CN113279249A - 一种碳纤维表面原位自生弥散分布碳化物晶须及制备方法 - Google Patents

一种碳纤维表面原位自生弥散分布碳化物晶须及制备方法 Download PDF

Info

Publication number
CN113279249A
CN113279249A CN202110515786.0A CN202110515786A CN113279249A CN 113279249 A CN113279249 A CN 113279249A CN 202110515786 A CN202110515786 A CN 202110515786A CN 113279249 A CN113279249 A CN 113279249A
Authority
CN
China
Prior art keywords
powder
carbon fiber
carbon
temperature
situ self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110515786.0A
Other languages
English (en)
Other versions
CN113279249B (zh
Inventor
曹晓雨
张景景
王博力
马苗苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202110515786.0A priority Critical patent/CN113279249B/zh
Publication of CN113279249A publication Critical patent/CN113279249A/zh
Application granted granted Critical
Publication of CN113279249B publication Critical patent/CN113279249B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/12Single-crystal growth directly from the solid state by pressure treatment during the growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/62Whiskers or needles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明公开的一种碳纤维表面原位自生弥散分布碳化物晶须的制备方法,具体按照以下步骤实施:步骤1)预先对碳纤维进行沉碳处理;步骤2)将六水合硝酸镍置于研钵中研磨,得到A粉末;步骤3)在A粉末中依次加入KCl、LiCl及KF,充分研磨并混合均匀,得到B粉末;步骤4)在B粉末中加入钛粉,研磨并混合均匀,得到C粉末;步骤5)将经沉碳处理的碳纤维放在石墨坩埚中,并用C粉末包埋,盖上盖子;步骤6)将坩埚放入管式炉的刚玉管中进行热处理,并通入氩气进行气氛保护。该制备方法解决了碳纤维复合材料中的界面结合性能低的问题。还公开了一种碳纤维表面原位自生弥散分布碳化物晶须。

