CN110654253B - 一种用于电动汽车无线充电***最优效率的联合控制方法 - Google Patents

一种用于电动汽车无线充电***最优效率的联合控制方法 Download PDF

Info

Publication number
CN110654253B
CN110654253B CN201911074119.2A CN201911074119A CN110654253B CN 110654253 B CN110654253 B CN 110654253B CN 201911074119 A CN201911074119 A CN 201911074119A CN 110654253 B CN110654253 B CN 110654253B
Authority
CN
China
Prior art keywords
secondary side
charging
zvs
rectifier
phase angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911074119.2A
Other languages
English (en)
Other versions
CN110654253A (zh
Inventor
王来利
蒋勇斌
赵晨旭
李瑞邦
伍敏
王跃
杨旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201911074119.2A priority Critical patent/CN110654253B/zh
Priority to US16/729,391 priority patent/US11223349B2/en
Publication of CN110654253A publication Critical patent/CN110654253A/zh
Application granted granted Critical
Publication of CN110654253B publication Critical patent/CN110654253B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/13Modifications for switching at zero crossing
    • H03K17/133Modifications for switching at zero crossing in field-effect transistor switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种用于电动汽车无线充电***最优效率的联合控制方法,包括以下步骤:利用充电电压控制环路及充电电流控制环路调节二次侧整流器的移相角,以控制电池的充电电压及充电电流;利用二次侧ZVS相角控制环路调节二次侧整流器的功角,以控制二次侧整流器的ZVS相角;利用一次侧ZVS相角控制环路调节一次侧逆变器的移相角,以控制一次侧逆变器的ZVS相角;确定***当前工况,再通过扰动观测法调节一次侧逆变器的ZVS相角及二次侧整流器的ZVS相角,以自动寻找充电最优效率工作点,该方法在保持稳定的充电电压及充电电流的前提下,实现逆变器及整流器的ZVS,同时能够根据当前的工况,自动寻找最优传输效率的工作点。

