1,其第一连接端M1A连接该有源放大结构第三连接端E,其第二连接端M1B连接该有源放大结构第二连接端D,其第三连接端M1C连接地GND;
第二晶体管M2,其第一连接端M2A连接该有源放大结构第四连接端F,其第二连接端M2B连接该有源放大结构第一连接端C,其第三连接端M2C连接地GND;
可选择的,所述第一晶体管M1和第二晶体管M2是MOSFET或BJT。
除非另有定义,否则这里所使用的全部术语(包括技术术语和科学术语)都具有与本发明所属领域的普通技术人员通常理解的意思相同的意思。还将理解的是,除非这里明确定义,否则诸如在通用字典中定义的术语这类术语应当被解释为具有与它们在相关领域语境中的意思相一致的意思,而不以理想的或过于正式的含义加以解释。
以上通过具体实施方式和实施例对本发明进行了详细的说明,但这些并非构成对本发明的限制。在不脱离本发明原理的情况下,本领域的技术人员还可做出许多变形和改进,这些也应视为本发明的保护范围。

Claims (8)

1.一种负载结构,其用于射频放大器,其特征在于,包括:
N个顺序串联的并联型RLC电路,第一个并联型RLC电路的第一连接端作为该负载结构的第一连接端,第N个并联型RLC电路的第二连接端作为该负载结构的第二连接端,第
Figure FDA0002438347840000011
个并联型RLC电路的第二连接端连接电源电压;
其中,第M个并联型RLC电路器件参数和第(N-M+1)个并联型RLC电路器件构成一级RLC并联谐振网络,同级RLC并联谐振网络中同种器件参数相同,该负载结构具有
Figure FDA0002438347840000012
级RLC并联谐振网络,N为2的倍数,N>M。
2.如权利要求1所述的负载结构,其特征在于:不同级RLC并联谐振网络的同种器件参数不相同。
3.如权利要求1所述的负载结构,其特征在于:N为4或6。
4.如权利要求1所述的负载结构,其特征在于:所述并联型RLC电路由并联的电感、电阻和电容组成。
5.一种具有权利要求1-4任意一项所述负载结构的射频放大器,其特征在于,包括:
所述负载结构的第一连接端连接该射频放大器第一输出端(OUTN),其第二连接端连接该射频放大器第二输出端(OUTP);
有源放大结构,其第一连接端连接该射频放大器第一输入端(INN),其第二连接端连接该射频放大器第二输入端(INP),其第三连接端连接该射频放大器第一输出端(OUTN),其第四连接端连接该射频放大器第二输出端(OUTP)。
6.如权利要求5所述的射频放大器,其特征在于,所述有源放大结构包括:
第一晶体管,其第一连接端连接该有源放大结构第三连接端,其第二连接端连接该有源放大结构第二连接端,其第三连接端连接地;
第二晶体管,其第一连接端连接该有源放大结构第四连接端,其第二连接端连接该有源放大结构第一连接端,其第三连接端连接地。
7.如权利要求6所述的射频放大器,其特征在于:所述第一晶体管是MOSFET或BJT。
8.如权利要求6所述的射频放大器,其特征在于:所述第二晶体管是MOSFET或BJT。
CN202010258430.9A 2020-04-03 2020-04-03 负载结构及其构成的射频放大器 Pending CN111416586A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010258430.9A CN111416586A (zh) 2020-04-03 2020-04-03 负载结构及其构成的射频放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010258430.9A CN111416586A (zh) 2020-04-03 2020-04-03 负载结构及其构成的射频放大器

Publications (1)

Publication Number Publication Date
CN111416586A true CN111416586A (zh) 2020-07-14

Family

ID=71493538

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010258430.9A Pending CN111416586A (zh) 2020-04-03 2020-04-03 负载结构及其构成的射频放大器

Country Status (1)

Country Link
CN (1) CN111416586A (zh)

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1267130A (zh) * 1999-03-09 2000-09-20 株式会社东芝 变频器
US6265944B1 (en) * 1999-09-27 2001-07-24 Conexant Systems, Inc. Fully integrated broadband RF voltage amplifier with enhanced voltage gain and method
CN1476666A (zh) * 2000-12-19 2004-02-18 �Ҵ���˾ 宽带双重放大器电路
TW578365B (en) * 2002-12-05 2004-03-01 Memetics Technology Co Ltd A multi-band electronic circuit
CN1599973A (zh) * 2001-11-15 2005-03-23 飞创股份有限公司 放大器
US20050253654A1 (en) * 2004-05-14 2005-11-17 Kwon Jong K Active load circuit for low-voltage CMOS voltage gain amplifier with wide bandwidth and high gain characteristic
CN101789760A (zh) * 2009-12-30 2010-07-28 复旦大学 采用并联反馈式结构的窄带低噪声放大器
CN101888212A (zh) * 2010-04-30 2010-11-17 苏州英诺迅科技有限公司 提高功率放大器线性度及功率附加效率的电路结构
CN201726362U (zh) * 2010-04-30 2011-01-26 苏州英诺迅科技有限公司 提高功率放大器线性度及功率附加效率的电路结构
CN102386874A (zh) * 2011-07-22 2012-03-21 复旦大学 一种宽带可重构负载网络
CN102509825A (zh) * 2011-10-27 2012-06-20 无锡南理工科技发展有限公司 低损耗高抑制微型腔体带通滤波器
CN102870323A (zh) * 2011-12-22 2013-01-09 华为技术有限公司 用于产生振荡的振荡器电路和方法
CN203135808U (zh) * 2013-01-11 2013-08-14 京信通信***(中国)有限公司 一种带外高抑制lc滤波器
CN103427775A (zh) * 2013-08-30 2013-12-04 昆山奥德鲁自动化技术有限公司 一种差分放大电路
CN103636122A (zh) * 2011-04-07 2014-03-12 Hrl实验室有限责任公司 非福斯特电路
US20140320212A1 (en) * 2011-11-09 2014-10-30 The Regents Of The University Of California Radio frequency power amplifiers
CN104300698A (zh) * 2014-11-06 2015-01-21 哈尔滨工业大学 一种具有高谐振频率稳定性的谐振增强型无线电能传输结构
CN106549638A (zh) * 2016-10-31 2017-03-29 唯捷创芯(天津)电子技术股份有限公司 一种抑制谐波与杂散的射频功率放大器、芯片及通信终端
CN206542378U (zh) * 2017-01-10 2017-10-03 成都旋极星源信息技术有限公司 一种用于宽频带低中频接收机的混频器
CN108832906A (zh) * 2018-08-13 2018-11-16 南京信息工程大学 一种基于rl、rc和低噪声放大器的负群时延电路及其设计方法
CN109104165A (zh) * 2018-08-13 2018-12-28 南京信息工程大学 一种基于rlc和低噪声放大器的负群时延电路及其设计方法
CN109525207A (zh) * 2018-11-18 2019-03-26 湖南大学 适用于5g网络的f类功率放大电路及射频功率放大器
US20190229686A1 (en) * 2018-01-25 2019-07-25 Cree, Inc. RF Power Amplifier with Frequency Selective Impedance Matching Network
CN110224226A (zh) * 2019-04-02 2019-09-10 西安易朴通讯技术有限公司 天线、天线控制方法及装置
CN110868165A (zh) * 2019-11-29 2020-03-06 山东大学 多适应性可切换片上低噪声放大器及工作方法

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1267130A (zh) * 1999-03-09 2000-09-20 株式会社东芝 变频器
US6265944B1 (en) * 1999-09-27 2001-07-24 Conexant Systems, Inc. Fully integrated broadband RF voltage amplifier with enhanced voltage gain and method
CN1476666A (zh) * 2000-12-19 2004-02-18 �Ҵ���˾ 宽带双重放大器电路
CN1599973A (zh) * 2001-11-15 2005-03-23 飞创股份有限公司 放大器
TW578365B (en) * 2002-12-05 2004-03-01 Memetics Technology Co Ltd A multi-band electronic circuit
US20050253654A1 (en) * 2004-05-14 2005-11-17 Kwon Jong K Active load circuit for low-voltage CMOS voltage gain amplifier with wide bandwidth and high gain characteristic
CN101789760A (zh) * 2009-12-30 2010-07-28 复旦大学 采用并联反馈式结构的窄带低噪声放大器
CN101888212A (zh) * 2010-04-30 2010-11-17 苏州英诺迅科技有限公司 提高功率放大器线性度及功率附加效率的电路结构
CN201726362U (zh) * 2010-04-30 2011-01-26 苏州英诺迅科技有限公司 提高功率放大器线性度及功率附加效率的电路结构
CN103636122A (zh) * 2011-04-07 2014-03-12 Hrl实验室有限责任公司 非福斯特电路
CN102386874A (zh) * 2011-07-22 2012-03-21 复旦大学 一种宽带可重构负载网络
CN102509825A (zh) * 2011-10-27 2012-06-20 无锡南理工科技发展有限公司 低损耗高抑制微型腔体带通滤波器
US20140320212A1 (en) * 2011-11-09 2014-10-30 The Regents Of The University Of California Radio frequency power amplifiers
CN102870323A (zh) * 2011-12-22 2013-01-09 华为技术有限公司 用于产生振荡的振荡器电路和方法
CN203135808U (zh) * 2013-01-11 2013-08-14 京信通信***(中国)有限公司 一种带外高抑制lc滤波器
CN103427775A (zh) * 2013-08-30 2013-12-04 昆山奥德鲁自动化技术有限公司 一种差分放大电路
CN104300698A (zh) * 2014-11-06 2015-01-21 哈尔滨工业大学 一种具有高谐振频率稳定性的谐振增强型无线电能传输结构
CN106549638A (zh) * 2016-10-31 2017-03-29 唯捷创芯(天津)电子技术股份有限公司 一种抑制谐波与杂散的射频功率放大器、芯片及通信终端
CN206542378U (zh) * 2017-01-10 2017-10-03 成都旋极星源信息技术有限公司 一种用于宽频带低中频接收机的混频器
US20190229686A1 (en) * 2018-01-25 2019-07-25 Cree, Inc. RF Power Amplifier with Frequency Selective Impedance Matching Network
CN108832906A (zh) * 2018-08-13 2018-11-16 南京信息工程大学 一种基于rl、rc和低噪声放大器的负群时延电路及其设计方法
CN109104165A (zh) * 2018-08-13 2018-12-28 南京信息工程大学 一种基于rlc和低噪声放大器的负群时延电路及其设计方法
CN109525207A (zh) * 2018-11-18 2019-03-26 湖南大学 适用于5g网络的f类功率放大电路及射频功率放大器
CN110224226A (zh) * 2019-04-02 2019-09-10 西安易朴通讯技术有限公司 天线、天线控制方法及装置
CN110868165A (zh) * 2019-11-29 2020-03-06 山东大学 多适应性可切换片上低噪声放大器及工作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
屈定波等 *

Similar Documents

Publication Publication Date Title
US7633341B2 (en) Wideband circuits and methods
EP1719243B1 (en) Radio frequency low noise amplifier with automatic gain control
Kao et al. A Novel Distributed Amplifier With High Gain, Low Noise, and High Output Power in ${\hbox {0.18-}}\mu {\hbox {m}} $ CMOS Technology
US6400227B1 (en) Stepped gain controlled RF driver amplifier in CMOS
JP2016189592A (ja) デジタルのチューナブル段間整合回路
CN101167245A (zh) 基于差分电感器的低噪声放大器
CN102084589B (zh) 在接收器射频前端实现高选择性的方法
EP2869465B1 (en) RF amplifier
Hadipour et al. A 40GHz to 67GHz bandwidth 23dB gain 5.8 dB maximum NF mm-Wave LNA in 28nm CMOS
US7405626B2 (en) Distributed amplifier having a variable terminal resistance
Meaamar et al. A 3–8 GHz low-noise CMOS amplifier
CN113114162A (zh) 一种用于cmos宽带幅相多功能芯片的衰减器电路
Kim et al. 58–72 GHz CMOS wideband variable gain low-noise amplifier
CN111817685A (zh) 一种电调微波有源滤波器
CN111416586A (zh) 负载结构及其构成的射频放大器
CN116865690A (zh) 基于非对称变压器的超宽带低功耗紧凑型低噪声放大器
Worapishet et al. Broadband amplification in CMOS technology using cascaded single-stage distributed amplifier
US10911007B2 (en) High-frequency amplifier circuitry and semiconductor device
Mesgari et al. A wideband low noise distributed amplifier with active termination
Pantoli et al. A wideband class-AB tunable active filter
Godara et al. Versatile wideband impedance matching circuit based on current conveyors
CN112583371A (zh) 一种基于lc谐振负载的宽频带共源共栅极低噪声放大器
JP2005159860A (ja) 広帯域増幅器
Linling et al. A Wideband Low-Noise Amplifier in 0.13-µm CMOS
Chen et al. A 21–27 GHz CMOS wideband LNA with 9.3±1.3 dB gain and 103.9±8.1 ps group-delay using standard 0.18 μm CMOS technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200714

WD01 Invention patent application deemed withdrawn after publication