Description

一种碳纤维表面原位自生弥散分布碳化物晶须及制备方法
技术领域
本发明属于碳化物晶须制备技术领域,具体涉及一种碳纤维表面原位自生弥散分布碳化物晶须,还涉及该种碳纤维表面原位自生弥散分布碳化物晶须的制备方法。
背景技术
制备碳纤维复合材料前,对碳纤维进行表面改性可以有效改善碳纤维光滑与惰性的表面,提高碳纤维与基体之间的界面结合性能以及碳纤维复合材料的力学性能。在碳纤维表面制备均匀分布的晶须,形成碳纤维-晶须多尺度增强体,可提高碳纤维表面粗糙度,在纳米尺度上对碳纤维表面进行修饰,优化碳纤维表面结构,改善碳纤维与基体间界面性能。其中,碳化物(包括碳化硅、碳化钛、碳化锆、碳化铪等)晶须具有高强度、高模量和与碳纤维良好的物理化学相容性等特性,是良好的碳纤维多尺度增强体组分。若将碳纤维-碳化物晶须多尺度增强体结构引入Cf/SiC、Cf/C等复合材料中,在复合材料中形成微米纤维、纳米晶须多尺度增强体,构成不同尺度的裂纹偏转和增强体拔出等增韧和增强机制,有望进一步提高复合材料的力学性能,促进其在航天航空、军用零件等领域的发展。
目前,在碳纤维或碳纤维预制体表面制备碳化物纳米相(包括纳米线和晶须)的方法有很多,包括溶胶凝胶法、前驱体热解法、化学气相沉积法等,但这些方法均存在一定缺陷。如Yan等人在“in-situ homogeneous growth of ZrC nanowires on carbon clothand their effects on flexural properties of carbon/carbon composites”一文中采用催化剂辅助有机金属聚合物前驱体热解法在碳毡上原位合成了碳化锆纳米线,该方法反应温度较高且成本较高;Kim等人在“Improvement of nanoparticle filtrationefficiency through synthesis of SiC whisker on graphite felt by the VS CVDmechanism”一文中采用化学气相沉积法在碳毡上合成了碳化硅晶须,使用该方法制得的晶须在产量甚至质量受到一定限制;Liu等人在“Synthesis and characterisation ofself-assembled SiC nanowires and nanoribbons by using sol-gel carbothermalreduction”一文中使用二茂铁作为催化剂,通过溶胶-凝胶方法在碳毡中成功制备了六角形的SiC纳米线,该方法的合成工艺较为复杂,且干燥收缩性较大。熔盐反应法利用熔盐介质在较低温度下形成的液相熔体,为反应物提供一个液相环境,在液相环境中反应物粒子接触面积大、迁移速率快、扩散距离短,使得反应在较短时间内完成。采用催化剂辅助熔盐反应法在碳纤维表面制备碳化物晶须具有反应速度快、成本低和工艺简单等优点,是一种易于规模化生产的制备碳纤维-碳化物晶须多尺度增强体的方法。
发明内容
本发明的目的是提供一种碳纤维表面原位自生弥散分布碳化物晶须的制备方法,解决了碳纤维复合材料中的界面结合性能低的问题。
本发明的第二个目的是提供一种碳纤维表面原位自生弥散分布碳化物晶须。
本发明所采用的技术方案是,一种碳纤维表面原位自生弥散分布碳化物晶须的制备方法,具体按照以下步骤实施:
步骤1)预先对碳纤维进行沉碳处理,具体操作为,将碳纤维置于管式炉中,在氩气氛围下升温至1080℃后,通入甲烷,在1080℃下保温2~4h;
步骤2)将六水合硝酸镍置于研钵中研磨,得到A粉末;
步骤3)在A粉末中依次加入KCl、LiCl及KF,充分研磨并混合均匀,得到B粉末;
步骤4)在B粉末中加入钛粉,研磨并混合均匀,得到C粉末;
步骤5)将经沉碳处理的碳纤维放在石墨坩埚中,并用C粉末包埋,盖上盖子;
步骤6)将坩埚放入管式炉的刚玉管中进行热处理,并通入氩气进行气氛保护。
本发明的特征还在于,
步骤3中,KCl、LiCl、KF的质量比为1:1:1;KCl、LiCl及KF的质量之和与步骤4中的钛粉的质量之比为3~5:10。
步骤4中,A粉与钛粉的质量比为2~5:20。