Description

一种用于电动汽车无线充电***最优效率的联合控制方法
技术领域
本发明属于无线充电领域,涉及一种用于电动汽车无线充电***最优效率的联合控制方法。
背景技术
无线充电技术是一种安全便捷的电能传输方式,具有使用灵活方便、可适应恶劣环境、易于实现无人自动供电和移动式供电的优点。基于近场耦合的无线充电技术能够较好地满足距离、效率、功率和安全等方面的需求,在电动车、消费电子、传感器和植入设备等领域具有广阔的应用前景。随着电动汽车逐渐普及,电动汽车的无线充电技术成为当前的研究热点。然而,在对电动汽车的无线充电进行控制时,有以下几个需求:
1)稳定的充电电压和充电电流。无线充电***作为一种电源,需向电动汽车电池提供稳定的充电电压和充电电流。
2)最小化开关损耗。基于串联-串联谐振式无线充电***需要使用高频逆变器和有源整流器。对于高频逆变器而言,一般采用MOSFET器件,为了减小开关损耗,需要使得逆变器尽可能工作在零电压开通状态(Zero Voltage Switching,ZVS);对于有源整流器而言,同样需要采用MOSFET器件,所以也需要使得有源整流器尽可能工作在ZVS状态,从而实现***的开关损耗最小化。
3)各种工况下的最优整机效率。用于电动汽车无线充电的线圈需要埋在地下,其散热问题较难解决。在电动汽车电池的全范围充电阶段,***需要在各种工况下都能达到最优效率,减小功率损耗,从根本上解决散热问题。
4)较强的抗干扰性能。在实际使用中,当负载发生变化时,控制***需自动地调节控制变量,实现对充电电压/充电电流指令的跟踪。
5)较少的变换器个数。在实现电动汽车无线充电时,减少变换器的个数有诸多优势,如可降低***成本,降低***复杂度,并提高***最大传输效率和***功率密度。
一方面,为了减小原副边变换器的开关损耗,需要使得原副边变换器均能够实现ZVS;另一方面,在电动汽车无线充电的具体应用中,电动汽车电池所需的充电电压和充电电流会随着电池状态不断地改变,***的损耗也会出现较大的变化,从而需要对控制变量实时调节,以实现在原副边变换器ZVS条件下的***损耗的最小化。目前仍尚未出现能够满足上述五种需求的多目标控制方法。
综上所述,需要提出一种能够满足以上五个需求的电动汽车无线充电***的控制方法。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种用于电动汽车无线充电***最优效率的联合控制方法,该方法在保持稳定的充电电压及充电电流的前提下,实现逆变器及整流器的ZVS,同时能够根据***当前的工况,自动寻找最优传输效率的工作点。
为达到上述目的,本发明所述的用于电动汽车无线充电的最优效率控制方法包括以下步骤:
利用充电电压控制环路及充电电流控制环路调节二次侧整流器的移相角,以控制电池的充电电压及充电电流;
利用二次侧ZVS相角控制环路调节二次侧整流器的功角,以控制二次侧整流器的ZVS相角;
利用一次侧ZVS相角控制环路调节一次侧逆变器的移相角,以控制一次侧逆变器的ZVS相角;
实时检测一次侧逆变器的直流侧输入电压V1及二次侧整流器的直流侧输出电压V2,再根据一次侧逆变器的直流侧输入电压V1,二次侧整流器的直流侧输出电压V2与直流侧输出电流I2确定***当前工况,最后再通过扰动观测法调节一次侧逆变器的ZVS相角及二次侧整流器的ZVS相角,以自动寻找充电最优效率工作点。
利用充电电压控制环路及充电电流控制环路调节二次侧整流器的移相角,以控制电池的充电电压及充电电流的具体操作为:
充电电压环路及充电电流环路采集二次侧电动汽车电池的充电电压及充电电流信息,再将采集到的二次侧电动汽车电池的充电电压及充电电流信息分别与预设充电电压参考值及充电电流参考值进行比较,得二次侧充电电压的第一误差信号及二次侧充电电流的第一误差信号,然后将二次侧充电电压的第一误差信号及二次侧充电电流的第一误差信号分别输入到充电电压PID调节器及充电电流PID调节器中,并选择二次侧充电电压的第一误差信号对应的输出信号与二次侧充电电流的第一误差信号对应的输出信号中较小的进行限幅后作为二次侧整流器的移相角,利用二次侧整流器的移相角调节二次侧有源整流器的输出直流电压及输出直流电流,以控制二次侧电动汽车电池的充电电压及充电电流。
利用二次侧ZVS相角控制环路调节二次侧整流器的功角,以控制二次侧整流器的ZVS相角的具体操作过程为:
二次侧ZVS相角控制环路根据前一时刻的二次侧整流器的移相占空比Ds及功角δ计算当前时刻二次侧整流器ZVS相角的反馈信号
Figure GDA0002934253190000041
然后将当前时刻二次侧整流器的ZVS相角的反馈信号
Figure GDA0002934253190000042
与二次侧ZVS相角的参考信号
Figure GDA0002934253190000043
进行比较,得第二误差信号。最后将所述第二误差信号输入到PID调节器中,并将PID调节器的输出结果作为下一时刻二次侧整流器的功角δ,以调节二次侧整流器的ZVS相角。
利用一次侧ZVS相角控制环路调节一次侧逆变器的移相角,以控制一次侧逆变器的ZVS相角的具体操作过程为:
一次侧ZVS相角控制环路获取当前时刻一次侧逆变器ZVS相角的反馈信号
Figure GDA0002934253190000044
然后将当前一次侧逆变器的ZVS相角的反馈信号
Figure GDA0002934253190000045
与一次侧ZVS相角的参考信号
Figure GDA0002934253190000046
进行比较,得第三误差信号。最后将所述第三误差信号输入到PID调节器中,并将PID调节器的输出结果作为下一时刻一次侧逆变器的移相占空比Dp,以调节一次侧逆变器的ZVS相角。
通过一次侧逆变器的控制器采样一次侧逆变器的直流侧输入电压V1及直流侧输入电流I1,通过二次侧整流器的控制器采样二次侧整流器的直流侧输出电压V2及直流侧输出电流I2,再通过通信技术,使一次侧逆变器的控制器与二次侧整流器的控制器相互交换各自采样的直流侧电压电流信息。一次侧逆变器的控制器和二次侧整流器的控制器根据一次侧逆变器直流侧输入电压V1和直流侧输入电流I1、二次侧整流器直流侧输出电压V2和直流侧输出电流I2、一次侧谐振网络的等效串联电阻R1'和二次侧谐振网络的等效串联电阻R'2,计算当前的电压增益Kcv及标幺化充电功率Pu,其中,当前的电压增益Kcv的计算公式为:
Figure GDA0002934253190000051
标幺化充电功率Pu的计算公式为:
Figure GDA0002934253190000052
其中,P2为二次侧整流器直流侧实际输出功率,P2max为二次侧整流器直流侧最大输出功率,P2max的表达式为:
Figure GDA0002934253190000053
一次侧谐振网络的等效串联电阻R′1和二次侧谐振网络的等效串联电阻R'2的表达式分别为:
Figure GDA0002934253190000054
其中,R1为一次侧谐振线圈和谐振电容的等效串联电阻,R2为二次侧谐振线圈和谐振电容的等效串联电阻,Rdson1为一次侧逆变器开关管的导通电阻,Rdson2为二次侧整流器开关管的导通电阻;
一次侧逆变器的控制器和二次侧整流器的控制器根据电压增益Kcv及标幺化充电功率Pu通过下面的逻辑规则判断***在ZVS条件下获得最小化损耗时所处的工况,即
Figure GDA0002934253190000061
Figure GDA0002934253190000062
时,则***处于工况I;
Figure GDA0002934253190000063
Figure GDA0002934253190000064
时,则***处于工况II;
Figure GDA0002934253190000065
时,则***处于工况III;
Figure GDA0002934253190000066
Figure GDA0002934253190000067
时,则***处于工况IV;
Figure GDA0002934253190000068
Figure GDA0002934253190000069
时,则***处于工况V。
当***处于工况III时,将一次侧逆变器及二次侧整流器的ZVS相角指令均设置为0°;当***处于工况I或者工况II时,将一次侧逆变器的ZVS相角指令设置为0°,根据扰动观测法不断调节二次侧整流器的ZVS相角,以达到在ZVS条件下***的最优化传输效率;当***处于工况IV或者工况V时,将二次侧整流器的ZVS相角指令设置为0°,根据扰动观测法不断调节一次侧逆变器的ZVS相角,以达到在ZVS条件下***的最优化传输效率。
本发明具有以下有益效果:
本发明所述的用于电动汽车无线充电***最优效率的联合控制方法在具体操作时,通过二次侧整流器的充电电压控制环路及充电电流控制环路调节电动汽车电池的充电电压及充电电流,以满足电池的充电需求;通过实时检测一次侧逆变器直流侧输入电压V1及二次侧整流器直流侧输出电压V2,以确定一次侧和二次侧ZVS相角的调节规则;通过一次侧逆变器ZVS相角控制环路及二次侧整流器ZVS相角控制环路分别控制一次侧逆变器的ZVS相角及二次侧整流器的ZVS相角,使***工作在相应工况下损耗最低的工作点,从而在ZVS条件下尽可能提高无线充电***的传输效率;同时通过扰动观测法,实时调节一次侧和二次侧ZVS相角,以自动寻找充电最优效率工作点,使得***始终工作于效率最优状态,且电动汽车电池的充电电压环路及充电电流环路中不包含无线通信模块,尤其在复杂的电磁环境中,***的可靠性大大提升。
附图说明
图1为本发明中串联/串联谐振的无线充电***的结构图;
图2为本发明的控制框图;
图3为本发明中根据电压增益Kcv判断***工况的流程图;
图4为本发明中扰动观测的效率优化方法流程图;
图5a为V1=80V,V2=80V,I2=4A,负载电阻RL=20Ω,耦合系数k=0.1,***电压增益Kcv=1,标幺化充电功率Pu=0.388时,处于工况III时,ZVS临界曲线上各工作点的损耗分布图;
图5b为V1=80V,V2=60V,I2=4A,负载电阻RL=15Ω,耦合系数k=0.1,***电压增益Kcv=0.75,标幺化充电功率Pu=0.388时,处于工况III时,ZVS临界曲线上各工作点的损耗分布图;
图5c为V1=60V,V2=80V,I2=3A,负载电阻RL=26.7Ω,耦合系数k=0.1,***电压增益Kcv=1.33,标幺化充电功率Pu=0.388,处于工况III时,ZVS临界曲线上各工作点的损耗分布图;
图6a为V1=80V,V2=30V,I2=3A,负载电阻RL=10Ω,耦合系数k=0.1,***电压增益Kcv=0.375,标幺化充电功率Pu=0.291,处于工况I时,ZVS临界曲线上各工作点的损耗分布图;
图6b为V1=80V,V2=30V,I2=1.5A,负载电阻RL=20Ω,耦合系数k=0.1,***电压增益Kcv=0.375,标幺化充电功率Pu=0.146,处于工况II时,ZVS临界曲线上各工作点的损耗分布图;
图7a为V1=40V,V2=80V,I2=2A,负载电阻RL=40Ω,耦合系数k=0.1,***电压增益Kcv=2,标幺化充电功率Pu=0.388,处于工况IV时,ZVS临界曲线上各工作点的损耗分布图;
图7b为V1=40V,V2=80V,I2=3A,负载电阻RL=26.7Ω,耦合系数k=0.1,***电压增益Kcv=2,标幺化充电功率Pu=0.583,处于工况V时,ZVS临界曲线上各工作点的损耗分布图;
图8为耦合系数k=0.2,传统的双侧移相控制方法(DPSC)与本发明的控制方法(JC-VZA)***传输效率对比图。
具体实施方式
下面结合附图对本发明做进一步详细描述:
参考图1,本发明所述的用于电动汽车无线充电***最优效率的联合控制方法包括以下步骤:
1)利用充电电压控制环路及充电电流控制环路调节二次侧整流器的移相角,以控制电池的充电电压及充电电流;
具体操作过程为:充电电压环路及充电电流环路采集二次侧电动汽车电池的充电电压及充电电流信息,再将采集到的二次侧电动汽车电池的充电电压及充电电流信息分别与预设充电电压参考值及充电电流参考值进行比较,得二次侧充电电压的第一误差信号及二次侧充电电流的第一误差信号,然后将二次侧充电电压的第一误差信号及二次侧充电电流的第一误差信号分别输入到充电电压PID调节器及充电电流PID调节器中,并选择二次侧充电电压的第一误差信号对应的输出信号与二次侧充电电流的第一误差信号对应的输出信号中较小的进行限幅后作为二次侧整流器的移相角,利用二次侧整流器的移相角调节二次侧有源整流器的输出直流电压及输出直流电流,以控制二次侧电动汽车电池的充电电压及充电电流。
2)利用二次侧ZVS相角控制环路调节二次侧整流器的功角,以控制二次侧整流器的ZVS相角;
具体操作过程为:二次侧ZVS相角控制环路根据前一时刻的二次侧整流器的移相占空比Ds及功角δ计算当前二次侧整流器ZVS相角的反馈信号
Figure GDA0002934253190000091
然后将当前二次侧整流器的ZVS相角的反馈信号
Figure GDA0002934253190000092
与二次侧ZVS相角的参考信号
Figure GDA0002934253190000093
进行比较,得第二误差信号,最后将所述第二误差信号输入到PID调节器中,并将PID调节器的输出结果作为下一时刻二次侧整流器的功角δ,以调节二次侧整流器的ZVS相角。
3)利用一次侧ZVS相角控制环路调节一次侧逆变器的移相角,以控制一次侧逆变器的ZVS相角;
具体操作过程为:一次侧ZVS相角控制环路获取当前时刻一次侧逆变器ZVS相角的反馈信号
Figure GDA0002934253190000094
然后将当前时刻一次侧逆变器的ZVS相角的反馈信号
Figure GDA0002934253190000095
与一次侧ZVS相角的参考信号
Figure GDA0002934253190000096
进行比较,得第三误差信号,最后将所述第三误差信号输入到PID调节器中,并将PID调节器的输出结果作为下一时刻一次侧逆变器的移相占空比Dp,以调节一次侧逆变器的ZVS相角。
4)实时检测一次侧逆变器的直流侧输入电压V1及二次侧整流器的直流侧输出电压V2,再根据一次侧逆变器的直流侧输入电压V1,二次侧整流器的直流侧输出电压V2与直流侧输出电流I2确定***当前工况,最后再通过扰动观测法调节一次侧逆变器的ZVS相角及二次侧整流器的ZVS相角,以自动寻找充电最优效率工作点。
具体操作过程为:
通过一次侧逆变器的控制器采样一次侧逆变器的直流侧输入电压V1及直流侧输入电流I1,通过二次侧整流器的控制器采样二次侧整流器的直流侧输出电压V2及直流侧输出电流I2,再通过通信技术,使一次侧逆变器的控制器与二次侧整流器的控制器相互交换各自采样的直流侧电压电流信息。一次侧逆变器的控制器和二次侧整流器的控制器根据一次侧逆变器直流侧输入电压V1和直流侧输入电流I1、二次侧整流器直流侧输出电压V2和直流侧输出电流I2、一次侧谐振网络的等效串联电阻R1'和二次侧谐振网络的等效串联电阻R'2,计算当前的电压增益Kcv及标幺化充电功率Pu,其中,当前的电压增益Kcv的计算公式为:
Figure GDA0002934253190000101
标幺化充电功率Pu的计算公式为:
Figure GDA0002934253190000102
其中,P2为二次侧整流器直流侧实际输出功率,P2max为二次侧整流器直流侧最大输出功率,P2max的表达式为:
Figure GDA0002934253190000103
一次侧谐振网络的等效串联电阻R′1和二次侧谐振网络的等效串联电阻R'2的表达式分别为:
Figure GDA0002934253190000111
其中,R1为一次侧谐振线圈和谐振电容的等效串联电阻,R2为二次侧谐振线圈和谐振电容的等效串联电阻,Rdson1为一次侧逆变器开关管的导通电阻,Rdson2为二次侧整流器开关管的导通电阻;一次侧逆变器的控制器和二次侧整流器的控制器根据电压增益Kcv及标幺化充电功率Pu,通过下面的逻辑规则判断***在ZVS条件下获得最小化损耗时所处的工况,即
Figure GDA0002934253190000112
Figure GDA0002934253190000113
时,则***处于工况I;
Figure GDA0002934253190000114
Figure GDA0002934253190000115
时,则***处于工况II;
Figure GDA0002934253190000116
时,则***处于工况III;
Figure GDA0002934253190000117
Figure GDA0002934253190000118
时,则***处于工况IV;
Figure GDA0002934253190000119
Figure GDA00029342531900001110
时,则***处于工况V。
当***处于工况III时,将一次侧逆变器及二次侧整流器的ZVS相角指令均设置为0°;当***处于工况I或者工况II时,将一次侧逆变器的ZVS相角指令设置为0°,根据扰动观测法不断调节二次侧整流器的ZVS相角,以达到在ZVS条件下***的最优化传输效率;当***处于工况IV或者工况V时,将二次侧整流器的ZVS相角指令设置为0°,根据扰动观测法不断调节一次侧逆变器的ZVS相角,以达到在ZVS条件下***的最优化传输效率。
以工况I及工况II为例,通过扰动观测方法,不断调节二次侧整流器ZVS相角寻找最优效率工作点的具体操作为:二次侧整流器的控制器根据一次侧逆变器的控制器发送过来的一次侧逆变器直流侧输入电压V1及直流侧输入电流I1信息,并根据一次侧逆变器的直流侧输入电压V1和直流侧输入电流I1信息计算直流侧输入功率P1;二次侧整流器的控制器采集二次侧整流器的直流侧输出电压V2和直流侧输出电流I2,并根据二次侧整流器的直流侧输出电压V2和直流侧输出电流I2计算输出功率P2,根据所述直流侧输入功率P1与输出功率P2计算扰动后的充电效率,当计算得到的扰动后的充电效率大于扰动前的充电效率时,则在下一个时刻增加二次侧整流ZVS相角指令至
Figure GDA0002934253190000121
当计算得到的扰动后的充电效率小于扰动前的充电效率时,则在下一个时刻减小二次侧整流ZVS相角指令至
Figure GDA0002934253190000122
当计算得到的扰动后的充电效率等于扰动前的充电效率时,则下一个时刻二次侧整流ZVS相角指令保持不变;当***处于工况IV、V时,通过扰动观测方法,不断调节一次侧逆变器ZVS相角寻找最优效率工作点的具体操作与工况I及工况II类似。
实施例一
参见图1,以500W小功率无线充电平台为例,一次侧逆变器的直流侧电压为80V,逆变器采用移相控制,将直流电压逆变为高频交流方波电压驱动发射侧谐振网络,从而产生高频电磁场,接收侧线圈感应出高频电磁场并产生高频交流电压,再经过二次侧整流器与电容滤波后,对电动汽车电池进行充电,并采用图3至图4所述的控制方法进行控制。
根据图3中所述的逻辑规则,从而确定***当前时刻所处的工况,具体操作为:一次侧逆变器的控制器和二次侧整流器的控制器根据一次侧逆变器直流侧输入电压V1和二次侧整流器直流侧输出电压V2计算出电压增益Kcv=V2/V1;然后根据一次侧和二次侧谐振网络的等效串联电阻R′1和R'2计算
Figure GDA0002934253190000131
Figure GDA0002934253190000132
并且判断Kcv
Figure GDA0002934253190000133
Figure GDA0002934253190000134
的大小;如果Kcv满足
Figure GDA0002934253190000135
则***处于工况III,从而设置一次侧逆变器和二次侧整流器的ZVS相角指令均为0°;如果Kcv满足
Figure GDA0002934253190000136
则***处于工况I或II,从而设置一次侧逆变器的ZVS相角指令为0°,再根据扰动观测法不断调节二次侧整流器ZVS相角,以达到在ZVS条件下***的最优化传输效率;如果Kcv不满足
Figure GDA0002934253190000137
则***处于工况IV或V,设置二次侧整流器的ZVS相角指令为0°,并根据扰动观测法不断调节一次侧逆变器ZVS相角,以达到在ZVS条件下***的最优化传输效率。
参见图4,以工况I或II为例,通过扰动观测方法,不断调节二次侧整流器ZVS相角寻找最优效率工作点的具体操作为:根据直流侧输入功率P1与输出功率P2计算扰动后的充电效率,当计算得到的扰动后的充电效率大于扰动前的充电效率时,则在下一个时刻增加二次侧整流ZVS相角指令至
Figure GDA0002934253190000138
当计算得到的扰动后的充电效率小于扰动前的充电效率时,则在下一个时刻减小二次侧整流ZVS相角指令至
Figure GDA0002934253190000139
当计算得到的扰动后的充电效率等于扰动前的充电效率时,则下一个时刻二次侧整流ZVS相角指令保持不变。
为了说明本发明的有效性,采用表2所示的参数对电动汽车的无线充电***进行实验验证。
根据表2中的电路参数,在耦合系数k为0.1的情况下,设定一次侧逆变器直流侧电压与二次侧整流器直流侧电压变比分别为80V/80V、80V/60V和60V/80V,并分别设定负载电阻RL为20Ω、15Ω和26.7Ω。因此计算出三种情况下的充电功率标幺值Pu均为0.388。由表1可知,此时***处于工况III,即***最小损耗工作点为点O,因此设置一次侧逆变器和二次侧整流器的ZVS相角指令均为0°;三种电压增益下***临界ZVS情况下的功耗与不同的ZVS相角的关系如图5a、图5b、图5c所示。图中“*”所绘连续曲线为***功耗在不同ZVS相角下的理论计算值,“o”所绘离散点为***功耗在不同ZVS相角下的实验测量值,理论计算和实验结果都表明点O为***最小损耗工作点,验证了理论分析的正确性。从图5a、图5b、图5c中可以发现,采用本发明所述的控制方法可以直接定位出***的最优效率工作点。
在耦合系数k为0.1的情况下,设定一次侧逆变器直流侧电压与二次侧整流器直流侧电压变比为80V/30V,分别设定负载电阻RL为10Ω和20Ω。因此计算出两种情况下的充电功率标幺值Pu为0.291和0.146。由表1可知,此时***分别处于工况I和工况II,即***最小损耗工作点分别处于点A和弧AO上一点,此时应设定
Figure GDA0002934253190000141
并进一步通过扰动观测法,实时调节二次侧ZVS相角,从而自动寻找***的最优效率工作点。两种充电功率标幺值下,***临界ZVS情况下的功耗与不同的ZVS相角的关系如图6a、图6b所示,图中“*”所绘连续曲线为***功耗在不同ZVS相角下的理论计算值,“o”所绘离散点为***功耗在不同ZVS相角下的实验测量值。在图6a中,Pu=0.291>0.281=Puc1,***工作在工况I,由表1可知***最小损耗工作点为点A,理论计算结果表明点A为***的最小损耗工作点,验证了理论分析的正确性,然而实验结果是在二次侧整流器ZVS相位角为37°时,***达到最小损耗点,主要原因是由于二次侧整流器的关断损耗随着二次侧整流器ZVS相位角增加而略有增加,然而通过扰动观测法,仍然可以自动寻找***的最优效率工作点。而在图6b中,Pu=0.146<0.281=Puc1,***工作在工况II,由表1可知***最小损耗工作点为弧AO上一点,理论计算和实验结果都表明弧AO上一点为***最小损耗工作点,验证了理论分析的正确性。从图6a、图6b中可以发现,采用本发明所述的控制方法可以自动定位出***的最优效率工作点。
在耦合系数k为0.1的情况下,设定一次侧逆变器直流侧电压与二次侧整流器直流侧电压变比为40V/80V,分别设定负载电阻RL为40Ω和26.7Ω。因此计算出两种情况下的充电功率标幺值Pu为0.388和0.583。由表1可知,此时***分别处于工况IV和工况V,即***最小损耗工作点分别处于弧OB上一点和点B,此时应设定
Figure GDA0002934253190000151
并进一步通过扰动观测法,实时调节一次侧ZVS相角,从而自动寻找***的最优效率工作点。两种充电功率标幺值下***临界ZVS情况下的功耗与不同的ZVS相角的关系如图7a、图7b所示,图中“*”所绘连续曲线为***功耗在不同ZVS相角下的理论计算值,“o”所绘离散点为***功耗在不同ZVS相角下的实验测量值。在图7a中,Pu=0.388<0.5=Puc2,***工作在工况IV,由表1可知***最小损耗工作点为弧OB上一点,理论计算和实验结果都表明弧OB上一点为***最小损耗工作点,验证了理论分析的正确性;而在图7b中,Pu=0.583>0.5=Puc2,***工作在工况V,由表1可知***最小损耗工作点在点B上,理论计算和实验结果都表明点B为***最小损耗工作点,验证了理论分析的正确性。从图7a、图7b中可以发现,采用本发明所述的控制方法可以自动定位出***的最优效率工作点。
综上所述,采用本发明,实现了用于无线充电***的恒压充电/恒流充电、一次侧逆变器和二次侧整流器ZVS的实现、根据工况自动寻找最优传输效率的工作点且在恒压充电/恒流充电闭环环路中不采用无线通信模块。具体表现为:1)充电电压/充电电流控制环路确保了电动汽车充电电压/充电电流的稳定;2)通过实时检测一次侧逆变器直流侧输入电压V1,二次侧整流器直流侧输出电压V2与直流侧输出电流I2,确定***当前工况,从而确定一次侧和二次侧ZVS相角的调节规则,使***工作在最小损耗工作点,以提高无线充电***的传输效率;3)在宽电压变比环境中可平滑地调节***工作点至效率最优工作点,极大地降低了谐振网络的损耗,并且提高了***的稳定性和可靠性;4)电动汽车电池的恒压充电/恒流充电的闭环控制环路中不需要通过原副边无线通信来实现,尤其在复杂的电磁环境中,***的可靠性大大提升;5)采用图1所述的主电路和图2所述控制结构相结合的无线充电***,极大地简化了控制***,降低了***的制造成本,提高了***的可靠性和***传输效率。
表1
Figure GDA0002934253190000161
Figure GDA0002934253190000171
表2
Figure GDA0002934253190000172

Claims (3)

1.一种用于电动汽车无线充电***最优效率的联合控制方法,其特征在于,包括以下步骤:
利用充电电压控制环路及充电电流控制环路调节二次侧整流器的移相角,以控制电池的充电电压及充电电流;
利用二次侧ZVS相角控制环路调节二次侧整流器的功角,以控制二次侧整流器的ZVS相角;
利用一次侧ZVS相角控制环路调节一次侧逆变器的移相角,以控制一次侧逆变器的ZVS相角;
实时检测一次侧逆变器的直流侧输入电压V1及二次侧整流器的直流侧输出电压V2,再根据一次侧逆变器的直流侧输入电压V1及二次侧整流器的直流侧输出电压V2确定***当前工况,再通过扰动观测法调节一次侧逆变器的ZVS相角及二次侧整流器的ZVS相角,以自动寻找充电最优效率工作点;
利用二次侧ZVS相角控制环路调节二次侧整流器的功角,以控制二次侧整流器的ZVS相角的具体操作过程为:
二次侧ZVS相角控制环路根据前一时刻的二次侧整流器的移相占空比Ds及功角δ计算当前二次侧整流器ZVS相角的反馈信号
Figure FDA0003104331440000011
然后将当前二次侧整流器的ZVS相角的反馈信号
Figure FDA0003104331440000012
与二次侧ZVS相角的参考信号
Figure FDA0003104331440000013
进行比较,得第二误差信号,然后将所述第二误差信号输入到PID调节器中,并将PID调节器的输出结果作为下一时刻二次侧整流器的功角δ,以调节二次侧整流器的ZVS相角;
利用一次侧ZVS相角控制环路调节一次侧逆变器的移相角,以控制一次侧逆变器的ZVS相角的具体操作过程为:
一次侧ZVS相角控制环路获取当前时刻一次侧逆变器ZVS相角的反馈信号
Figure FDA0003104331440000021
然后将当前一次侧逆变器的ZVS相角的反馈信号
Figure FDA0003104331440000022
与一次侧ZVS相角的参考信号
Figure FDA0003104331440000023
进行比较,得第三误差信号,然后将所述第三误差信号输入到PID调节器中,并将PID调节器的输出结果作为下一时刻一次侧逆变器的移相占空比Dp,以调节一次侧逆变器的ZVS相角;
通过一次侧逆变器的控制器采样一次侧逆变器的直流侧输入电压V1及直流侧输入电流I1,通过二次侧整流器的控制器采样二次侧整流器的直流侧输出电压V2及直流侧输出电流I2,再通过通信技术,使一次侧逆变器的控制器与二次侧整流器的控制器相互交换各自采样的直流侧电压电流信息;一次侧逆变器的控制器和二次侧整流器的控制器根据一次侧逆变器直流侧输入电压V1和直流侧输入电流I1、二次侧整流器直流侧输出电压V2和直流侧输出电流I2、一次侧谐振网络的等效串联电阻R′1和二次侧谐振网络的等效串联电阻R′2,计算当前的电压增益Kcv及标幺化充电功率Pu,其中,当前的电压增益Kcv的计算公式为:
Figure FDA0003104331440000024
标幺化充电功率Pu的计算公式为:
Figure FDA0003104331440000025
其中,P2为二次侧整流器直流侧实际输出功率,P2max为二次侧整流器直流侧最大输出功率,P2max的表达式为:
Figure FDA0003104331440000026
其中,ω0为一次侧和二次侧谐振网络的谐振频率,M为一次侧和二次侧谐振线圈之间的互感量;
一次侧谐振网络的等效串联电阻R′1和二次侧谐振网络的等效串联电阻R′2的表达式分别为:
Figure FDA0003104331440000031
其中,R1为一次侧谐振线圈和谐振电容的等效串联电阻,R2为二次侧谐振线圈和谐振电容的等效串联电阻,Rdson1为一次侧逆变器开关管的导通电阻,Rdson2为二次侧整流器开关管的导通电阻;
一次侧逆变器的控制器和二次侧整流器的控制器根据电压增益Kcv及标幺化充电功率Pu通过下面的逻辑规则判断***在ZVS条件下获得最小化损耗时所处的工况,即
Figure FDA0003104331440000032
Figure FDA0003104331440000033
时,则***处于工况I;
Figure FDA0003104331440000034
Figure FDA0003104331440000035
时,则***处于工况II;
Figure FDA0003104331440000036
时,则***处于工况III;
Figure FDA0003104331440000037
Figure FDA0003104331440000038
时,则***处于工况IV;
Figure FDA0003104331440000039
Figure FDA00031043314400000310
时,则***处于工况V。
2.根据权利要求1所述的用于电动汽车无线充电***最优效率的联合控制方法,其特征在于,利用充电电压控制环路及充电电流控制环路调节二次侧整流器的移相角,以控制电池的充电电压及充电电流的具体操作为:
充电电压环路及充电电流环路采集二次侧电动汽车电池的充电电压及充电电流信息,再将采集到的二次侧电动汽车电池的充电电压及充电电流信息分别与预设充电电压参考值及充电电流参考值进行比较,得二次侧充电电压的第一误差信号及二次侧充电电流的第一误差信号,然后将二次侧充电电压的第一误差信号及二次侧充电电流的第一误差信号分别输入到充电电压PID调节器及充电电流PID调节器中,并选择二次侧充电电压的第一误差信号对应的输出信号与二次侧充电电流的第一误差信号对应的输出信号中较小的进行限幅后作为二次侧整流器的移相角,利用二次侧整流器的移相角调节二次侧有源整流器的输出直流电压及输出直流电流,以控制二次侧电动汽车电池的充电电压及充电电流。
3.根据权利要求1所述的用于电动汽车无线充电***最优效率的联合控制方法,其特征在于,
当***处于工况III时,将一次侧逆变器及二次侧整流器的ZVS相角指令均设置为0°;当***处于工况I或者工况II时,将一次侧逆变器的ZVS相角指令设置为0°,根据扰动观测法不断调节二次侧整流器的ZVS相角,以达到在ZVS条件下***的最优化传输效率;当***处于工况IV或者工况V时,将二次侧整流器的ZVS相角指令设置为0°,根据扰动观测法不断调节一次侧逆变器的ZVS相角,以达到在ZVS条件下***的最优化传输效率。
CN201911074119.2A 2019-10-31 2019-10-31 一种用于电动汽车无线充电***最优效率的联合控制方法 Active CN110654253B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911074119.2A CN110654253B (zh) 2019-10-31 2019-10-31 一种用于电动汽车无线充电***最优效率的联合控制方法
US16/729,391 US11223349B2 (en) 2019-10-31 2019-12-28 Joint control method with variable ZVS angles for dynamic efficiency optimization in wireless power charging for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911074119.2A CN110654253B (zh) 2019-10-31 2019-10-31 一种用于电动汽车无线充电***最优效率的联合控制方法

Publications (2)

Publication Number Publication Date
CN110654253A CN110654253A (zh) 2020-01-07
CN110654253B true CN110654253B (zh) 2021-11-19

Family

ID=69042989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911074119.2A Active CN110654253B (zh) 2019-10-31 2019-10-31 一种用于电动汽车无线充电***最优效率的联合控制方法

Country Status (2)

Country Link
US (1) US11223349B2 (zh)
CN (1) CN110654253B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355307B (zh) * 2020-03-15 2022-09-09 东南大学 一种基于pi控制器优化的bd-wpt***功率协调控制方法
CN111371192B (zh) * 2020-03-24 2022-06-10 山东大学 一种机器人无线充电功率匹配及开路保护的方法及***
CN112706643B (zh) * 2020-12-23 2022-09-16 中兴新能源科技有限公司 充电电流控制方法及电动汽车无线充电***
US11799382B2 (en) * 2021-03-03 2023-10-24 Semiconductor Components Industries, Llc Resonant converter with dual-mode control
CN113162165B (zh) * 2021-04-09 2023-05-02 西安交通大学 一种基于互感可控的单向无线充电控制方法
US11870291B2 (en) * 2021-06-01 2024-01-09 Lear Corporation Apparatus for single stage on-board charger with an integrated pulsating buffer control
CN113765408B (zh) * 2021-10-08 2022-07-12 山东大学 基于预测控制的dab变换器关断损耗优化控制方法及***
CN113829904B (zh) * 2021-10-22 2024-01-26 上海电力大学 一种大功率无线充电***及其充电控制方法
US11894776B2 (en) * 2021-10-28 2024-02-06 Utah State University Constant current to constant voltage dual active bridge LCL-transformer resonant DC-DC converter
US11817796B2 (en) * 2022-03-04 2023-11-14 Avago Technologies International Sales Pte. Limited Rectifier dynamic boost
CN114701374B (zh) * 2022-06-07 2022-08-26 合肥有感科技有限责任公司 无线充电***控制方法
JP2024037070A (ja) * 2022-09-06 2024-03-18 オムロン株式会社 無線電力伝送システム、無線送電回路及び無線受電回路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215271B1 (en) * 1999-05-11 2001-04-10 Satcon Technology Corporation Charging system having a controlled rectifier bridge and a single voltage sensor
US6570780B2 (en) * 2001-05-17 2003-05-27 Honda Giken Kogyo Kabushiki Kaisha Resonant inverter control system
KR20140117596A (ko) * 2012-01-23 2014-10-07 유타 스테이트 유니버시티 무선 전력 전송 시스템
CN102832830A (zh) * 2012-08-28 2012-12-19 华南理工大学 基于dsp的电动汽车直流充电电源***
KR20150010078A (ko) * 2013-07-18 2015-01-28 현대모비스 주식회사 페일 세이프 동작을 위한 모터 제어 장치 및 이의 방법
CN104702113B (zh) * 2015-02-16 2017-03-01 湘潭大学 基于频率跟踪的无线输电***zvs软开关实现装置及方法
CN108347088A (zh) * 2017-01-22 2018-07-31 西安中车永电捷通电气有限公司 充电机控制***
US10461566B2 (en) * 2017-10-06 2019-10-29 Toyota Motor Engineering & Manufacturing North America, Inc. System, apparatus, and method for capacitive wireless charging
CN109823206B (zh) * 2019-04-02 2020-08-18 浙江大学 一种基于双边移相和调频的软开关高效率无线充电方法
CN110228378B (zh) * 2019-05-30 2020-11-10 西安交通大学 一种用于电动汽车无线充电的双侧多环控制方法

Also Published As

Publication number Publication date
US20210135666A1 (en) 2021-05-06
US11223349B2 (en) 2022-01-11
CN110654253A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
CN110654253B (zh) 一种用于电动汽车无线充电***最优效率的联合控制方法
CN109391044B (zh) 一种感应电能传输***稳压综合控制***及方法
CN108683229B (zh) 一种电动汽车无线充电副边输出控制***及其控制方法
Zhao et al. The load estimation and power tracking integrated control strategy for dual-sides controlled LCC compensated wireless charging system
CN110936827B (zh) 无线充电***、无线充电控制方法及汽车无线充电装置
US20230198374A1 (en) Wireless Power Transfer (WPT) System Regulation Method and System for Implementing ZVS in Wide Power Range
CN110228378B (zh) 一种用于电动汽车无线充电的双侧多环控制方法
CN109149942B (zh) 一种用于高频谐振型直流变压器的多频率段控制方法
CN111799897B (zh) 电力变换器电路的控制方法
CN112217294B (zh) 应用于双向无线电能传输电路的无通讯恒流控制方法
CN113659684A (zh) 副边cl/s恒流恒压ipt充电***及其参数设计方法
WO2023193650A1 (zh) 一种多负载无线电能传输***负载及互感同时辨识的方法
CN111555612B (zh) 一种基于恒定输出电压的磁耦合谐振式无线传能最大效率跟踪方法
CN111064283B (zh) 一种基于模型预测控制的无线传能动态性能优化方法
CN216134292U (zh) 副边cl/s恒流恒压ipt充电***
CN212278126U (zh) 一种双有源桥串联谐振变换器电路的变频移相调制装置
CN111355307B (zh) 一种基于pi控制器优化的bd-wpt***功率协调控制方法
CN110758132B (zh) 用于电动汽车无线充电最优化效率的变角移相控制方法
CN110572042B (zh) 一种双向无线电能传输***的双侧不对称电压控制方法
CN109639147B (zh) 高频隔离谐振型直流变压器的多时间尺度频率调节方法
CN114243951B (zh) 一种无需参数辨识的磁耦合式无线电能传输***
Vinod et al. Primary side control strategies for battery charging regulation in wireless power transfer systems for EV applications
Chen et al. Advanced parameter optimization strategy and quantitative evaluation of the isolated bidirectional resonant DC-DC converter
Wu et al. Design of efficient optimized wireless power transfer system
CN108923514B (zh) 充电机控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant