CN105779954A - 一种磁控溅射法制备GaN/导电基体复合材料的方法及其在钠离子电池上的应用 - Google Patents

一种磁控溅射法制备GaN/导电基体复合材料的方法及其在钠离子电池上的应用 Download PDF

Info

Publication number
CN105779954A
CN105779954A CN201610119485.5A CN201610119485A CN105779954A CN 105779954 A CN105779954 A CN 105779954A CN 201610119485 A CN201610119485 A CN 201610119485A CN 105779954 A CN105779954 A CN 105779954A
Authority
CN
China
Prior art keywords
gan
substrate
magnetron sputtering
ion battery
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201610119485.5A
Other languages
English (en)
Inventor
倪世兵
黄鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201610119485.5A priority Critical patent/CN105779954A/zh
Publication of CN105779954A publication Critical patent/CN105779954A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明涉及一种磁控溅射法制备GaN/导电基体复合材料的方法,该复合材料为GaN,具体制备方法为:将纯度我99.99%GaN靶材和金属衬底分别安置于溅射腔中,靶材与衬底距离D=7cm;对腔体进行抽真空,V≥1×10‑7Torr;对衬底进行加热,并将其温度保持在25~700℃;利用磁控溅射对靶材进行轰击,在金属衬底上沉积生长GaN。所制备GaN直接生长在导电基体上,与基体结合紧密;GaN材料的生长厚度可通过调整时间进行控制;所制备样品中GaN为均匀的纳米颗粒,平均尺寸在40nm;所制备GaN可作为钠离子电池负极材料,具有较高充、放电容量和较低的充、放电平台。

Description

一种磁控溅射法制备GaN/导电基体复合材料的方法及其在钠离子电池上的应用
技术领域
本发明涉及一种磁控溅射法制备GaN/导电基体复合材料的方法,并将其应用于钠离子电池上,属于储能材料与电化学电源领域。
技术背景
锂离子电池具有工作电压高、比能量大、环境友好等显著优点,是一种理性的储能设备。不仅广泛应用于手机、手提电脑等便携式电子设备中,也被视为未来电动交通工具和大型储能电站的电源的理想电源。然而,锂资源储量有限,很难满足未来储能市场的强大需求。随着锂资源的不断开采,其成本正逐渐上升,这对于锂离子电池在电动汽车及大型储能电站中的规模化应用形成了巨大挑战。寻找能够替代锂离子电池的低成本、新型储能装置迫在眉睫。钠与锂处于同一主族,有着相似的物理化学性质,以钠为核心的钠离子电池具有与锂离子电池类似的工作原理和相近的电化学性能,是锂离子电池的理想替代物。而且,钠元素分布广泛,提炼简单,成本低廉,这有利于其在电动汽车以及大型储能电站中的大规模应用。然而,钠离子电池的性能目前仍远不如锂离子电池,制约其发展的主要因素在于电极材料。钠离子电池电极材料最初的研究思路也类似于锂离子电池电极材料。然而,后续研究发现,钠离子电池电极材料并不能完全在锂离子电池材料体系上进行类推。很多在锂离子电池中具有优良性能的材料,当应用到钠离子电池中时,会出现容量低、可逆性差等问题,甚至没有电化学活性。目前,钠离子电池正极材料主要是通过在原有锂离子电池正极材料体系上进行衍生,种类相对丰富。而钠离子电池负极材料的种类相对匮乏,亟需扩展。探索新型钠离子电池负极材料对于钠离子电池的发展具有十分重要的意义。
发明内容
基于以上背景,本项目发展一种溅射法制备GaN/导电基体复合结构,以其作为无粘结剂钠离子电池负极的显示了较高的可逆容量。结果表明,GaN可作为一种理想的新型钠离子电池负极材料。具体制备方法如下:
(1)将纯度为99.99%GaN靶材和金属衬底分别安置于溅射腔中,靶材与衬底距离D=7cm;
(2)对腔体进行抽真空,V≥1×10-7Torr;
(3)对衬底进行加热,并将其温度保持在25~700℃;
(4)利用磁控溅射对靶材进行轰击,在金属衬底上沉积生长GaN。
步骤(4)是在反应气体N2流量F=20sccm,工作气压P=100mTorr;溅射功率W=200w的条件下沉积时间20~200min后得到的。
所述的金属衬底为铜箔、镍箔、泡沫铜、泡沫镍、预沉积石墨烯缓冲层的铜箔、镍箔、泡沫铜或泡沫镍中的任意一种。
本发明将所述的磁控溅射法制备的GaN/导电基体复合材料在钠离子电池上的应用
本发明所涉及的GaN材料及制备方法具有以下几个显著特点:
(1)所制备GaN直接生长在导电基体上,与基体结合紧密;
(2)GaN材料的生长厚度可通过调整时间进行控制;
(3)所制备样品中GaN为均匀的纳米颗粒,平均尺寸在40nm;
(4)所制备GaN可作为钠离子电池负极材料,具有较高充、放电容量和较低的充、放电平台。
附图说明
图1实施例1所制备样品的SEM图;
图2实施例1所制备样品的首次充、放电曲线;
图3实施例2所制备样品的首次充、放电曲线;
图4实施例3所制备样品的首次充、放电曲线。
具体实施方式
实施例1
将纯度为99.99%GaN靶材和铜箔分别安置于溅射腔中,靶材与衬底距离D=7cm;对腔体进行抽真空至V≥1×10-7Torr并对衬底进行加热至500oC;利用磁控溅射对靶材进行轰击,在金属衬底上沉积生长GaN。利用磁控溅射对靶材进行轰击,在金属衬底上沉积生长GaN构成中反应气体N2流量F=20sccm,工作气压P=100mTorr;溅射功率W=200w,沉积时间120mins。所制备的样品经经SEM表征,由图1可以看出,样品为纳米颗粒,平均尺寸约40nm。将实施例1所得的材料按如下方法制成纽扣电池:将制得的GaN/Cu裁剪成直径14mm的圆片,在120℃下真空干燥12h。以金属钠片为对电极,GradeGF/D为隔膜,溶解有NaPF6(1mol/L)的EC+DEC(体积比为1:1)的溶液为电解液,在氩气保护的手套箱中组装成CR2025型电池。电池组装完后静置10h,再用CT2001A电池测试***进行恒流充放电测试,测试电压为3~0.02V。图2表明,实施例1所制备的GaN作为钠离子电池负极首次充、放电容量分别为836和887mAh/g,放电平台主要在1.0~0.02V之间,充电平台主要在0.2~2.0V之间。
实施例2
将纯度为99.99%GaN靶材和泡沫镍分别安置于溅射腔中,靶材与衬底距离D=7cm;对腔体进行抽真空至V≥1×10-7Torr并对衬底进行加热至500oC;利用磁控溅射对靶材进行轰击,在金属衬底上沉积生长GaN。反应气体N2流量F=20sccm,工作气压P=100mTorr;溅射功率W=200w,沉积时间80mins。将实施例2所得的材料按实施例1中步骤制备成纽扣电池并对其电化学性能进行研究。如图3所示,实施例2所制备的GaN作为钠离子电池负极首次充、放电容量分别为901和948mAh/g。
实施例3
将纯度为99.99%GaN靶材和预沉积石墨烯的铜箔分别安置于溅射腔中,靶材与衬底距离D=7cm;对腔体进行抽真空至V≥1×10-7Torr并对衬底进行加热至500oC;利用磁控溅射对靶材进行轰击,在金属衬底上沉积生长GaN。反应气体N2流量F=20sccm,工作气压P=100mTorr;溅射功率W=30w,沉积时间30mins。将实施例2所得的材料按实施例1中步骤制备成纽扣电池并对其电化学性能进行研究。如图3所示,实施例2所制备的GaN作为钠离子电池负极首次充、放电容量分别为873和934mAh/g。

Claims (4)

1.一种磁控溅射法制备GaN/导电基体复合材料的方法,其特征在于,该复合材料为GaN,具体制备方法为:
(1)将纯度我99.99%GaN靶材和金属衬底分别安置于溅射腔中,靶材与衬底距离D=7cm;
(2)对腔体进行抽真空,V≥1×10-7Torr;
(3)对衬底进行加热,并将其温度保持在25~700℃;
(4)利用磁控溅射对靶材进行轰击,在金属衬底上沉积生长GaN。
2.权利要求1所述的磁控溅射法制备GaN/导电基体复合材料的方法,其特征在于,步骤(4)是在反应气体N2流量F=20sccm,工作气压P=100mTorr;溅射功率W=200w的条件下沉积时间20~200min后得到的。
3.权利要求1所述磁控溅射法制备GaN/导电基体复合材料的方法,其特征在于,所述的金属衬底为铜箔、镍箔、泡沫铜、泡沫镍、预沉积石墨烯缓冲层的铜箔、镍箔、泡沫铜或泡沫镍中的任意一种。
4.权利要求1-3任一项所述的磁控溅射法制备的GaN/导电基体复合材料在钠离子电池上的应用。
CN201610119485.5A 2016-03-02 2016-03-02 一种磁控溅射法制备GaN/导电基体复合材料的方法及其在钠离子电池上的应用 Withdrawn CN105779954A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610119485.5A CN105779954A (zh) 2016-03-02 2016-03-02 一种磁控溅射法制备GaN/导电基体复合材料的方法及其在钠离子电池上的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610119485.5A CN105779954A (zh) 2016-03-02 2016-03-02 一种磁控溅射法制备GaN/导电基体复合材料的方法及其在钠离子电池上的应用

Publications (1)

Publication Number Publication Date
CN105779954A true CN105779954A (zh) 2016-07-20

Family

ID=56387006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610119485.5A Withdrawn CN105779954A (zh) 2016-03-02 2016-03-02 一种磁控溅射法制备GaN/导电基体复合材料的方法及其在钠离子电池上的应用

Country Status (1)

Country Link
CN (1) CN105779954A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935852A (zh) * 2017-04-14 2017-07-07 中国科学院半导体研究所 Si掺杂氮化镓/金属负极电池材料及其制备方法、锂电池
CN110137441A (zh) * 2019-02-28 2019-08-16 厦门理工学院 一种碳纤维原位负载氮化镓负极材料、制备方法及锂离子电池
CN112309723A (zh) * 2020-10-29 2021-02-02 齐鲁工业大学 一种基于碳布/镓氧氮化物的工作电极和超级电容器
CN113113237A (zh) * 2020-10-29 2021-07-13 齐鲁工业大学 一种碳布/镓氧氮化物及其用途
CN113113239A (zh) * 2020-10-29 2021-07-13 齐鲁工业大学 一种碳布/镓氧氮化物超级电容器电极材料及其制备方法
EP4044281A1 (en) * 2021-02-15 2022-08-17 Epinovatech AB Battery cell with an anode comprising gallium nitride nanocrystals

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290782A (ja) * 1993-03-30 1994-10-18 Sanyo Electric Co Ltd 非水系電解質二次電池
US20100310941A1 (en) * 2009-06-05 2010-12-09 Prashant Nagesh Kumta Compositions Including Nano-Particles and a Nano-Structured Support Matrix and Methods of preparation as reversible high capacity anodes in energy storage systems
US20110104551A1 (en) * 2009-11-05 2011-05-05 Uchicago Argonne, Llc Nanotube composite anode materials suitable for lithium ion battery applications
CN102244231A (zh) * 2010-05-14 2011-11-16 中国科学院物理研究所 对正极活性材料和/或正极进行表面包覆的方法以及正极和电池的制备方法
CN103996611A (zh) * 2014-05-30 2014-08-20 广州市众拓光电科技有限公司 一种生长在金属Al衬底上的GaN薄膜及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290782A (ja) * 1993-03-30 1994-10-18 Sanyo Electric Co Ltd 非水系電解質二次電池
US20100310941A1 (en) * 2009-06-05 2010-12-09 Prashant Nagesh Kumta Compositions Including Nano-Particles and a Nano-Structured Support Matrix and Methods of preparation as reversible high capacity anodes in energy storage systems
US20110104551A1 (en) * 2009-11-05 2011-05-05 Uchicago Argonne, Llc Nanotube composite anode materials suitable for lithium ion battery applications
CN102244231A (zh) * 2010-05-14 2011-11-16 中国科学院物理研究所 对正极活性材料和/或正极进行表面包覆的方法以及正极和电池的制备方法
CN103996611A (zh) * 2014-05-30 2014-08-20 广州市众拓光电科技有限公司 一种生长在金属Al衬底上的GaN薄膜及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C.G.ZHANG,ET AL.: "Effect of growth conditions on the GaN thin film by sputtering deposition", 《JOURNAL OF CRYSTAL GROWTH》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935852A (zh) * 2017-04-14 2017-07-07 中国科学院半导体研究所 Si掺杂氮化镓/金属负极电池材料及其制备方法、锂电池
CN110137441A (zh) * 2019-02-28 2019-08-16 厦门理工学院 一种碳纤维原位负载氮化镓负极材料、制备方法及锂离子电池
CN112309723A (zh) * 2020-10-29 2021-02-02 齐鲁工业大学 一种基于碳布/镓氧氮化物的工作电极和超级电容器
CN113113237A (zh) * 2020-10-29 2021-07-13 齐鲁工业大学 一种碳布/镓氧氮化物及其用途
CN113113239A (zh) * 2020-10-29 2021-07-13 齐鲁工业大学 一种碳布/镓氧氮化物超级电容器电极材料及其制备方法
CN112309723B (zh) * 2020-10-29 2021-09-21 齐鲁工业大学 一种基于碳布/镓氧氮化物的工作电极和超级电容器
CN113113239B (zh) * 2020-10-29 2022-04-29 齐鲁工业大学 一种碳布/镓氧氮化物超级电容器电极材料及其制备方法
CN113113237B (zh) * 2020-10-29 2022-04-29 齐鲁工业大学 一种碳布/镓氧氮化物及其用途
EP4044281A1 (en) * 2021-02-15 2022-08-17 Epinovatech AB Battery cell with an anode comprising gallium nitride nanocrystals

Similar Documents

Publication Publication Date Title
McCloskey Attainable gravimetric and volumetric energy density of Li–S and Li ion battery cells with solid separator-protected Li metal anodes
CN105779954A (zh) 一种磁控溅射法制备GaN/导电基体复合材料的方法及其在钠离子电池上的应用
CN110299516B (zh) 碳纳米管阵列负载钛酸锂柔性电极材料的制备方法
Miyazaki et al. An amorphous Si film anode for all-solid-state lithium batteries
CN105449186A (zh) 一种新型二次电池及其制备方法
Chen et al. Aluminum− lithium alloy as a stable and reversible anode for lithium batteries
Jiang et al. In situ growth of CuO submicro-sheets on optimized Cu foam to induce uniform Li deposition and stripping for stable Li metal batteries
CN106410164B (zh) 一种负极复合材料及其制备方法和应用
CN107316989B (zh) 一种锡硫化物/硫/少层石墨烯复合材料及其制备方法和应用
EP3510654B1 (en) Porous silicon materials and conductive polymer binder electrodes
CN105633378A (zh) 一种磁控溅射法制备GaN/导电基体复合材料的方法及其在锂离子电池上的应用
De Juan et al. β-Sn nanorods with active (001) tip induced LiF-rich SEI layer for stable anode material in lithium ion battery
CN101640261A (zh) 锂离子二次电池负极及制备方法、以及锂离子二次电池
CN101630728A (zh) 一种高能量密度锂二次电池电极及其制备方法
CN111373590A (zh) 全固态电池的制造方法
CN103456926A (zh) 硅-石墨烯复合材料、锂离子电池的制备方法
CN104167537A (zh) 一种锂离子电池用石墨烯/氧化锌复合负极材料及其制备方法
CN108400298B (zh) 一种制备钠离子电池用石墨烯负载锑纳米管负极材料的方法及其应用
CN111180661B (zh) 一种磁控溅射制备铝电池正极的方法
CN108807894B (zh) 聚合物前驱体转化Si/C锂离子电池负极材料及制备方法
CN102054981A (zh) 加掺氢碳元素的负极材料及其制备方法
CN104282897B (zh) 一种锂离子电池硅基纳米复合负极材料及其制备方法
Zhao et al. Facile lithiophilic 3D copper current collector for stable Li metal anode
CN107742698B (zh) 一种嵌入式硅碳复合材料的制备方法及其应用
CN102054968A (zh) 表面活化负极极片

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20160720

WW01 Invention patent application withdrawn after publication