步骤6中,热处理过程为:首先以5℃/min~8℃/min的速率,升至700℃~900℃;然后以0.3℃/min~0.5℃/min的升温速率升至800℃~1000℃,再以3℃/min~5℃/min的速率升至1600℃,保温100min~120min;最后以3℃/min~5℃/min的速率降至室温。
步骤6中,在热处理过程中,压力保持在0~0.02MPa之间。
本发明所采用的第二个技术方案是,一种碳纤维表面原位自生弥散分布碳化物晶须,由上述的方法制备得到。
本发明的有益效果是:
本发明方法将原料全部研磨粉碎并混合均匀,并将碳纤维包埋其中,为得到均匀分布的晶须奠定了基础。在管式炉烧制结束后得到了晶须弥散分布的碳纤维-碳化物晶须多尺度增强体,可改善碳纤维与基体间界面性能。
本发明方法的晶须长径比为10-250,晶须生长均匀,产率高,纯度高,可作为陶瓷增强体材料,运用在航空航天、军用零件等方面。
本发明方法制备的晶须可以通过改变六水和硝酸镍的含量来控制晶须的长度和数量。
附图说明
图1是本发明实施例1制得的碳纤维-TiC晶须多尺度增强体的扫描电镜(SEM)照片;
图2是本发明实施例1制得的碳纤维-TiC晶须多尺度增强体的X射线能谱分析(EDS)谱图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明提供一种碳纤维表面原位自生弥散分布碳化物晶须的制备方法,具体按照以下步骤实施:
步骤1)预先对碳纤维进行沉碳处理,具体操作为,将碳纤维置于管式炉中,在氩气氛围下升温至1080℃后,通入甲烷,在1080℃下保温2~4h;
步骤2)将六水合硝酸镍置于研钵中研磨,得到A粉末;
步骤3)在A粉末中依次加入KCl、LiCl及KF,充分研磨并混合均匀,得到B粉末;
步骤3中,KCl、LiCl、KF的质量比为1:1:1;KCl、LiCl及KF的质量之和与步骤4中的钛粉的质量之比为3~5:10。
步骤4)在B粉末中加入钛粉,研磨并混合均匀,得到C粉末;
步骤4中,A粉与钛粉的质量比为2~5:20。
步骤5)将经沉碳处理的碳纤维放在石墨坩埚中,并用C粉末包埋,盖上盖子;
步骤6)将坩埚放入管式炉的刚玉管中进行热处理,并通入氩气进行气氛保护;
步骤6中,热处理过程为:首先以5℃/min~8℃/min的速率,升至700℃~900℃;然后以0.3℃/min~0.5℃/min的升温速率升至800℃~1000℃,再以3℃/min~5℃/min的速率升至1600℃,保温100min~120min;最后以3℃/min~5℃/min的速率降至室温,在热处理过程中,压力保持在0~0.02MPa之间。
本发明还提供一种碳纤维表面原位自生弥散分布碳化物晶须,由上述的方法制备得到。
实施例1
一种碳纤维表面原位自生弥散分布碳化物晶须的制备方法,具体按照以下步骤实施:
步骤1)预先对碳纤维进行沉碳处理,具体操作为,将碳纤维置于管式炉中,在氩气氛围下升温至1080℃后,通入甲烷,在1080℃下保温3h;
步骤2)将六水合硝酸镍置于研钵中研磨,得到A粉末;
步骤3)在A粉末中依次加入KCl、LiCl及KF,充分研磨并混合均匀,得到B粉末;
步骤3中,KCl、LiCl、KF的质量比为1:1:1;KCl、LiCl及KF的质量之和与步骤4中的钛粉的质量之比为4:10。
步骤4)在B粉末中加入钛粉,研磨并混合均匀,得到C粉末;
步骤4中,A粉与钛粉的质量比为3:20。
步骤5)将经沉碳处理的碳纤维放在石墨坩埚中,并用C粉末包埋,盖上盖子;
步骤6)将坩埚放入管式炉的刚玉管中进行热处理,并通入氩气进行气氛保护;
步骤6中,热处理过程为:首先以8℃/min的速率,升至900℃;然后以0.5℃/min的升温速率升至1000℃,再以5℃/min的速率升至1600℃,保温120min;最后以5℃/min的速率降至室温,在热处理过程中,压力保持在0.01MPa。
从图1中,可以看出碳纤维表面生成了大量针状晶须,且该物质发散状的生长形态可使碳纤维表面的粗糙度增大;
从图2中,可以看出该晶须的组成元素是Ti和C,由此推断,该晶须即为TiC晶须,即TiC晶须可有效提升碳纤维表面粗糙度,从而提高碳纤维的界面结合性能。
实施例2
一种碳纤维表面原位自生弥散分布碳化物晶须的制备方法,具体按照以下步骤实施:
步骤1)预先对碳纤维进行沉碳处理,具体操作为,将碳纤维置于管式炉中,在氩气氛围下升温至1080℃后,通入甲烷,在1080℃下保温2h;
步骤2)将六水合硝酸镍置于研钵中研磨,得到A粉末;
步骤3)在A粉末中依次加入KCl、LiCl及KF,充分研磨并混合均匀,得到B粉末;
步骤3中,KCl、LiCl、KF的质量比为1:1:1;KCl、LiCl及KF的质量之和与步骤4中的钛粉的质量之比为5:10。
步骤4)在B粉末中加入钛粉,研磨并混合均匀,得到C粉末;
步骤4中,A粉与钛粉的质量比为4:20。
步骤5)将经沉碳处理的碳纤维放在石墨坩埚中,并用C粉末包埋,盖上盖子;
步骤6)将坩埚放入管式炉的刚玉管中进行热处理,并通入氩气进行气氛保护;
步骤6中,热处理过程为:首先以5℃/min~8℃/min的速率,升至700℃;然后以0.3℃/min的升温速率升至800℃,再以3℃/min的速率升至1600℃,保温100min;最后以3℃/min的速率降至室温,在热处理过程中,压力保持在0.02MPa。
实施例3
一种碳纤维表面原位自生弥散分布碳化物晶须的制备方法,具体按照以下步骤实施:
步骤1)预先对碳纤维进行沉碳处理,具体操作为,将碳纤维置于管式炉中,在氩气氛围下升温至1080℃后,通入甲烷,在1080℃下保温4h;
步骤2)将六水合硝酸镍置于研钵中研磨,得到A粉末;
步骤3)在A粉末中依次加入KCl、LiCl及KF,充分研磨并混合均匀,得到B粉末;
步骤3中,KCl、LiCl、KF的质量比为1:1:1;KCl、LiCl及KF的质量之和与步骤4中的钛粉的质量之比为3:10。
步骤4)在B粉末中加入钛粉,研磨并混合均匀,得到C粉末;
步骤4中,A粉与钛粉的质量比为2:20。
步骤5)将经沉碳处理的碳纤维放在石墨坩埚中,并用C粉末包埋,盖上盖子;
步骤6)将坩埚放入管式炉的刚玉管中进行热处理,并通入氩气进行气氛保护;
步骤6中,热处理过程为:首先以6℃/min的速率,升至800℃;然后以0.4℃/min的升温速率升至900℃,再以4℃/min的速率升至1600℃,保温110min;最后以4℃/min的速率降至室温,在热处理过程中,压力保持在0.15MPa。
实施例4
一种碳纤维表面原位自生弥散分布碳化物晶须的制备方法,具体按照以下步骤实施:
步骤1)预先对碳纤维进行沉碳处理,具体操作为,将碳纤维置于管式炉中,在氩气氛围下升温至1080℃后,通入甲烷,在1080℃下保温3h;
步骤2)将六水合硝酸镍置于研钵中研磨,得到A粉末;
步骤3)在A粉末中依次加入KCl、LiCl及KF,充分研磨并混合均匀,得到B粉末;
步骤3中,KCl、LiCl、KF的质量比为1:1:1;KCl、LiCl及KF的质量之和与步骤4中的钛粉的质量之比为3:10。
步骤4)在B粉末中加入钛粉,研磨并混合均匀,得到C粉末;
步骤4中,A粉与钛粉的质量比为5:20。
步骤5)将经沉碳处理的碳纤维放在石墨坩埚中,并用C粉末包埋,盖上盖子;
步骤6)将坩埚放入管式炉的刚玉管中进行热处理,并通入氩气进行气氛保护;
步骤6中,热处理过程为:首先以5℃/min的速率,升至900℃;然后以0.5℃/min的升温速率升至800℃,再以3℃/min的速率升至1600℃,保温120min;最后以3℃/min的速率降至室温,在热处理过程中,压力保持在0.02MPa之间。
实施例5
一种碳纤维表面原位自生弥散分布碳化物晶须的制备方法,具体按照以下步骤实施:
步骤1)预先对碳纤维进行沉碳处理,具体操作为,将碳纤维置于管式炉中,在氩气氛围下升温至1080℃后,通入甲烷,在1080℃下保温3h;
步骤2)将六水合硝酸镍置于研钵中研磨,得到A粉末;
步骤3)在A粉末中依次加入KCl、LiCl及KF,充分研磨并混合均匀,得到B粉末;
步骤3中,KCl、LiCl、KF的质量比为1:1:1;KCl、LiCl及KF的质量之和与步骤4中的钛粉的质量之比为4:10。
步骤4)在B粉末中加入钛粉,研磨并混合均匀,得到C粉末;
步骤4中,A粉与钛粉的质量比为5:20。
步骤5)将经沉碳处理的碳纤维放在石墨坩埚中,并用C粉末包埋,盖上盖子;
步骤6)将坩埚放入管式炉的刚玉管中进行热处理,并通入氩气进行气氛保护;
步骤6中,热处理过程为:首先以8℃/min的速率,升至900℃;然后以0.5℃/min的升温速率升至800℃,再以3℃/min的速率升至1600℃,保温100min;最后以5℃/min的速率降至室温,在热处理过程中,压力保持在0.02MPa之间。

Claims (6)

1.一种碳纤维表面原位自生弥散分布碳化物晶须的制备方法,其特征在于,具体按照以下步骤实施:
步骤1)预先对碳纤维进行沉碳处理,具体操作为,将碳纤维置于管式炉中,在氩气氛围下升温至1080℃后,通入甲烷,在1080℃下保温2~4h;
步骤2)将六水合硝酸镍置于研钵中研磨,得到A粉末;
步骤3)在A粉末中依次加入KCl、LiCl及KF,充分研磨并混合均匀,得到B粉末;
步骤4)在B粉末中加入钛粉,研磨并混合均匀,得到C粉末;
步骤5)将经沉碳处理的碳纤维放在石墨坩埚中,并用C粉末包埋,盖上盖子;
步骤6)将坩埚放入管式炉的刚玉管中进行热处理,并通入氩气进行气氛保护。
2.根据权利要求1所述的一种碳纤维表面原位自生弥散分布碳化物晶须的制备方法,其特征在于,步骤3中,KCl、LiCl、KF的质量比为1:1:1;KCl、LiCl及KF的质量之和与步骤4中的钛粉的质量之比为3~5:10。
3.根据权利要求1所述的一种碳纤维表面原位自生弥散分布碳化物晶须的制备方法,其特征在于,步骤4中,A粉与钛粉的质量比为2~5:20。
4.根据权利要求1所述的一种碳纤维表面原位自生弥散分布碳化物晶须的制备方法,其特征在于,步骤6中,热处理过程为:首先以5℃/min~8℃/min的速率,升至700℃~900℃;然后以0.3℃/min~0.5℃/min的升温速率升至800℃~1000℃,再以3℃/min~5℃/min的速率升至1600℃,保温100min~120min;最后以3℃/min~5℃/min的速率降至室温。
5.根据权利要求1所述的一种碳纤维表面原位自生弥散分布碳化物晶须的制备方法,其特征在于,步骤6中,在热处理过程中,压力保持在0~0.02MPa之间。
6.一种碳纤维表面原位自生弥散分布碳化物晶须,其特征在于,由权利要求1-5所述的方法制备得到。
CN202110515786.0A 2021-05-12 2021-05-12 一种碳纤维表面原位自生弥散分布碳化物晶须及制备方法 Active CN113279249B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110515786.0A CN113279249B (zh) 2021-05-12 2021-05-12 一种碳纤维表面原位自生弥散分布碳化物晶须及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110515786.0A CN113279249B (zh) 2021-05-12 2021-05-12 一种碳纤维表面原位自生弥散分布碳化物晶须及制备方法

Publications (2)

Publication Number Publication Date
CN113279249A true CN113279249A (zh) 2021-08-20
CN113279249B CN113279249B (zh) 2022-12-02

Family

ID=77278741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110515786.0A Active CN113279249B (zh) 2021-05-12 2021-05-12 一种碳纤维表面原位自生弥散分布碳化物晶须及制备方法

Country Status (1)

Country Link
CN (1) CN113279249B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114261111A (zh) * 2021-12-27 2022-04-01 西安理工大学 碳纤维增强树脂基复合材料界面微区组织调控方法
CN114481600A (zh) * 2021-12-27 2022-05-13 西安理工大学 碳纤维表面改性方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110275A (en) * 1995-07-20 2000-08-29 Sandvik Ab Manufacture of titanium carbide, nitride and carbonitride whiskers
CN106882977A (zh) * 2017-02-22 2017-06-23 西北工业大学 碳化锆晶须改性碳/碳复合材料的制备方法
CN107365952A (zh) * 2017-08-08 2017-11-21 巩义市泛锐熠辉复合材料有限公司 一种碳/碳‑铜复合材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110275A (en) * 1995-07-20 2000-08-29 Sandvik Ab Manufacture of titanium carbide, nitride and carbonitride whiskers
CN106882977A (zh) * 2017-02-22 2017-06-23 西北工业大学 碳化锆晶须改性碳/碳复合材料的制备方法
CN107365952A (zh) * 2017-08-08 2017-11-21 巩义市泛锐熠辉复合材料有限公司 一种碳/碳‑铜复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
曹宁等: ""原位自生C/C复合材料SiC涂层的物相组织与形成机理"", 《2012第十八届华东六省一市热处理年会》 *
董志军等: "TiC涂层碳纤维的熔盐反应制备及其氧化性能", 《宇航材料工艺》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114261111A (zh) * 2021-12-27 2022-04-01 西安理工大学 碳纤维增强树脂基复合材料界面微区组织调控方法
CN114481600A (zh) * 2021-12-27 2022-05-13 西安理工大学 碳纤维表面改性方法
CN114481600B (zh) * 2021-12-27 2024-05-03 西安理工大学 碳纤维表面改性方法

Also Published As

Publication number Publication date
CN113279249B (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
US20210114940A1 (en) Process for the preparation of a ceramic nanowire preform
EP2300367B1 (en) Method for making boron carbide ceramic fibers
CN113279249B (zh) 一种碳纤维表面原位自生弥散分布碳化物晶须及制备方法
CN110467467B (zh) 一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法
CN105543598B (zh) 一种增强镁基复合材料的制备方法
JP3798020B2 (ja) 炭化物微小フィブリルとその製法
CN115058885B (zh) 一种碳纤维布表面定向SiC纳米线阵列及制备方法
CN101104515A (zh) 一种SiC纳米线及其制备方法
Yang et al. Process and mechanical properties of in situ silicon carbide‐nanowire‐reinforced chemical vapor infiltrated silicon carbide/silicon carbide composite
Cao et al. Growth of SiC whiskers onto carbonizing coir fibers by using silicon slurry waste
CN111205100B (zh) 无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法
Ren et al. Effects of deposition temperature and time on HfC nanowires synthesized by CVD on SiC-coated C/C composites
Mu et al. Microstructures and enhanced flexural properties of single-crystalline HfC nanowires in-situ modified carbon/carbon composites by electrophoresis-thermal evaporation using CNTs as the template
CN108866810A (zh) 具有电磁吸波性能的柔性碳化铪/碳化硅复合纳米纤维薄膜及制备方法
Ge et al. Characterization of SiC nanowires prepared on C/C composite without catalyst by CVD
CN112030544B (zh) 一种在碳化硅纤维表面原位生长碳化硅纳米线的方法
CN112794330B (zh) 一种碳化硼纳米线的制备方法
Li et al. A simple and efficient route to synthesize hafnium carbide nanowires by catalytic pyrolysis of a polymer precursor
CN110042468A (zh) 一种微米碳化锆晶须的制备方法
CN110563467B (zh) 一种低温SiC纤维表面石墨界面的制备方法
JP3605133B2 (ja) 基材に対して傾斜機能的なダイアモンドライクカーボン膜を被覆した炭化物材料とその製造方法
Tang et al. Mechanical properties and oxidation resistance of phenolic formaldehyde interlocking CNTs-Cf/SiC composite
CN113735593B (zh) 一种微观结构可调的SiCnws-ZrB2-ZrC杂化陶瓷粉体及其制备方法
CN111232983A (zh) 一种以海绵状石墨烯或其衍生物为碳源规模化制备SiC纳米线的方法
CN111253161A (zh) 一种SiCf-ZrC-ZrB2陶瓷复合粉体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant