CN110845870A - 一种表面共价接枝改性六方氮化硼纳米片及其制备方法 - Google Patents

一种表面共价接枝改性六方氮化硼纳米片及其制备方法 Download PDF

Info

Publication number
CN110845870A
CN110845870A CN201911087333.1A CN201911087333A CN110845870A CN 110845870 A CN110845870 A CN 110845870A CN 201911087333 A CN201911087333 A CN 201911087333A CN 110845870 A CN110845870 A CN 110845870A
Authority
CN
China
Prior art keywords
bnnss
boron nitride
diisocyanate
dispersion
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911087333.1A
Other languages
English (en)
Inventor
袁凤
秦余杨
卞元彪
曹振兴
王玉丰
蔡达威
郑玉斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Institute of Technology
Original Assignee
Changshu Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Institute of Technology filed Critical Changshu Institute of Technology
Priority to CN201911087333.1A priority Critical patent/CN110845870A/zh
Publication of CN110845870A publication Critical patent/CN110845870A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

本发明公开了一种表面共价接枝改性六方氮化硼纳米片及其制备方法,其步骤为:首先,在碱金属氢氧化物协助超声作用下,一步实现氮化硼纳米片的制备与表面羟基化;随后,采用高活性的二异氰酸酯分子对其进行共价接枝改性,其中一个异氰酸酯基团可以与氮化硼纳米片表面的羟基发生氢转移反应,而留下的另一个异氰酸酯基团则赋予了氮化硼纳米片高度的分散性与化学活性。本发明既可以改善氮化硼纳米片在有机溶剂及树脂基体中的团聚问题,又可以使得氮化硼纳米片与树脂基体间形成共价界面,提高相容性,利于氮化硼纳米片的大规模生产与实际应用。

Description

一种表面共价接枝改性六方氮化硼纳米片及其制备方法
技术领域
本发明属于纳米材料技术领域,具体涉及一种表面共价接枝改性六方氮化硼纳米片及其制备方法。
背景技术
近年来,六方氮化硼(h-BN)由于其优异的力、热、电等方面的性能而备受研究者的关注。与石墨相似,h-BN由多层二维纳米片堆叠而成,可以进一步借助外力剥离成氮化硼纳米片(BNNSs)。BNNSs不仅具有可以与石墨烯相媲美的热传导性能、力学性能,而且同时兼具宽带隙、高热稳定性、强耐腐蚀性、小介电常数、低密度、低热膨胀系数等优异性能。这些优异性能使得BNNSs在众多导热绝缘填料中脱颖而出,成为高绝缘、低介电损耗型导热聚合物基复合材料最理想的轻质纳米填料。
目前,制备BNNSs的方法主要有超声剥离、机械剥离、化学剥离等“自上而下”的剥离法,此外,还可以通过固相反应法、化学气相沉积法等“自下而上”的合成法获得。通过这两条路径均可获得一定产量的BNNSs,但是制得的BNNSs表面缺少极性官能团,呈化学惰性,加之极高的比表面积,BNNSs与其它介质(聚合物、溶剂等)具有很弱的相互作用,极易形成大量的团聚体,这给BNNSs的进一步研究与应用带来了极大的困难。同样由于BNNSs表面没有任何可用于化学键接或物理互锁的官能团,因此BNNSs与树脂基体界面作用力很弱,致使获得的复合材料的性能与理论值相差甚远,限制了其在复合材料领域的应用。因此,在制备BNNSs过程的同时在其表面引入活性基团或通过一定的表面改性技术对BNNSs进行有效的表面修饰和功能化,以提高其在聚合物基体中的分散性和界面结合力对获得高性能的复合材料来说是十分必要的。
目前,BNNSs的表面改性研究多采用偶联剂,然而,偶联剂修饰的BNNSs不能长期、稳定地存在于聚合物基体中,随着时间的推移,BNNSs会逐渐形成团聚体或沉淀,究其原因就在于偶联剂与聚合物基体间不易形成化学键合。
发明内容
本发明的目的在于克服现有技术的不足,提供一种简单而有效的制备表面具有高活性基团BNNSs的方法。
实现本发明的技术方案如下:
一种表面共价接枝改性六方氮化硼纳米片的制备方法,首先利用碱金属氢氧化物协助超声处理实现了BNNSs的剥离与表面羟基功能化的一步完成,进一步利用双官能团的二异氰酸酯分子对其进行共价接枝改性,在BNNSs表面引入了大量高活性的异氰酸酯基团,提高了BNNSs在有机溶剂与树脂基体中的分散性,促进了BNNSs的实际应用。具体包括如下步骤:
(1)将h-BN粉末分散于去离子水中并不断搅拌,加入一定量的碱金属氢氧化物,继续搅拌,得到混合液;
(2)将步骤(1)制得的混合液置于超声波破碎仪中,超声剥离数小时,得到分散液;
(3)将步骤(2)制得的分散液进行离心分离,所得上层清液过滤、去离子水洗涤,所得产物在60~100oC的真空烘箱中干燥6~12h,即得到羟基功能化的BNNSs(BNNSs-OH);
(4)在惰性气体保护及催化剂作用下,将步骤(3)制得的BNNSs-OH与双官能团的异氰酸酯分子在极性非质子溶剂中,于60~80oC的温度下搅拌反应6~10h;
(5)将步骤(4)制得的混合物在室温下重复数次超声分散-离心分离过程,以保证未反应的二异氰酸酯分子和其它杂质被完全去除,将下层沉淀物烘干得到表面共价接枝改性六方氮化硼纳米片即异氰酸酯共价功能化的BNNSs。
较佳的,步骤(1)中,h-BN粉末与去离子水二者用量比为1g:100ml~1g:600ml。
较佳的,步骤(1)中,碱金属氢氧化物为氢氧化钠或氢氧化钾。
较佳的,步骤(1)中,h-BN粉末与碱金属氢氧化物的质量比为1:60~1:100。
较佳的,步骤(2)中,在60~80kHz和200~300W功率下超声剥离10~20h。
较佳的,步骤(3)中,在2000~4000rpm的转数下离心分离20~50min。
较佳的,步骤(4)中,催化剂为二丁基锡二月桂酸酯有机锡。
较佳的,步骤(4)中,双官能团的二异氰酸酯为二苯基甲烷二异氰酸酯、甲苯二异氰酸酯、异佛尔酮二异氰酸酯及六亚甲基二异氰酸酯等常见的二异氰酸酯分子中的任意一种。
较佳的,步骤(4)中,BNNSs-OH与极性非质子溶剂按1g:200ml~1g:600ml的比例混合。
较佳的,步骤(4)中,BNNSs-OH与双官能团的二异氰酸酯的用量比为1:5~1:20。
较佳的,步骤(4)中,极性非质子溶剂为N-甲基吡啶烷酮、二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺中的任意一种。
较佳的,步骤(5)中,室温下重复3~5次超声分散-离心分离过程。
与现有技术相比,本发明的优点是:
(1)本发明可以同时实现BNNSs的制备与羟基功能化,而且操作简便、对设备要求低、条件温和、成本低廉、生产效率高,BNNSs-OH的产率最高可达33.8%。
(2)本发明提供的二异氰酸酯分子共价接枝改性的BNNSs在各种极性溶剂中的分散性得到有效的改善,大大提高了后续的可加工性。
(3)本发明提供的二异氰酸酯分子共价接枝改性的BNNSs,其表面有大量高活性的异氰酸酯基团,解决了BNNSs表面呈化学惰性的难题,可以与常见极性树脂,如聚氨酯、环氧树脂、硅油、硅橡胶等形成氢键或共价键,提高二者相容性和界面作用,从而获得高性能的复合材料。
附图说明
图1为实施例1制得的BNNSs-OH的透射电镜图。
图2为原始h-BN和实施例1制得的BNNSs-OH的红外光谱图。
图3为实施例2制得的BNNSs-OH中B(a)和N(b)元素的高分辨XPS结果。
图4为实施例1制得的BNNSs-OH和实施例4制得的BNNSs-TDI的红外光谱图。
图5为原始h-BN和实施例4制得的BNNSs-TDI的热失重曲线图。
图6为对比例1制得的BNNSs的透射电镜图。
图7为对比例1制得的BNNSs中B(a)和N(b)元素的高分辨XPS结果。
图8为对比例2得到的产物的扫面电镜图。
图9为对比例2得到的产物的红外光谱图。
具体实施方式
下面结合附图和实施例对本发明进行进一步阐述。
本发明的原理在于:在液相超声过程,一方面,利用超声波能量破坏h-BN的层间作用力,从而将纳米片层从三维结构上剥离下来,另一方面,在超声波产生的能力作用下,碱性溶液中的BNNSs的边缘与缺陷处的硼原子会被氧化,从而实现了BNNSs的制备与羟基功能化同时完成。而且羟基的存在可以促进BNNSs在水中形成稳定的分散液,从而有效提高剥离效率。进一步利用羟基与异氰酸酯基团间的氢转移反应,在BNNSs-OH表面共价接枝双官能团的二异氰酸酯分子,从而赋予BNNSs高度的分散性与化学活性。
本发明所述的表面共价接枝改性六方氮化硼纳米片主要通过两步实现:首先,在碱金属氢氧化物协助超声作用下,一步实现氮化硼纳米片的制备与表面羟基化。随后,采用高活性的二异氰酸酯分子对其进行共价接枝改性,其中一个异氰酸酯基团可以与氮化硼纳米片表面的羟基发生氢转移反应,而留下的另一个异氰酸酯基团则赋予了氮化硼纳米片高度的分散性与化学活性。既可以改善氮化硼纳米片在有机溶剂及树脂基体中的团聚问题,又可以使得氮化硼纳米片与树脂基体间形成共价界面,提高相容性,利便于氮化硼纳米片的大规模生产与实际应用。
实施例1
将1g的h-BN粉末分散于300ml去离子水中并不断搅拌,随后加入60g的氢氧化钠,继续搅拌得到混合液。将混合液置于超声波破碎仪中,在80kHz、300W的条件下,超声剥离15h。超声处理后,将分散液在3000rpm的离心转速下,离心分离30min,除去未剥离的h-BN。对上层清液进行过滤,用去离子水洗涤,直至滤液pH=7。将滤饼置于80oC的真空烘箱中,干燥8h后得到0.254g的BNNSs-OH,产率为25.4%(产率=BNNSs-OH的质量/原始h-BN的质量)。
图1为制得的BNNSs-OH的透射电镜图,可见其对电子束几乎是透明的,而且出现了明显的褶皱和涟漪,证实了其柔软而轻薄的特性,表明了超薄氮化硼纳米的成功制备。图2为原始h-BN和制得的BNNSs-OH的红外光谱图,可以看出BNNSs-OH在3200cm-1附近出现了高度宽化的B-OH键的伸缩振动峰,同时在1200cm-1附近出现了B-O键面内弯曲振动吸收峰(h-BN在3400cm-1附件的吸收峰是由表面吸附的水分产生的)。图1和图2结果证明了碱金属协助超声剥离可以一步实现氮化硼纳米片的剥离与羟基功能化。
实施例2
将1g的h-BN粉末分散于300ml去离子水中并不断搅拌,随后加入80g的氢氧化钠,继续搅拌得到混合物。将混合物置于超声波破碎仪中,在80kHz、300W的条件下,超声剥离15h。超声处理后,将分散液在3000rpm的离心转速下,离心分离30min,除去未剥离的h-BN。对上层清液进行过滤,用去离子水洗涤,直至滤液pH=7。将滤饼置于80oC的真空烘箱中,干燥8h后得到0.338g的BNNSs-OH,产率为33.8%。
图3为制得的BNNSs-OH中B(a)和N(b)元素的高分辨XPS结果,可以看出存在B-O峰,而无N-O峰,说生成的羟基基团与BNNSs表面的B原子键接,而不是N原子。
实施例3
将1g的h-BN粉末分散于300ml去离子水中并不断搅拌,随后加入100g的氢氧化钾,继续搅拌得到混合物。将混合物置于超声波破碎仪中,在80kHz、300W的条件下,超声剥离15h。超声处理后,将分散液在3000rpm的离心转速下,离心分离30min,除去未剥离的h-BN。对上层清液进行过滤,用去离子水洗涤,直至滤液pH=7。将滤饼置于80oC的真空烘箱中,干燥8h后得到0.265g的BNNSs-OH,产率为26.5%。
实施例4
称取1g按本发明实施例1方法制备的BNNSs-OH分散于300ml的N,N-二甲基甲酰胺中,并将分散液置于80oC的水浴锅中。在氮气保护、600rpm的搅拌速度下,加入10g甲苯二异氰酸酯和4滴二丁基锡二月桂酸酯有机锡(催化剂),搅拌反应8h。待体系自然冷却室温时,将混合液在120W的功率下超声分散30min,然后在8000rpm的转速下,离心15min。将离心后的沉淀再次分散于300ml的N,N-二甲基甲酰胺中,并于120W下超声分散30min后,再次在8000rpm的转速下,离心15min。重复该超声分散-离心分离过程4次。最后,将产物放置于80oC真空干燥箱中,烘干10h,得到甲苯二异氰酸酯共价功能化的氮化硼纳米片(BNNSs-TDI)。
图4为制得的BNNSs-TDI和实施例1制得的BNNSs-OH的红外谱图,由对比可以看出,在BNNSs-TDI中羟基基团特征吸收峰消失了,同时2274cm-1附近出现了异氰酸酯基团的伸缩振动峰。更重要的是在1728cm-1附近出现了氨基甲酸酯(-NHCOO-)基团的特征吸收峰,该基团是羟基基团与异氰酸酯基团之间的氢转移反应生成的新的官能团,表明TDI分子通过羟基基团与异氰酸酯基团间的氢转移反应成功地共价嫁接到了BNNSs-OH表面。图5为原始h-BN和制得的BNNSs-TDI的热失重曲线图,结果显示,氮化硼纳米片表面中甲苯二异氰酸酯分子的接枝率高达12.1wt%。
将制备的BNNSs-TDI分散于N,N二甲基甲酰胺中,超声分散15min,其分散结果如表1所示,可见BNNSs-TDI在N,N二甲基甲酰胺中能形成稳定的分散液,分散浓度可高达7mg/ml,且一个月内无明显沉淀产生。
实施例5
称取1g按本发明实施例2方法制备的BNNSs-OH分散于300ml的N-甲基吡啶烷酮中,并将分散液置于80oC的水浴锅中。在氮气保护、600rpm的搅拌速度下,加入20g异佛尔酮二异氰酸酯和4滴二丁基锡二月桂酸酯有机锡(催化剂),并搅拌反应8h。待体系自然冷却室温时,将混合物在120W的功率下超声分散30min,然后在8000rpm的转速下,离心15min。将离心后的沉淀再次分散于300ml的N-甲基吡啶烷酮,并于120W下超声分散30min后,再次在8000rpm的转速下,离心15min。重复该超声分散-离心分离过程4次。最后,将产物放置于80oC真空干燥箱中,烘干10h,得到异佛尔酮二异氰酸酯共价功能化的氮化硼纳米片(BNNSs-IPDI)。
将制备的BNNSs-IPDI分散于N,N二甲基甲酰胺中,超声分散15min,其分散结果如表1所示,可见BNNSs-IPDI在N,N二甲基甲酰胺中分散浓度可达5mg/ml,且一个月内无明显沉淀产生。
实施例6
称取1g制备的BNNSs-OH分散于300ml的N,N-二甲基乙酰胺中,并将分散液置于80oC的水浴锅中。在氮气保护、600rpm的搅拌速度下,加入15g二苯基甲烷二异氰酸酯和4滴二丁基锡二月桂酸酯有机锡(催化剂),并搅拌反应8h。待体系自然冷却室温时,将混合物在120W的功率下超声分散30min,然后在8000rpm的转速下,离心15min。将离心后的沉淀再次分散于300ml的N,N-二甲基乙酰胺中,并于120W下超声分散30min后,再次在8000rpm的转速下,离心15min。重复该超声分散-离心分离过程4次。最后,将产物放置于80oC真空干燥箱中,烘干10h,得到二苯基甲烷二异氰酸共价功能化的氮化硼纳米片(BNNSs-MDI)。
将制备的BNNSs-MDI分散于N,N二甲基甲酰胺中,超声分散15min,其分散结果如表1所示,可见BNNSs-MDI在N,N二甲基甲酰胺中分散浓度可达6mg/ml,且一个月内无明显沉淀产生。
实施例7
称取1g制备的BNNSs-OH分散于300ml的二甲基亚砜中,并将分散液置于80oC的水浴锅中。在氮气保护、600rpm的搅拌速度下,加入5g六亚甲基二异氰酸酯和4滴二丁基锡二月桂酸酯有机锡(催化剂),并搅拌反应8h。待体系自然冷却室温时,将混合物在120W的功率下超声分散30min,然后在8000rpm的转速下,离心15min。将离心后的沉淀再次分散于300ml的二甲基亚砜,并于120W下超声分散30min后,再次在8000rpm的转速下,离心15min。重复该超声分散-离心分离过程4次。最后,将产物放置于80oC真空干燥箱中,烘干10h,得到六亚甲基二异氰酸酯共价功能化的氮化硼纳米片(BNNSs-HDI)。
将制备的BNNSs-HDI分散于N,N二甲基甲酰胺中,超声分散15min,其分散结果如表1所示,可见BNNSs-HDI在N,N二甲基甲酰胺中能形成稳定的分散液,分散浓度可达5mg/ml,且一个月内无明显沉淀产生。
对比例1
实验过程与实施例1相同,但实验过程不添加碱金属氢氧化物。
图6为对比例1制备的氮化硼纳米片的透射电镜图,结果表明通过对比例子成功制备了超薄的氮化硼纳米片。图7为比例1制备的氮化硼纳米片中硼(a)和氮(b)元素的高分辨XPS结果,可知,对比例1制得的氮化硼纳米片表面没有羟基基团。
将制备的BNNSs分散于N,N二甲基甲酰胺中,超声分散15min,其分散结果如表1所示,可见由于缺少活性基团,未共价改性的BNNSs在N,N二甲基甲酰胺无法形成稳定的分散液,易产生团聚。
对比例2
实验过程涉及用搅拌处理替代超声处理,与实施例1相似,具体如下:
将1g的h-BN粉末分散于300ml去离子水中并不断搅拌,随后加入60g的氢氧化钠,继续搅拌得到混合液。室温下,将混合液在500rpm的转数下,搅拌15h。搅拌处理后,将分散液在3000rpm的离心转速下,离心分离30min,除去未剥离的h-BN。对上层清液进行过滤,用去离子水洗涤,直至滤液pH=7。将滤饼置于80oC的真空烘箱中,干燥8h。
图8为对比例2得到的产物的扫面电镜图,可见得到的产物仍是较厚的块体。图9为对比例2得到的产物的红外光谱图,可见样品中并没有出现羟基基团的特征吸收峰。图8和图9结果表明没有超声作用,h-BN既不能发生有效的剥离,也不能被有效的氧化。
表1 共价接枝改性前后BNNSs在N,N二甲基甲酰胺中的分散效果
综上,开发一种简单且能大规模生产表面具有高活性基团的BNNSs,不仅对BNNSs的基础研究具有关键性的推动作用,还可以赋予BNNSs新的性能,促进其在复合材料、生物医药及光电器件等领域的实际应用。

Claims (10)

1.一种表面共价接枝改性六方氮化硼纳米片的制备方法,其特征在于,具体包括如下步骤:
(1)将h-BN粉末分散于水中并不断搅拌,加入碱金属氢氧化物,继续搅拌,得到混合液;
(2)将步骤(1)制得的混合液超声剥离,得到分散液;
(3)将步骤(2)制得的分散液离心分离,将上层清液过滤、洗涤,所得产物真空干燥,得到羟基功能化的BNNSs;
(4)在惰性气体保护及催化剂作用下,将步骤(3)制得的羟基功能化的BNNSs与双官能团的二异氰酸酯在极性非质子溶剂中,于60~80oC的温度下搅拌反应6~10h;
(5)将步骤(4)制得的混合物重复数次超声分散-离心分离过程,将下层沉淀物干燥得到表面共价接枝改性六方氮化硼纳米片。
2.如权利要求1所述的方法,其特征在于,h-BN粉末与水的用量比为1g:100ml~1g:600ml。
3.如权利要求1所述的方法,其特征在于,碱金属氢氧化物为氢氧化钠或氢氧化钾。
4.如权利要求1所述的方法,其特征在于,h-BN粉末与碱金属氢氧化物的质量比为1:60~1:100。
5.如权利要求1所述的方法,其特征在于,步骤(2)中,在60~80kHz和200~300W功率下超声剥离10~20h,得到分散液。
6.如权利要求1所述的方法,其特征在于,步骤(3)中,在2000~4000rpm的转数下离心分离20~50min。
7.如权利要求1所述的方法,其特征在于,步骤(3)中,所得产物于60~100oC下真空干燥6~12h,得到羟基功能化的BNNSs。
8.如权利要求1所述的方法,其特征在于,步骤(4)中,催化剂为二丁基锡二月桂酸酯有机锡。
9.如权利要求1所述的方法,其特征在于,步骤(4)中,双官能团的二异氰酸酯为二苯基甲烷二异氰酸酯、甲苯二异氰酸酯、异佛尔酮二异氰酸酯和六亚甲基二异氰酸酯中的任意一种。
10.如权利要求1所述的方法,其特征在于,步骤(4)中,羟基功能化的BNNSs与极性非质子溶剂按1g:200ml~1g:600ml的比例混合。
CN201911087333.1A 2019-11-08 2019-11-08 一种表面共价接枝改性六方氮化硼纳米片及其制备方法 Pending CN110845870A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911087333.1A CN110845870A (zh) 2019-11-08 2019-11-08 一种表面共价接枝改性六方氮化硼纳米片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911087333.1A CN110845870A (zh) 2019-11-08 2019-11-08 一种表面共价接枝改性六方氮化硼纳米片及其制备方法

Publications (1)

Publication Number Publication Date
CN110845870A true CN110845870A (zh) 2020-02-28

Family

ID=69599842

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911087333.1A Pending CN110845870A (zh) 2019-11-08 2019-11-08 一种表面共价接枝改性六方氮化硼纳米片及其制备方法

Country Status (1)

Country Link
CN (1) CN110845870A (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111471156A (zh) * 2020-05-11 2020-07-31 黎哲华 一种绝缘性的高导热改性聚氨酯薄膜及其制法
CN111484627A (zh) * 2020-04-26 2020-08-04 赵汉波 一种功能化氮化硼原位改性环氧树脂绝缘材料及其制法
CN111620998A (zh) * 2020-06-09 2020-09-04 黎哲华 一种高绝缘性的硅油-氮化硼改性聚氨酯材料及其制法
CN111793190A (zh) * 2020-08-06 2020-10-20 王康 一种纳米氮化硼-聚酰亚胺改性聚氨酯绝缘材料及其制法
CN112280094A (zh) * 2020-10-26 2021-01-29 盐城市恒丰海绵有限公司 一种阻燃半硬质聚氨酯泡沫及其制备方法
CN112679801A (zh) * 2020-12-15 2021-04-20 中国科学院理化技术研究所 一种有机硅功能化锑烯纳米片及其制备方法和应用
CN112980215A (zh) * 2021-02-24 2021-06-18 东莞东超新材料科技有限公司 一种高导热氮化硼粉体填料及制备方法
CN113061246A (zh) * 2021-03-26 2021-07-02 江苏苏能新材料科技有限公司 一种高流动导热尼龙6母粒的制备方法
CN113460980A (zh) * 2021-08-02 2021-10-01 西南交通大学 氟化氮化硼纳米片和高性能工业润滑油脂及其制备方法
CN113831692A (zh) * 2021-10-13 2021-12-24 浙江元盛塑业股份有限公司 一种改性氮化硼/环氧树脂荧光和介电复合材料及其制备方法
CN113956539A (zh) * 2021-12-14 2022-01-21 广东思泉新材料股份有限公司 一种改性六方氮化硼粉体的生产工艺及其应用
CN114573830A (zh) * 2022-03-30 2022-06-03 黑龙江省科学院石油化学研究院 一种具有自粘附特性的室温自修复柔性有机硅热界面材料及其制备方法
CN115386245A (zh) * 2022-08-08 2022-11-25 浙江理工大学 一种亲油性氮化碳纳米片制备方法及应用
CN116178642A (zh) * 2023-04-24 2023-05-30 山东鹏程陶瓷新材料科技有限公司 一种表面接枝改性六方氮化硼及其制备方法
CN116618080A (zh) * 2023-07-24 2023-08-22 河南理工大学鄂尔多斯煤炭清洁开发利用研究院 基于高效双功能活性位点的氨硼烷水解析氢用催化剂的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112590A (ja) * 2011-11-30 2013-06-10 Sekisui Chem Co Ltd イソシアネート基変成炭素材料及びその製造方法
CN104804477A (zh) * 2015-03-26 2015-07-29 苏州安鸿泰新材料有限公司 一种改性石墨烯纳米填充材料的制备方法和应用
CN104926693A (zh) * 2015-05-08 2015-09-23 江南大学 一种含异氰酸基的改性剂和制备及其应用
CN107413370A (zh) * 2017-08-18 2017-12-01 中国科学技术大学 六方氮化硼纳米片及其制备方法
CN109573965A (zh) * 2018-12-26 2019-04-05 合肥学院 一种羟基改性氮化硼纳米片分散液的制备方法
CN109626342A (zh) * 2018-12-17 2019-04-16 盐城师范学院 二维羟基化氮化硼的一步制备方法
CN109810544A (zh) * 2018-12-29 2019-05-28 厦门大学 一种氨基化六方氮化硼及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112590A (ja) * 2011-11-30 2013-06-10 Sekisui Chem Co Ltd イソシアネート基変成炭素材料及びその製造方法
CN104804477A (zh) * 2015-03-26 2015-07-29 苏州安鸿泰新材料有限公司 一种改性石墨烯纳米填充材料的制备方法和应用
CN104926693A (zh) * 2015-05-08 2015-09-23 江南大学 一种含异氰酸基的改性剂和制备及其应用
CN107413370A (zh) * 2017-08-18 2017-12-01 中国科学技术大学 六方氮化硼纳米片及其制备方法
CN109626342A (zh) * 2018-12-17 2019-04-16 盐城师范学院 二维羟基化氮化硼的一步制备方法
CN109573965A (zh) * 2018-12-26 2019-04-05 合肥学院 一种羟基改性氮化硼纳米片分散液的制备方法
CN109810544A (zh) * 2018-12-29 2019-05-28 厦门大学 一种氨基化六方氮化硼及其制备方法和应用

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111484627A (zh) * 2020-04-26 2020-08-04 赵汉波 一种功能化氮化硼原位改性环氧树脂绝缘材料及其制法
CN111471156A (zh) * 2020-05-11 2020-07-31 黎哲华 一种绝缘性的高导热改性聚氨酯薄膜及其制法
CN111620998A (zh) * 2020-06-09 2020-09-04 黎哲华 一种高绝缘性的硅油-氮化硼改性聚氨酯材料及其制法
CN111793190A (zh) * 2020-08-06 2020-10-20 王康 一种纳米氮化硼-聚酰亚胺改性聚氨酯绝缘材料及其制法
CN112280094A (zh) * 2020-10-26 2021-01-29 盐城市恒丰海绵有限公司 一种阻燃半硬质聚氨酯泡沫及其制备方法
CN112679801A (zh) * 2020-12-15 2021-04-20 中国科学院理化技术研究所 一种有机硅功能化锑烯纳米片及其制备方法和应用
CN112980215A (zh) * 2021-02-24 2021-06-18 东莞东超新材料科技有限公司 一种高导热氮化硼粉体填料及制备方法
CN113061246A (zh) * 2021-03-26 2021-07-02 江苏苏能新材料科技有限公司 一种高流动导热尼龙6母粒的制备方法
CN113460980A (zh) * 2021-08-02 2021-10-01 西南交通大学 氟化氮化硼纳米片和高性能工业润滑油脂及其制备方法
CN113831692A (zh) * 2021-10-13 2021-12-24 浙江元盛塑业股份有限公司 一种改性氮化硼/环氧树脂荧光和介电复合材料及其制备方法
CN113956539A (zh) * 2021-12-14 2022-01-21 广东思泉新材料股份有限公司 一种改性六方氮化硼粉体的生产工艺及其应用
CN113956539B (zh) * 2021-12-14 2023-08-25 广东思泉新材料股份有限公司 一种改性六方氮化硼粉体的生产工艺及其应用
CN114573830A (zh) * 2022-03-30 2022-06-03 黑龙江省科学院石油化学研究院 一种具有自粘附特性的室温自修复柔性有机硅热界面材料及其制备方法
CN114573830B (zh) * 2022-03-30 2023-04-18 黑龙江省科学院石油化学研究院 一种具有自粘附特性的室温自修复柔性有机硅热界面材料及其制备方法
CN115386245A (zh) * 2022-08-08 2022-11-25 浙江理工大学 一种亲油性氮化碳纳米片制备方法及应用
CN116178642A (zh) * 2023-04-24 2023-05-30 山东鹏程陶瓷新材料科技有限公司 一种表面接枝改性六方氮化硼及其制备方法
CN116618080A (zh) * 2023-07-24 2023-08-22 河南理工大学鄂尔多斯煤炭清洁开发利用研究院 基于高效双功能活性位点的氨硼烷水解析氢用催化剂的制备方法
CN116618080B (zh) * 2023-07-24 2023-10-03 河南理工大学鄂尔多斯煤炭清洁开发利用研究院 基于高效双功能活性位点的氨硼烷水解析氢用催化剂的制备方法

Similar Documents

Publication Publication Date Title
CN110845870A (zh) 一种表面共价接枝改性六方氮化硼纳米片及其制备方法
Deng et al. Thermoresponsive graphene oxide‐PNIPAM nanocomposites with controllable grafting polymer chains via moderate in situ SET–LRP
CN114074927B (zh) 一种二维材料及其制备方法和复合膜
CN102604332B (zh) 一种SiO2纳米粒子接枝氧化石墨烯改性环氧树脂的方法
CN106189165B (zh) 一种高导热绝缘六方氮化硼/聚碳酸酯复合材料的制备方法
Nan et al. Covalently introducing amino-functionalized nanodiamond into waterborne polyurethane via in situ polymerization: Enhanced thermal conductivity and excellent electrical insulation
CN112852076A (zh) 一种石墨烯改性聚合物复合材料的制备方法
CN111170289B (zh) 一种大规模制备疏水型六方氮化硼纳米片的方法
CN111218090A (zh) 一种各向异性的改性石墨烯环氧树脂复合材料的制备方法
CN111717900B (zh) 一种功能化氮化硼纳米片的机械剥离方法
CN102181155B (zh) 聚四氟乙烯及功能化碳纤维改性聚酰亚胺树脂复合材料的制备方法
CN107055491A (zh) 一种利用尿素辅助超声制备六方氮化硼纳米片的方法
CN113105735B (zh) 一种高导热的高分子聚合物复合导热材料及其制备方法
CN106744900A (zh) 一种高分散性石墨烯的制备方法
CN111232967A (zh) 一种氨基化氧化石墨烯的制备方法
CN112408381A (zh) 一种二维γ-石墨单炔粉末及其制备方法
Bogdal et al. Synthesis of polymer nanocomposites under microwave irradiation
CN103059343B (zh) 一种改性碳纳米管及其制备方法
CN110229153B (zh) 一种插层分子及其制备方法、二维纳米复合材料
CN115838496A (zh) 一种聚磷腈改性碳化钛纳米片的有机无机杂化成炭剂的制备方法及其应用
CN110527323A (zh) 一种利用静电自组装法制备的纳米杂化填料及其制备方法
Shan et al. Electrochemical preparation of hydroxylated boron nitride nanosheets for solid–state flexible supercapacitors using deep eutectic solvent and water mixture as electrolytes
CN112029284A (zh) 一种氧化石墨烯助分散蒙脱土改性聚硫橡胶及其制备方法
Wu et al. Preparation and characterization of functionalized graphite/poly (butylene terephthalate) composites
Yao et al. Ultrasonic-assisted exfoliation bulk-phase of MoS2 with chitosan/acetic acid solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200228

RJ01 Rejection of invention patent application after publication