CN111205100B - 无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法 - Google Patents

无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法 Download PDF

Info

Publication number
CN111205100B
CN111205100B CN202010136681.XA CN202010136681A CN111205100B CN 111205100 B CN111205100 B CN 111205100B CN 202010136681 A CN202010136681 A CN 202010136681A CN 111205100 B CN111205100 B CN 111205100B
Authority
CN
China
Prior art keywords
sic
sicnws
cracking
heat treatment
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010136681.XA
Other languages
English (en)
Other versions
CN111205100A (zh
Inventor
成来飞
吕鑫元
叶昉
张立同
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202010136681.XA priority Critical patent/CN111205100B/zh
Publication of CN111205100A publication Critical patent/CN111205100A/zh
Application granted granted Critical
Publication of CN111205100B publication Critical patent/CN111205100B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法,将PCS和二甲苯混合溶液浸渍到SiCW预制体内,200℃固化1h,900~1100℃裂解2h得多孔SiCW/SiC;3.多孔SiCW/SiC的热处理:将多孔SiCW/SiC在1300~1500℃热处理2h,“两步法”指的是浸渍固化裂解和热处理。本发明利用固化裂解先将生长SiCNWs所不必要的气相除去,再利用热处理放出生长SiCNWs所必要的气相,同时利用SiCW预制体的两级孔隙结构极大的提高必要气相的过饱和度,从而实现了SiCNWs的PIP无催化原位生长。

Description

无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法
技术领域
本发明属于纳米材料制备领域,涉及一种无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法。
背景技术
碳化硅陶瓷基复合材料(SiC-CMC)因具有高强度、高模量、良好的韧性、低密度、耐高温、耐磨耐蚀等优良性能,在航空航天领域有广阔的应用前景。SiC-CMC通常包括增强体、界面和基体等三个结构单元,其中增强体的作用是对陶瓷基体增强补韧。目前SiC-CMC的增强体主要有连续纤维、短切纤维、晶须和颗粒,早期发展的SiC-CMC的增强体通常是单相增强体,即采用上述增强体中的一种。伴随着SiC纳米线(SiCNWs)的首次合成,Wen Yang等(Single-Crystal SiC Nanowires with a Thin Carbon Coating for Stronger andTougher Ceramic Composites)在SiC连续纤维上原位生长了SiCNWs,由于SiCNWs具有很高的本征强度(~50GPa),因此SiCNWs与SiC纤维组成的双相增强体使复合材料的抗弯强度和断裂韧性相比SiC纤维增强的复合材料提高了一倍。据此,研究人员意识到可以通过原位生长的方式将SiCNWs引入到SiC-CMC中与原增强体协同增韧,达到进一步提高材料强韧性的目的。Liwen Yan等(In Situ Growth of Core-Sheath Heterostructural SiC NanowireArrays on Carbon Fibers and Enhanced Electromagnetic Wave AbsorptionPerformance)采用CVI法在碳纤维上原位生长了SiCNWs,Jian Li等(Fabrication andcharacterization of carbon-bonded carbon fiber composites with in-situ grownSiC nanowires)在碳短切纤维上原位生长了SiCNWs,Sumin Zhu等(In Situ Growth ofβ-SiC Nanowires in Porous SiC Ceramics)在SiC颗粒上原位生长了SiCNWs。而SiC晶须(SiCW)作为一种力学性能优异的增强体,尚未见报道有人在SiCW上原位生长SiCNWs。
SiCNWs的原位生长方法可以分为两类,即有催化法和无催化法。有催化法指的是在生长过程中有催化剂参与,催化剂通常是一些金属纳米粒子,这些粒子可以与其他反应物形成低熔点共晶合金,作为一维各向异性生长的催化种子,促进SiCNWs的生长。催化剂的加入可以降低反应温度,但不可避免地引入金属杂质,这可能会影响SiC-CMC的高温性能;同时,SiCNWs的生长受限于催化剂位点,即只有有催化剂的位置才能生长SiCNWs,因此催化剂在材料中的分布必须均匀可控,而这一要求实现难度较大。无催化法指的是在生长过程中没有催化剂参与,这种方法可避免上述问题。目前报道的无催化生长工艺主要为气相方法,即化学气相渗透(CVI)和化学气相沉积(CVD)。其中,CVD法只能在材料表面生长SiCNWs,一般用于制备涂层;CVI法由于气相渗透过程由外而内进行,因此制备的SiCNWs通常在材料内外分布不均匀、外多里少、存在梯度,这对复合材料性能提升不利。目前尚未见液相方法无催化生长SiCNWs的研究报道。液相工艺(如先驱体浸渍裂解法(PIP))可将反应物均匀的引入复合材料中,如果能够发展液相无催化工艺,将很可能在复合材料中制备出均匀分布的SiCNWs,优化材料性能。
本团队***总结了前人采用有催化PIP法生长SiCNWs的工艺,发现其具有“一步法”的特点,即将原材料升温到某一个特定温度下利用气液固(VLS)机制制得SiCNWs。例如:Lei Zhuang等(In-situ PIP-SiCNWs-toughened SiC-CrSi2-Cr3C2-MoSi2-Mo2C coatingfor oxidation protection of carbon/carbon composites)把浸渍有催化剂和先驱体的基材从室温升到1500℃保温2h即在基材中制备了SiCNWs。我们也对比总结了前人采用无催化CVI/CVD法生长SiCNWs的工艺,发现其生长机理一般是气固(VS)机制。VLS机制对气相的过饱和度不敏感,而VS机制则要求原材料产生很高的气相过饱和度。“一步法”反应过程除生成SiCNWs生长所需的必要气相物质外,还伴随生成大量的不必要气相物质,这些不必要气相物质的存在大大降低了必要气相物质的过饱和度,因此“一步法”很难实现无催化PIP生长SiCNWs。同时,本团队还注意到基材的孔隙结构对气相过饱和度有很大影响,我们前期开发了一种喷雾造粒结合3D打印制备具有两级孔隙结构SiCW预制体的方法(CN108706978A),在此基础上经研究发现,此SiCW预制体的两级孔隙结构有利于提高气相过饱和度,目前相关认识未见报道。综上所述,如果对PIP“一步法”工艺进行改进,并利用预制体的特殊孔隙结构,很有可能实现无催化PIP制备SiCNWs。
据此,本发明提出一种具有“两步法”工艺特征、在SiCW预制体内原位生长SiCNWs的无催化PIP法。首先制备具有两级孔隙结构的SiCW预制体,然后将聚碳硅烷(PCS)引入到此预制体内并固化裂解,之后再经更高温度的热处理即可生长出SiCNWs。该方法不使用任何催化剂,生长机理为VS机制,“两步法”是指第一步固化裂解第二步热处理,“两步”不能合并,缺一不可。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法,
技术方案
一种无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法,其特征在于生长工艺具有“两步法”特征,具体步骤如下:
步骤1:将聚碳硅烷PCS与溶剂配成混合溶液,然后浸渍到晶须预制体内,并在氩气气氛下固化裂解,固化温度为150℃,固化时间2h;裂解温度为900~1100℃,裂解时间为2~3h,升温速率为2~5℃/min;所述聚碳硅烷PCS与溶剂的混合质量比为1:1~1:3;所述晶须预制体的孔隙结构为两级孔隙结构,其中小孔孔径在0.3~3μm之间,大孔孔径在10~40μm之间;
步骤2:在高于裂解温度下对裂解后的材料进行热处理,热处理温度为1300~1500℃,热处理时间为2~3h,升温速率为2~5℃/min;热处理气氛为氩气气氛。
所述溶剂包括但不限于二甲苯或二乙烯基苯。
所述预制体为具有单晶结构的晶须构成。
所述晶须为SiC晶须、氮化硅晶须或碳化锆晶须。
有益效果
本发明提出的一种无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法,将PCS和二甲苯混合溶液浸渍到SiCW预制体内,200℃固化1h,900~1100℃裂解2h得多孔SiCW/SiC;3.多孔SiCW/SiC的热处理:将多孔SiCW/SiC在1300~1500℃热处理2h,“两步法”指的是浸渍固化裂解和热处理。本发明利用固化裂解先将生长SiCNWs所不必要的气相除去,再利用热处理放出生长SiCNWs所必要的气相,同时利用SiCW预制体的两级孔隙结构极大的提高必要气相的过饱和度,从而实现了SiCNWs的PIP无催化原位生长。
本发明的有益效果有以下几点:
(1)从工艺创新性的角度来看,首先,本发明所提供的无催化PIP工艺具有“两步法”特征:第一步裂解可以保证对SiCNWs生长并不必要的气体(如H2,CH4)充分释放;第二步更高温度热处理可以保证第一步裂解生成的非晶固态产物进一步分解释放气体,而释放的几乎全是对SiCNWs生长十分必要的气体,此“两步”过程实现了除废气的作用。其次,本发明所提供的无催化PIP工艺采用具有两级孔隙结构的SiCW预制体作为基材,可以将反应气体在大孔内聚集,有效提升气相过饱和度;而且大孔空间较大,有利于高长径比、高产量的SiCNWs的原位生长。
(2)从工艺特点的角度来看,一方面:前人采用基于气相工艺的无催化CVI/CVD方法在一些厚壁构件中制备SiCNWs时容易出现SiCNWs生长不均匀的问题,而本发明提供的基于液相工艺的无催化PIP方法对构件的尺寸、壁厚等几何参数没有特殊要求和选择性,可实现SiCNWs在构件中的均匀生长。另一方面,本发明提供的无催化PIP工艺具有很强的可调控性,可以通过调控先驱体的浸渍量、裂解温度与热处理温度、SiCW球形颗粒的粒径和SiCW预制体的孔径分布来实现不同体积分数、不同长径比的SiCNWs的制备。
(3)从工程应用的角度来看,前人发展的无催化CVI/CVD工艺需要相对复杂昂贵的制造设备,而本发明提供的无催化PIP工艺所需设备简单、成本较低,更容易实现。
(4)从工艺推广的角度来看,本发明提供的无催化PIP方法具有普适性意义。从基材结构上推广,“两步法”还可以在具有其他类型两级孔隙结构的基材内生长SiCNWs,只要该基材的大孔与小孔相互分布均匀,并且孔径比在10~100之间;从材料体系上推广,“两步法”可以在具有两级孔隙结构的多种陶瓷(如氧化物体系、超高温锆系或铪系等)预制体内原位生长其他成分的纳米线。
附图说明
图1.本发明的工艺流程图
图2.SiCW预制体中大孔与小孔示意图;图中展示了本发明的晶须预制体的二级孔隙结构的分布状态,是由晶须球内的小孔和晶须球间的大孔组成
图3.实施例2“两步法”中第一步和第二步对应的材料低倍SEM照片
是“两步法”的原理中的证据,即第一步所产生的裂解产物只存在于球内(图3左插图),而球间没有裂解产物(图3左);第二步的热处理会使裂解产物进一步释放用于生长纳米线的气体,这些气体生于小孔,由于扩散,聚集于大孔,过饱和度由此升高,纳米线得以生长,图3右展示了纳米线将晶须球包裹的低倍照片。
图4.实施例1制备的SiCNWs的高倍SEM照片
展示了纳米线的高倍照片,没有发现纳米线尖端的金属催化剂球,证明纳米线是无催化生长的,再结合图3右,可以统计出纳米线的直径约30-200nm,长度在几十到几百微米之间。
图5.实施例2制备的SiCNWs的TEM照片
图6.实施例3制备的SiCNWs的EDS照片
说明所制备的纳米线的成分主要是Si和C,即碳化硅纳米线,微量的氧可能是由于轻微的氧化导致的。
图7.实施例4制备的SiCNWs的SAED照片,SAED证明了纳米线具有单晶结构;
图8.实施例4制备的SiCNWs的HRTEM照片
证明了纳米线的生长方向为(111)方向,具有3C-SiC结构。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
本发明提供了一种利用“两步法”结合预制体孔隙结构设计实现无催化PIP原位生长SiCNWs的新方法。
以SiCW为例,先用喷雾造粒法将SiCW造粒成球形颗粒,再用3D打印技术将SiCW球形颗粒打印成预制体,该预制体具有两级孔隙结构,即SiCW球间大孔(~30μm)和SiCW球内小孔(~0.35μm)。然后将PCS与二甲苯的混合溶液浸渍到该预制体内,因为预制体内大孔和小孔的毛细管力相差悬殊,PCS最后只存在于小孔内,大孔内的PCS无法稳定存在最后被小孔吸走或流出基材。之后将浸渍了PCS的SiCW预制体放于管式炉中进行PCS陶瓷化处理,该处理过程包括“两步”:第一步固化裂解,裂解后的非晶固态产物只存在于预制体的小孔中;第二步更高温度下的热处理,没有裂解充分的非晶固态产物在更高温度下会发生析晶转变并释放气体,此气体产生于小孔,大孔里起初并没有该气体,但由于小孔与大孔里的气体存在浓度差,使得小孔里的气体向大孔扩散。一个大孔由周围多个SiCW球包围,大孔内的气相过饱和度会在极短时间内达到很高,此过饱和度恰好有利于SiCNWs的生长,并且大孔空间大,使得大量的具有高长径比的SiCNWs得以生长。由此实现了无催化PIP原位生长SiCNWs。
步骤1.两级孔隙SiCW预制体的制备:
将去离子水和糊精按照9:1混合磁力搅拌0.5~1h得到糊精的去离子水溶液,将SiCW按质量分数40~70wt.%、聚乙二醇-400(PEG-400)按质量分数0~2wt.%、四甲基氢氧化铵(TMAH)按质量分数0~3.5wt.%与糊精的去离子水溶液混合放入球磨罐,把球磨罐放入滚筒式球磨机以20~70r/min的速度球磨2~30h。将得到的混合均匀的浆料用于喷雾造粒,喷雾干燥机的进风温度在200~300℃之间,出口温度在60~100℃之间,雾化器转速在300Hz~400Hz之间,进料速度在0.1~1ml/s,由此,可制备出SiCW球形颗粒。然后将SiCW球形颗粒送入3D打印设备中进行打印,层厚设置为0.1mm,粘结剂饱和度为100%/200%,将打印得到的SiCW预制体原位干燥6~10h后取出。
由此获得的SiCW预制体中SiCW球形颗粒的粒径在20~100μm之间。该SiCW预制体具有两级孔隙结构,球间大孔孔径为10~40μm,球内小孔孔径为0.3~5μm。
步骤2.先驱体的浸渍固化裂解:
先驱体的浸渍固化裂解是“两步法”的第一步。将PCS和二甲苯按照质量比1:1~1:3混合并磁力搅拌10~30min得到PCS的二甲苯溶液,将步骤1得到的SiCW预制体与PCS的二甲苯溶液放置于浸渍装置中,在真空度为-0.1MPa下浸渍3~10min,PCS的浸渍量将影响SiCNWs的生成量。把浸渍了先驱体的SiCW预制体放置于管式炉等温区,以5℃/min的速率升温至150℃保温2h进行固化,再以2~5℃/min的速率升温至900~1100℃保温2~3h进行裂解,而后以5℃/min的速率降温至600℃,随炉冷却至室温,由此得到多孔的SiCW增强SiC陶瓷(SiCW/SiC)。在该SiCW/SiC中,PCS裂解生成的非晶固态产物SiC只存在于SiCW预制体的小孔中,其是后续SiCNWs生长的重要原料。
步骤3.多孔SiCW/SiC的热处理:
多孔SiCW/SiC的热处理是“两步法”的第二步。将步骤2得到的多孔SiCW/SiC置于管式炉等温区,以2~5℃/min的速率升温至1300~1500℃保温2~3h进行热处理,而后以5℃/min的速率降温至600℃,随炉冷却至室温,即可在SiCW预制体中原位生长SiCNWs。热处理温度将影响SiCNWs的长径比和生成量。
具体实施例:
实施例1
步骤一:两级孔隙SiCW预制体的制备。将92g去离子水和10.2g糊精混合磁力搅拌0.5h,再将180g SiCW、5.7g PEG-400、6.5g TMAH与糊精的去离子水溶液混合放入球磨罐,然后将球磨罐置入滚筒式球磨机中以50r/min的速度球磨36h得混合均匀的浆料,然后将浆料引入喷雾干燥机,进口温度200℃,出口温度70℃,雾化器转速400Hz,由此可制备出SiCW球形颗粒140g。将140g SiCW球形颗粒放入3DP成型设备中,设置打印层厚0.1mm,粘结剂饱和度100%/200%,打印完成后,将SiCW预制体原位干燥10h后取出。
步骤二:先驱体的浸渍固化裂解。将35g PCS和70g二甲苯混合并磁力搅拌30min得到PCS的二甲苯溶液,然后将SiCW预制体与PCS的二甲苯溶液放置于浸渍装置中,在真空度为-0.1MPa下浸渍5min,然后将浸渍完的SiCW预制体放置于管式炉等温区,以5℃/min的速率升温至150℃保温2h进行固化,再以5℃/min的速率升温至1100℃保温2h进行裂解,然后以5℃/min的速率降温至600℃,随炉冷却至室温得到多孔SiCW/SiC。
步骤三:多孔SiCW/SiC的热处理。将多孔SiCW/SiC置于管式炉等温区,以5℃/min的速率升温至1400℃保温2h,然后以5℃/min的速率降温至600℃,随炉冷却至室温。
实施例2
步骤一:两级孔隙SiCW预制体的制备。将99g去离子水和11g糊精混合磁力搅拌0.5h,再将154g SiCW、5.4g PEG-400、6.5g TMAH与糊精的去离子水溶液混合放入球磨罐,然后将球磨罐置入滚筒式球磨机中以50r/min的速度球磨30h得混合均匀的浆料,然后将浆料引入喷雾干燥机,进口温度200℃,出口温度70℃,雾化器转速400Hz,由此可制备出SiCW球形颗粒120g。将120g SiCW球形颗粒放入3DP成型设备中,设置打印层厚0.1mm,粘结剂饱和度100%/200%,打印完成后,将SiCW预制体原位干燥10h后取出。
步骤二:先驱体的浸渍固化裂解。将35g PCS和70g二甲苯混合并磁力搅拌30min得到PCS的二甲苯溶液,然后将SiCW预制体与PCS的二甲苯溶液放置于浸渍装置中,在真空度为-0.1MPa下浸渍5min,然后将浸渍完的SiCW预制体放置于管式炉等温区,以5℃/min的速率升温至150℃保温2h进行固化,再以5℃/min的速率升温至900℃保温2h进行裂解,然后以5℃/min的速率降温至600℃,随炉冷却至室温得到多孔SiCW/SiC。
步骤三:多孔SiCW/SiC的热处理。将多孔SiCW/SiC置于管式炉等温区,以5℃/min的速率升温至1500℃保温2h,然后以5℃/min的速率降温至600℃,随炉冷却至室温。
实施例3
步骤一:两级孔隙SiCW预制体的制备。将106g去离子水和11.7g糊精混合磁力搅拌0.5h,再将128g SiCW、5.1g PEG-400、6.5g TMAH与糊精的去离子水溶液混合放入球磨罐,然后将球磨罐置入滚筒式球磨机中以50r/min的速度球磨28h得混合均匀的浆料,然后将浆料引入喷雾干燥机,进口温度200℃,出口温度70℃,雾化器转速400Hz,由此可制备出SiCW球形颗粒100g。将100g SiCW球形颗粒放入3DP成型设备中,设置打印层厚0.1mm,粘结剂饱和度100%/200%,打印完成后,将SiCW预制体原位干燥10h后取出。
步骤二:先驱体的浸渍固化裂解。将35g PCS和70g二甲苯混合并磁力搅拌30min得到PCS的二甲苯溶液,然后将SiCW预制体与PCS的二甲苯溶液放置于浸渍装置中,在真空度为-0.1MPa下浸渍5min,然后将浸渍完的SiCW预制体放置于管式炉等温区,以5℃/min的速率升温至150℃保温2h进行固化,再以5℃/min的速率升温至1000℃保温2h进行裂解,然后以5℃/min的速率降温至600℃,随炉冷却至室温得到多孔SiCW/SiC。
步骤三:多孔SiCW/SiC的热处理。将多孔SiCW/SiC置于管式炉等温区,以5℃/min的速率升温至1300℃保温2h,然后以5℃/min的速率降温至600℃,随炉冷却至室温。
实施例4
步骤一:两级孔隙SiCW预制体的制备。将85g去离子水和9.4g糊精混合磁力搅拌0.5h,再将205g SiCW、6.1g PEG-400、6.5g TMAH与糊精的去离子水溶液混合放入球磨罐,然后将球磨罐置入滚筒式球磨机中以50r/min的速度球磨60h得混合均匀的浆料,然后将浆料引入喷雾干燥机,进口温度200℃,出口温度70℃,雾化器转速400Hz,由此可制备出SiCW球形颗粒170g。将170g SiCW球形颗粒放入3DP成型设备中,设置打印层厚0.1mm,粘结剂饱和度100%/200%,打印完成后,将SiCW预制体原位干燥10h后取出。
步骤二:先驱体的浸渍固化裂解。将35g PCS和70g二甲苯混合并磁力搅拌30min得到PCS的二甲苯溶液,然后将SiCW预制体与PCS的二甲苯溶液放置于浸渍装置中,在真空度为-0.1MPa下浸渍5min,然后将浸渍完的SiCW预制体放置于管式炉等温区,以5℃/min的速率升温至150℃保温2h进行固化,再以5℃/min的速率升温至900℃保温2h进行裂解,然后以5℃/min的速率降温至600℃,随炉冷却至室温得到多孔SiCW/SiC。
步骤三:多孔SiCW/SiC的热处理。将多孔SiCW/SiC置于管式炉等温区,以5℃/min的速率升温至1400℃保温2h,然后以5℃/min的速率降温至600℃,随炉冷却至室温。

Claims (4)

1.一种无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法,其特征在于生长工艺具有“两步法”特征,具体步骤如下:
步骤1:将聚碳硅烷PCS与溶剂配成混合溶液,然后浸渍到晶须预制体内,并在氩气气氛下固化裂解,固化温度为150℃,固化时间2h;裂解温度为900~1100℃,裂解时间为2~3h,升温速率为2~5℃/min;所述聚碳硅烷PCS与溶剂的混合质量比为1:1~1:3;所述晶须预制体的孔隙结构为两级孔隙结构,其中小孔孔径在0.3~3μm之间,大孔孔径在10~40μm之间;
步骤2:在高于裂解温度下对裂解后的材料进行热处理,热处理温度为1300~1500℃,热处理时间为2~3h,升温速率为2~5℃/min;热处理气氛为氩气气氛。
2.根据权利要求1所述无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法,其特征在于:所述溶剂包括但不限于二甲苯或二乙烯基苯。
3.根据权利要求1所述无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法,其特征在于:所述预制体为具有单晶结构的晶须构成。
4.根据权利要求1所述无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法,其特征在于:所述晶须为SiC晶须、氮化硅晶须或碳化锆晶须。
CN202010136681.XA 2020-03-02 2020-03-02 无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法 Active CN111205100B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010136681.XA CN111205100B (zh) 2020-03-02 2020-03-02 无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010136681.XA CN111205100B (zh) 2020-03-02 2020-03-02 无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法

Publications (2)

Publication Number Publication Date
CN111205100A CN111205100A (zh) 2020-05-29
CN111205100B true CN111205100B (zh) 2022-06-07

Family

ID=70784971

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010136681.XA Active CN111205100B (zh) 2020-03-02 2020-03-02 无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法

Country Status (1)

Country Link
CN (1) CN111205100B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113135768B (zh) * 2021-03-19 2022-06-03 西安理工大学 一种中空多孔SiC纤维的制备方法
TWI777644B (zh) * 2021-07-01 2022-09-11 淡江大學學校財團法人淡江大學 原位析出3d列印設備
CN114032607B (zh) * 2021-11-02 2024-01-09 西北工业大学 一种采用碳化锆籽晶制备碳化锆晶须的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061457A2 (en) * 2005-11-16 2007-05-31 Geo2 Technologies, Inc. System for extruding a porous substrate
CN107417291A (zh) * 2017-08-25 2017-12-01 西北工业大学 一种准各向同性SiC短切纤维毡增韧陶瓷基复合材料的制备方法
CN107903067A (zh) * 2017-12-01 2018-04-13 苏州宏久航空防热材料科技有限公司 一种原位生长SiC纳米线增强SiC陶瓷基复合材料及其制备方法
CN108623320A (zh) * 2018-04-08 2018-10-09 中南大学 一种汽车制动用C/C-SiC复合材料、其制备方法及应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541548B2 (en) * 1999-06-07 2013-09-24 Arrowhead Madison Inc. Compounds and methods for reversible modification of biologically active molecules
US6926882B2 (en) * 2000-01-05 2005-08-09 Exxonmobil Chemical Patents Inc. Porous inorganic macrostructure materials and process for their preparation
JP2005112702A (ja) * 2003-10-10 2005-04-28 National Institute For Materials Science SiCナノワイヤーにより強化されたSiC複合材料
US20060177659A1 (en) * 2005-02-09 2006-08-10 National Pingtung University Of Science & Technology Powder containing carbon nanotube or carbon nanofiber and process for preparing the same
CN101200283B (zh) * 2007-12-14 2010-08-18 天津理工大学 一种大面积制备金属或金属氧化物纳米环的简单方法
CN103467126B (zh) * 2013-08-30 2014-08-20 西北工业大学 一种SiC纳米线改性C/C复合材料的制备方法
CN103833370B (zh) * 2014-01-08 2015-06-24 西北工业大学 一种复相陶瓷Si3N4-SiC的近尺寸制备方法
CN104926348B (zh) * 2015-06-10 2017-04-05 西北工业大学 一种在2D碳毡内部原位生长Si3N4纳米线的方法
CN105752952B (zh) * 2016-01-28 2017-08-25 哈尔滨工业大学 一种在多孔坯体或粉体状碳化硅‑聚碳硅烷表面原位及非原位制备超长氮化硅纳米线的方法
CN107698270A (zh) * 2017-09-18 2018-02-16 上海大学 原位合成非晶态SiOC纳米线增强陶瓷型芯的方法
CN108172791B (zh) * 2017-12-25 2020-10-16 贝特瑞新材料集团股份有限公司 复合物负极材料及其制备方法、锂离子电池
CN108706978B (zh) * 2018-06-08 2020-11-06 西北工业大学 喷雾造粒结合3dp和cvi制备碳化硅陶瓷基复合材料的方法
CN108947587A (zh) * 2018-07-16 2018-12-07 西北工业大学 一种氮化硼界面的制备方法
CN109251049A (zh) * 2018-09-13 2019-01-22 中国科学院上海硅酸盐研究所 一种限制复合材料基体内部裂纹扩展的方法
CN110304931A (zh) * 2019-07-01 2019-10-08 中国科学院上海硅酸盐研究所 一种高体积分数碳化硅纳米线增强陶瓷基复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061457A2 (en) * 2005-11-16 2007-05-31 Geo2 Technologies, Inc. System for extruding a porous substrate
CN107417291A (zh) * 2017-08-25 2017-12-01 西北工业大学 一种准各向同性SiC短切纤维毡增韧陶瓷基复合材料的制备方法
CN107903067A (zh) * 2017-12-01 2018-04-13 苏州宏久航空防热材料科技有限公司 一种原位生长SiC纳米线增强SiC陶瓷基复合材料及其制备方法
CN108623320A (zh) * 2018-04-08 2018-10-09 中南大学 一种汽车制动用C/C-SiC复合材料、其制备方法及应用

Also Published As

Publication number Publication date
CN111205100A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
CN111205100B (zh) 无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法
CN110256082B (zh) 反应烧结制备单晶碳化硅纳米纤维/碳化硅陶瓷基复合材料的方法
CN110606747B (zh) 一种各向同性陶瓷纳米线预制体的制备方法
CN110079896B (zh) 一种碳化硅纳米纤维束及其制备方法
Ding et al. Growth of SiC nanowires on wooden template surface using molten salt media
CN107500766B (zh) 一种非晶硅硼碳氮锆陶瓷纤维的制备方法
CN112624777B (zh) 一种激光3d打印复杂构型碳化硅复合材料部件的制备方法
CN105543598B (zh) 一种增强镁基复合材料的制备方法
Li et al. In-situ synthesis and growth mechanism of silicon nitride nanowires on carbon fiber fabrics
CN101857460A (zh) 纺丝用碳纳米管阵列的制备方法
CN115058885A (zh) 一种碳纤维布表面定向SiC纳米线阵列及制备方法
CN103320966A (zh) 一种柔性多晶碳化硅微纳米纤维毡的制备方法
Lv et al. Novel processing strategy and challenges on whisker-reinforced ceramic matrix composites
Yang et al. Microstructure and properties of SiO2-based ceramic cores with ball-shaped powders by the preceramic polymer technique in N2 atmosphere
CN114276157A (zh) 一种高纯炭基复合材料
CN104446501A (zh) 一种氮化硅陶瓷纤维的制备方法
CN115745643A (zh) 一种碳纳米管改性的复合材料及其制备方法
CN108866810A (zh) 具有电磁吸波性能的柔性碳化铪/碳化硅复合纳米纤维薄膜及制备方法
CN110042468A (zh) 一种微米碳化锆晶须的制备方法
CN112030544B (zh) 一种在碳化硅纤维表面原位生长碳化硅纳米线的方法
Li et al. A simple and efficient route to synthesize hafnium carbide nanowires by catalytic pyrolysis of a polymer precursor
CN113279249A (zh) 一种碳纤维表面原位自生弥散分布碳化物晶须及制备方法
CN106882977B (zh) 碳化锆晶须改性碳/碳复合材料的制备方法
Tang et al. Mechanical properties and oxidation resistance of phenolic formaldehyde interlocking CNTs-Cf/SiC composite
CN110304931A (zh) 一种高体积分数碳化硅纳米线增强陶瓷基复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant