CN111180661A - 一种磁控溅射制备铝电池正极的方法 - Google Patents

一种磁控溅射制备铝电池正极的方法 Download PDF

Info

Publication number
CN111180661A
CN111180661A CN202010073072.4A CN202010073072A CN111180661A CN 111180661 A CN111180661 A CN 111180661A CN 202010073072 A CN202010073072 A CN 202010073072A CN 111180661 A CN111180661 A CN 111180661A
Authority
CN
China
Prior art keywords
magnetron sputtering
current collector
aluminum battery
aluminum
tellurium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010073072.4A
Other languages
English (en)
Other versions
CN111180661B (zh
Inventor
李战雨
李笑笑
杨少鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heibei University
Original Assignee
Heibei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heibei University filed Critical Heibei University
Priority to CN202010073072.4A priority Critical patent/CN111180661B/zh
Publication of CN111180661A publication Critical patent/CN111180661A/zh
Application granted granted Critical
Publication of CN111180661B publication Critical patent/CN111180661B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种磁控溅射制备铝电池正极的方法,包括以下步骤:(a)将经过预处理的铝电池集流体粘附于磁控溅射设备的样品台上,然后安装碲靶材,准备溅射;(b)利用直流溅射电源,在电压为100~200V,电流为2~10A,磁控溅射功率为200~2000W,溅射气压为0.04~0.4Pa条件下,在集流体上溅射碲薄膜;(c)将所得碲薄膜在保护气氛下进行热处理,即得铝电池的碲薄膜电极;(d)将碲薄膜电极作为正极,高纯金属铝作为负极,在离子液体电解质中组装成铝二次电池。本发明碲薄膜电极无导电剂和粘结剂,其制备方法简单,易控制电极载量,成分均一,电化学性能良好,为铝电池今后的商业化发展奠定了基础。

Description

一种磁控溅射制备铝电池正极的方法
技术领域
本发明涉及铝电池正极材料制备技术领域,具体地说是一种磁控溅射制备铝电池正极的方法。
背景技术
众所周知,随着经济社会的发展,伴随着对能源的需求越来越高,大规模燃烧煤炭等不可再生资源越来越变得不可取,一方面煤炭等资源属于不可再生资源,煤炭储量捉襟见肘,另一方面,其对环境造成不可逆转的影响,雾霾等环境问题深刻影响着人们的住行。由于LiCoO2和C作为电极的成功发现,锂离子技术已经成为应用最成熟的电源技术,应用范围从便携式设备到大型电网。但随着锂离子电池的大规模使用,锂矿资源的有限性以及节节攀升的价格越来越为人们所担忧。且不幸的是,由于钴价格昂贵且有毒,许多专家认为它不适合广泛应用于混合动力或电动汽车,考虑到安全性和人道主义方面的考虑,目前的研究兴趣已经转向更丰富、更低成本、更安全的锂电池***替代品。
在包括钠、镁、铝等金属离子电池中,铝电池以其自然资源丰富、高能量密度和高安全性能而备受关注,是探索锂离子电池以外最具有前途的储能装置的理想二次电池。然而,要满足合适的可充电电化学***对下一代储能的要求,还面临着巨大的挑战。在这些挑战中,人们极力追求石墨电极材料之外的超高比容量的正极材料,而在最有前途的单质硫或硫化物的铝电池正极材料中,无论是高导电性、电压放电平台还是稳定循环性能都是有待解决的问题。为了从本质上解决这些问题,有文献报道,碲电极可以作为铝电池正极材料,表现出较高的放电电压平台、优异的放电比容量和良好的循环性能,因此具备较高的能量密度为铝电池的商业化之路指引的方向,但是其在制备碲电极过程中需要添加导电剂和粘结剂,制备过程复杂,难以控制电极载量和厚度,这无疑增加了铝电池电极的制备成本以及难度。本发明通过利用磁控溅射得到的碲薄膜电极无导电剂和粘结剂,制备方法简单,易控制电极载量,成分均一,电化学性能良好,为铝电池今后的商业化发展奠定了实验性基础。
发明内容
本发明的目的是提供一种磁控溅射制备铝电池正极的方法,以解决现有铝电池正极材料电化学性能不理想以及制备过程较复杂的问题。
本发明的目的是通过以下技术方案实现的:一种磁控溅射制备铝电池正极的方法,包括以下步骤:
(a)将经过预处理的铝电池集流体粘附于磁控溅射设备的样品台上,然后安装碲靶材,准备溅射;
(b)开启磁控溅射设备,将磁控溅射设备腔体抽真空至1~5Pa,设置碲靶材与集流体的距离为10~50cm;向腔体内充入氩气,氩气流量为20~50sccm;打开直流磁控溅射电源,在电压为100~200V,电流为2~10A,磁控溅射功率为200~2000W,溅射气压为0.04~0.4Pa条件下,在集流体上溅射碲薄膜,溅射时间为2~40min,所得碲薄膜厚度为100~2000nm;
(c)将所得碲薄膜在保护气氛下进行热处理,即得铝电池的碲薄膜电极;
(d)将碲薄膜电极作为正极,高纯金属铝作为负极,在离子液体电解质中组装成铝二次电池。
步骤(a)中,所述铝电池集流体为钼片、有机导电玻璃、镀有TiN薄膜的不锈钢片或者钽片。
步骤(a)中,铝电池集流体预处理过程为:将铝电池集流体剪切成合适尺寸,然后依次在去离子水、丙酮和无水乙醇中分别超声清洗20 min,之后取出用高纯氮气吹干,并放在真空干燥箱中进行干燥处理。
步骤(a)中,铝电池集流体的大小为1ⅹ1 cm、1ⅹ2 cm、2ⅹ2 cm或3ⅹ3 cm。
步骤(b)中,磁控溅射设备抽真空时,先打开机械泵,待电阻单元处示数降至2~5Pa时,打开分子泵。
步骤(c)中,热处理温度为200~600℃,热处理时间为2~6h。
本发明利用磁控溅射得到的碲薄膜电极无导电剂和粘结剂,并用扫描电镜(SEM)证实得碲薄膜电极的存在,其制备方法简单,易控制电极载量,成分均一,电化学性能良好,为铝电池今后的商业化发展奠定了基础。
附图说明
图1为实施例1制备的碲薄膜电极表面的扫描电镜图。
图2为实施例1制备的碲薄膜电极的能谱图。
图3为实施例1制备的碲薄膜电极截面的扫描电镜图。
图4为实施例1制备的碲薄膜电极的X射线衍射图。
图5为实施例1制备的碲薄膜电极的首次充放电曲线图(电流密度为100 mA/g)。
具体实施方式
下面实施例用于进一步详细说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
步骤一、将高纯钼片切成1cm×1cm的片形,然后依次在去离子水、丙酮和无水乙醇中分别超声清洗20 min,之后取出用高纯氮气吹干,并将其放在真空干燥箱中处理。最后将其粘附于磁控溅射样品托盘上,安装碲靶材,准备溅射。
步骤二、开启磁控溅射设备,对磁控溅射设备腔体抽真空,在电阻单元示数为5Pa时开启分子泵,待复合单元示数为0.003Pa开启限流阀,开启气体质量流量计,等到复合单元示数为0.4Pa时开靶挡板,打开直流磁控溅射电源时旋转电流调节旋钮使电压示数为100V,电流示数为5A,功率为500W。溅射薄膜时间为20min,薄膜厚度为500nm,最后将碲薄膜电极在氩气保护气氛下400℃热处理2 h。对所得碲薄膜电极进行表征,碲薄膜电极表面的场外扫描电镜图如图1所示,碲薄膜电极的能谱图如图2所示,碲薄膜电极截面的场外扫描电镜图如图3所示,碲薄膜电极的X射线衍射图如图4所示。
步骤三、将得到的碲薄膜电极作为正极,高纯铝箔作为负极,离子液体(AlCl3/[EMIm]Cl=1.3:1)作为电解液,在密封的两电极电解质瓶中组装成铝二次电池,对其电化学性能进行测试。其首次充放电曲线的测试条件为:电流密度100 mA/g,电压范围0.5~2.3 V。其充放电曲线图如图5所示。
实施例2
步骤一、将高纯钼片切成1cm×2cm的片形,然后依次在去离子水、丙酮和无水乙醇中分别超声清洗20 min,之后取出用高纯氮气吹干,并将其放在真空干燥箱中处理。最后将其粘附于磁控溅射样品托盘上,安装碲靶材,准备溅射。
步骤二、开启磁控溅射设备,对磁控溅射设备腔体抽真空,在电阻单元示数为3Pa时开启分子泵,待复合单元示数为0.001Pa时开启限流阀,开启气体质量流量计,等到复合单元示数为0.2Pa时开靶挡板,打开直流磁控溅射电源时旋转电流调节旋钮使电压示数为100V,电流示数为8A,功率为800W。溅射薄膜时间为30min,薄膜厚度为1000nm,最后将碲薄膜电极在氩气保护气氛下400℃热处理2 h。
步骤三、操作过程同实施例1的步骤三。对所得碲薄膜电极进行表征,并对组装的电池进行电化学性能测试,结果表明其具有同实施例1类似的性质和性能。
实施例3
步骤一、将高纯钼片切成2cm×2cm的片形,然后依次在去离子水、丙酮和无水乙醇中分别超声清洗20 min,之后取出用高纯氮气吹干,并将其放在真空干燥箱中处理。最后将其粘附于磁控溅射样品托盘上,安装碲靶材,准备溅射。
步骤二、开启磁控溅射设备,对磁控溅射设备腔体抽真空,在电阻单元示数为3Pa时开启分子泵,待复合单元示数为0.001Pa时开启限流阀,开启气体质量流量计,等到复合单元示数为0.2Pa时开靶挡板,打开直流磁控溅射电源时旋转电流调节旋钮使电压示数为100V,电流示数为10A,功率为1000W。溅射薄膜时间为30 min,薄膜厚度为1500nm,最后将碲薄膜电极在氩气保护气氛下400℃热处理2 h。
步骤三、操作过程同实施例1的步骤三。对所得碲薄膜电极进行表征,并对组装的电池进行电化学性能测试,结果表明其具有同实施例1类似的性质和性能。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种磁控溅射制备铝电池正极的方法,其特征在于,包括以下步骤:
(a)将经过预处理的铝电池集流体粘附于磁控溅射设备的样品台上,然后安装碲靶材,准备溅射;
(b)开启磁控溅射设备,将磁控溅射设备腔体抽真空至1~5Pa,设置碲靶材与集流体的距离为10~50cm;向腔体内充入氩气,氩气流量为20~50sccm;打开直流磁控溅射电源,在电压为100~200V,电流为2~10A,磁控溅射功率为200~2000W,溅射气压为0.04~0.4Pa条件下,在集流体上溅射碲薄膜,溅射时间为2~40min,所得碲薄膜厚度为100~2000nm;
(c)将所得碲薄膜在保护气氛下进行热处理,即得铝电池的碲薄膜电极;
(d)将碲薄膜电极作为正极,高纯金属铝作为负极,在离子液体电解质中组装成铝二次电池。
2.根据权利要求1所述的磁控溅射制备铝电池正极的方法,其特征在于,步骤(a)中,所述铝电池集流体为钼片、有机导电玻璃、镀有TiN薄膜的不锈钢片或者钽片。
3.根据权利要求1所述的磁控溅射制备铝电池正极的方法,其特征在于,步骤(a)中,铝电池集流体预处理过程为:将铝电池集流体剪切成合适尺寸,然后依次在去离子水、丙酮和无水乙醇中分别超声清洗20 min,之后取出用高纯氮气吹干,并放在真空干燥箱中进行干燥处理。
4.根据权利要求3所述的磁控溅射制备铝电池正极的方法,其特征在于,步骤(a)中,铝电池集流体的大小为1ⅹ1 cm、1ⅹ2 cm、2ⅹ2 cm或3ⅹ3 cm。
5.根据权利要求1所述的磁控溅射制备铝电池正极的方法,其特征在于,步骤(b)中,磁控溅射设备抽真空时,先打开机械泵,待电阻单元处示数降至2~5Pa时,打开分子泵。
6.根据权利要求1所述的磁控溅射制备铝电池正极的方法,其特征在于,步骤(c)中,热处理温度为200~600℃,热处理时间为2~6h。
CN202010073072.4A 2020-01-22 2020-01-22 一种磁控溅射制备铝电池正极的方法 Active CN111180661B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010073072.4A CN111180661B (zh) 2020-01-22 2020-01-22 一种磁控溅射制备铝电池正极的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010073072.4A CN111180661B (zh) 2020-01-22 2020-01-22 一种磁控溅射制备铝电池正极的方法

Publications (2)

Publication Number Publication Date
CN111180661A true CN111180661A (zh) 2020-05-19
CN111180661B CN111180661B (zh) 2022-08-16

Family

ID=70656518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010073072.4A Active CN111180661B (zh) 2020-01-22 2020-01-22 一种磁控溅射制备铝电池正极的方法

Country Status (1)

Country Link
CN (1) CN111180661B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540767A (zh) * 2022-01-24 2022-05-27 河南农业大学 柔性铝电极薄膜的制备方法
CN114824286A (zh) * 2022-05-09 2022-07-29 广东工业大学 一种钠金属电池用Al-V合金薄膜基底材料及其制备方法和应用
CN115133109A (zh) * 2022-06-17 2022-09-30 苏州大学 一种水系铜离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101609860A (zh) * 2009-07-16 2009-12-23 上海联孚新能源科技有限公司 CdTe薄膜太阳能电池制备方法
CN101640261A (zh) * 2008-08-01 2010-02-03 中信国安盟固利新能源科技有限公司 锂离子二次电池负极及制备方法、以及锂离子二次电池
CN105112867A (zh) * 2015-08-27 2015-12-02 西南交通大学 一种磁控溅射制备锂电池电极材料FeSe2薄膜的方法
CN105633378A (zh) * 2016-03-02 2016-06-01 三峡大学 一种磁控溅射法制备GaN/导电基体复合材料的方法及其在锂离子电池上的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640261A (zh) * 2008-08-01 2010-02-03 中信国安盟固利新能源科技有限公司 锂离子二次电池负极及制备方法、以及锂离子二次电池
CN101609860A (zh) * 2009-07-16 2009-12-23 上海联孚新能源科技有限公司 CdTe薄膜太阳能电池制备方法
CN105112867A (zh) * 2015-08-27 2015-12-02 西南交通大学 一种磁控溅射制备锂电池电极材料FeSe2薄膜的方法
CN105633378A (zh) * 2016-03-02 2016-06-01 三峡大学 一种磁控溅射法制备GaN/导电基体复合材料的方法及其在锂离子电池上的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HANDONG JIAO ET AL: ""A rechargeable Al-Te battery"", 《ACS APPLIED ENERGY MATERIALS》 *
ZHANG ZHI-WEI ET AL: ""Large-scale Fabrication of Tellurium Nanowire Arrays by Magnetron Sputtering with Controllable Morphology"", 《JOURNAL OF INORGANIC MATERIALS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540767A (zh) * 2022-01-24 2022-05-27 河南农业大学 柔性铝电极薄膜的制备方法
CN114540767B (zh) * 2022-01-24 2024-01-23 河南农业大学 柔性铝电极薄膜的制备方法
CN114824286A (zh) * 2022-05-09 2022-07-29 广东工业大学 一种钠金属电池用Al-V合金薄膜基底材料及其制备方法和应用
CN114824286B (zh) * 2022-05-09 2023-12-29 广东工业大学 一种钠金属电池用Al-V合金薄膜基底材料及其制备方法和应用
CN115133109A (zh) * 2022-06-17 2022-09-30 苏州大学 一种水系铜离子电池
CN115133109B (zh) * 2022-06-17 2023-05-12 苏州大学 一种水系铜离子电池

Also Published As

Publication number Publication date
CN111180661B (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
CN111180661B (zh) 一种磁控溅射制备铝电池正极的方法
CN101420047B (zh) 一种锂硫二次电池的制备方法
CN107316989B (zh) 一种锡硫化物/硫/少层石墨烯复合材料及其制备方法和应用
CN109904408B (zh) MoS2纳米片镶嵌在碳基底复合材料的制备方法及应用
CN108682791B (zh) 一种气相法制备层状结构无机钙钛矿负极材料的方法
CN103325998B (zh) 柔性纳米SnO2/Si复合物锂离子电池负极材料及其制备方法
CN102820456B (zh) 一种多孔碳/硫复合材料及其制备方法与应用
CN109065834B (zh) 一种锂离子用无机钙钛矿衍生相作负极材料的制备方法
CN105779954A (zh) 一种磁控溅射法制备GaN/导电基体复合材料的方法及其在钠离子电池上的应用
CN111697213B (zh) 一种二硫化钴-二硫化锡复合颗粒及其制备方法和应用
CN110828749B (zh) 一种金属负极电池的改性隔膜、制备方法及应用
CN112803018B (zh) 一种硅掺杂的石墨烯复合材料及其制备方法和应用
CN110048092B (zh) 一种锂电池硅碳复合材料及其制备方法
CN108711608B (zh) 三维网墙状全固态锂离子电池负极、制备方法及电池
CN111900373B (zh) 一种防锂枝晶的锂金属电池负极侧隔层材料的制备方法
CN109301157B (zh) 一种基于石墨烯薄膜的锂离子电池
CN103708535A (zh) 一种碳掺杂二氧化锡纳米线锂电池负极材料的制备方法
CN115092962B (zh) 一种二氧化钼/碳复合电极材料及其制备方法与应用
CN110867607A (zh) 一种掺杂改性降低锂电池的固态电池制备成本的方法
CN112490414A (zh) 一种二氧化锡和五氧化二钒复合电极材料及其制备方法和应用
CN115148946A (zh) 锂硫电池正极极片的制备方法以及锂硫电池
CN115332541A (zh) 一种三明治结构柔性负极集流体及其制备方法和应用
CN110828819B (zh) 一种钾离子电池用磁黄铁矿型硫化铁负极材料及制备方法
WO2021127999A1 (zh) 二次电池及含有该二次电池的装置
CN113517444A (zh) 集流体、集流体制造方法、电极极片及锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant