CN110758132B - 用于电动汽车无线充电最优化效率的变角移相控制方法 - Google Patents

用于电动汽车无线充电最优化效率的变角移相控制方法 Download PDF

Info

Publication number
CN110758132B
CN110758132B CN201910985007.6A CN201910985007A CN110758132B CN 110758132 B CN110758132 B CN 110758132B CN 201910985007 A CN201910985007 A CN 201910985007A CN 110758132 B CN110758132 B CN 110758132B
Authority
CN
China
Prior art keywords
charging
secondary side
current
voltage
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910985007.6A
Other languages
English (en)
Other versions
CN110758132A (zh
Inventor
王来利
蒋勇斌
韩若麟
孙静
伍敏
王跃
杨旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201910985007.6A priority Critical patent/CN110758132B/zh
Publication of CN110758132A publication Critical patent/CN110758132A/zh
Application granted granted Critical
Publication of CN110758132B publication Critical patent/CN110758132B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种用于电动汽车无线充电最优化效率的变角移相控制方法,包括以下步骤:利用充电电压/充电电流环路控制副边有源整流器的充电电压/充电电流,通过ZVS相位环路控制副边有源整流器的ZVS相角,通过扰动观测方法自动寻找充电最优效率工作点,该方法能够在保持稳定的充电电压/充电电流的前提下,实现逆变器及整流器的ZVS,同时自动寻找最优传输效率的理想工作点,且可靠性较高,成本低。

Description

用于电动汽车无线充电最优化效率的变角移相控制方法
技术领域
本发明涉及一种变角移相控制方法,具体涉及一种用于电动汽车无线充电最优化效率的变角移相控制方法。
背景技术
无线充电技术是一种安全便捷的电能传输方式,具有使用灵活方便、少维护、可适应恶劣环境、易于实现无人自动供电和移动式供电的优点。基于近场耦合的无线充电技术能够较好地满足距离、效率、功率和安全等方面的需求,在电动车、消费电子、传感器和植入设备等领域具有广阔的应用前景。随着电动汽车逐渐普及,电动汽车的无线充电正在成为一种非常具有优势的充电方式。然而,在对电动汽车的无线充电进行控制时,有以下几个需求:
1)稳定的充电电压和充电电流。无线充电***作为一种电源,需向电动汽车电池提供稳定的充电电压和充电电流。
2)最小化开关损耗。基于串联-串联谐振式无线充电***需要使用高频逆变器和有源整流器。对于高频逆变器而言,一般采用MOSFET器件,为了减小开关损耗,需要使得逆变器尽可能工作在零电压开通状态(Zero Voltage Switching,ZVS);对于有源整流器而言,同样需要采用MOSFET器件,所以也需要使得有源整流器尽可能工作在ZVS状态,从而实现***的开关损耗最小化。
3)最优化传输效率。电动汽车的无线充电***一般充电功率较大,实现最优化效率不仅是出于节能方面的考虑,也是为了降低温升、确保可靠性、减小散热器体积并提高功率密度。
4)较少的变换器个数。在实现无线充电时,尽可能减少变换器的个数,降低装置的成本,提高无线充电***效率和功率密度,这对于无线充电技术的大规模应用至关重要。
5)较高的可靠性。为提高无线充电***的可靠性,在实现无线充电***的恒压充电/恒流充电时,尽可能地在恒压充电/恒流充电的闭环控制回路中不采用无线通信模块,从而提高***的可靠性。为了实现电动汽车电池的无线充电,传统的方法更多地通过控制原边的逆变器来实现的。而此时需要副边控制器实时采集充电电压电流信息,并通过无线通信模块发送至原边控制器,从而使其利用副边发送过来的信息实现电池的恒压充电/恒流充电。当无线通信受到干扰时,***会变得非常不稳定,***的可靠性大大降低。因此,在复杂的环境中,需要尽可能的减少无线通信模块在恒压充电/恒流充电的闭环控制中使用。
由于实际中无线充电***线圈的传输距离和电动汽车的电池等效电阻会发生随机变化,其它参数也会出现漂移,***的工作点将异于设计的理想工作点,而这会影响上述的需求,因此无线充电***一般都需要一套控制方法来克服以上缺点。然而目前的控制方法多采用额外dc-dc变换器来控制充电电压/充电电流和实现效率最大化。然而额外的dc-dc变换器带来了额外的损耗,增加了装置的体积和成本,不利于无线充电***的大规模应用和推广,目前仍尚未出现能够满足上述五种需求的控制方法。
综上所述,需要提出一种能够满足以上五个需求的无线充电***的多目标控制方法。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种用于电动汽车无线充电最优化效率的变角移相控制方法,该方法能够在保持稳定的充电电压/充电电流的前提下,实现逆变器及整流器的ZVS,同时自动寻找最优传输效率的理想工作点,且可靠性较高,成本低。
为达到上述目的,本发明所述的用于电动汽车无线充电最优化效率的变角移相控制方法包括以下步骤:利用充电电压/充电电流环路控制副边有源整流器的充电电压/充电电流,通过ZVS相位环路控制副边有源整流器的ZVS相角,通过扰动观测方法自动寻找充电最优效率工作点。
利用充电电压/充电电流环路控制副边有源整流器的充电电压/充电电流的具体操作为:
充电电压/充电电流环路采集二次侧电动汽车电池的充电电压/充电电流信息,再将采集到的二次侧电动汽车电池的充电电压/充电电流信息与预设充电电压/充电电流参考值进行比较,得二次侧充电电压的第一误差信号及二次侧充电电流的第一误差信号,然后将二次侧充电电压的第一误差信号及二次侧充电电流的第一误差信号分别输入到充电电压PID调节器及充电电流PID调节器,并选择二次侧充电电压的第一误差信号及二次侧充电电流的第一误差信号对应的输出信号中较小的进行限幅后作为二次侧整流器的移相角Ds,利用二次侧整流器的移相角Ds调节副边有源整流器的充电电压/充电电流,以控制二次侧电动汽车电池的充电电压/充电电流;
通过ZVS相位环路控制副边有源整流器的ZVS相角的具体操作为:
ZVS相位环路根据前一时刻的二次侧整流器的移相角Ds和功角δ计算当前时刻二次侧整流器ZVS相位角的反馈信号
Figure BDA0002236420870000041
然后将当前二次侧整流器的ZVS相位角的反馈信号
Figure BDA0002236420870000042
与ZVS相位角的参考信号
Figure BDA0002236420870000043
进行比较,得第二误差信号,然后将所述第二误差信号输入到PID调节器中,并将PID调节器的输出结果作为下一时刻二次侧整流器的功角δ,从而调节二次侧整流器的ZVS相位角;
通过扰动观测方法自动寻找最优效率工作点的具体操作为:
通过一次侧控制器采集一次侧逆变器的直流侧电压和电流,并根据一次侧逆变器的直流侧电压和电流计算直流侧输入功率P1,然后利用无线通信模块将所述直流侧输入功率P1传送到二次侧控制器;二次侧控制器采集整流器的直流侧电压和电流,并根据整流器的直流侧电压和电流计算输出功率P2,然后根据所述直流侧输入功率P1与输出功率P2计算扰动后的充电效率,当计算得到的扰动后的充电效率大于扰动前的充电效率时,则在下一个时刻增加ZVS相角指令至
Figure BDA0002236420870000044
当计算得到的扰动后的充电效率小于扰动前的充电效率时,则在下一个时刻降低ZVS相角指令至
Figure BDA0002236420870000045
当计算得到的扰动后的充电效率等于扰动前的充电效率时,则下一个时刻ZVS相角指令保持不变。
利用充电电压/充电电流环路控制副边有源整流器的充电电压/充电电流、通过ZVS相位环路控制副边有源整流器的ZVS相角以及通过扰动观测方法自动寻找最优效率工作点的优先级依次降低。
本发明具有以下有益效果:
本发明所述的用于电动汽车无线充电最优化效率的变角移相控制方法在具体操作时,通过副边整流器的充电电压/充电电流环路控制电动汽车电池的充电电压/充电电流,满足电池的充电需求;通过ZVS相位环路控制整流器的ZVS相位角,从而使得逆变器及整流器同时实现ZVS,实现***开关损耗的最小化,提高无线充电***的传输效率;通过扰动观测的效率优化调节整流器的ZVS相角参考值,使得***始终工作于效率最优状态,且电动汽车电池的恒压充电/恒流充电与原副边的ZVS控制不需要通过原副边无线通信来实现,尤其在复杂的电磁环境中,***的可靠性大大提升,且成本较低。
附图说明
图1为本发明中串联/串联谐振的无线充电***的结构图;
图2为本发明中用于无线充电***的有源整流器的双环控制框图;
图3为本发明中扰动观测的效率优化方法流程图;
图4a为实现恒流充电时,耦合系数k设为0.15,ZVS相位角参考给定20°,充电电流为4A,RL=8Ω下的工作波形图;
图4b为实现恒流充电时,耦合系数k设为0.15,ZVS相位角参考给定20°,充电电流为4A,RL=18Ω下的工作波形图;
图5a为实现恒压充电时,耦合系数k设为0.2,ZVS相位角参考给定10°,充电电压为72V,RL=20Ω下的工作波形图;
图5b为实现恒压充电时,耦合系数k设为0.2,ZVS相位角参考给定10°,充电电压为72V,RL=72Ω下的工作波形图;
图6a为实现恒流充电与ZVS相位角控制时,耦合系数k设为0.2,ZVS相位角参考给定10°,充电电流为4A,当RL从8Ω变为13Ω时,***动态的工作波形图;
图6b为实现恒流充电与ZVS相位角控制时,耦合系数k设为0.2,ZVS相位角参考给定10°,充电电流为4A,当RL从13Ω变为8Ω时,***动态的工作波形图;
图7a为实现恒压充电与ZVS相位角控制时,耦合系数k设为0.2,ZVS相位角参考给定10°,充电电压为72V,当RL从18Ω变为23Ω时,***动态的工作波形图;
图7b为实现恒压充电与ZVS相位角控制时,耦合系数k设为0.2,ZVS相位角参考给定10°,充电电压为72V,当RL从23Ω变为18Ω时,***动态的工作波形图;
图8a为实现恒流充电与ZVS相位角控制时,耦合系数k设为0.2,RL设为13Ω,充电电流为4A,当
Figure BDA0002236420870000061
从10°变为20°时,***动态的工作波形图;
图8b为实现恒流充电与ZVS相位角控制时,耦合系数k设为0.2,RL设为13Ω,充电电流为4A,当
Figure BDA0002236420870000062
从20°变为10°时,***动态的工作波形图;
图9为在耦合系数k设为0.15,电池等效电阻RL设为30Ω时,传输效率和***损耗随着ZVS相位角的变化曲线图;
图10为在双环控制方法和效率优化算法下,***传输功率和效率随着电池等效电阻RL变化的变化曲线图。
具体实施方式
下面结合附图对本发明做进一步详细描述:
本发明所述的用于电动汽车无线充电最优化效率的变角移相控制方法包括以下步骤:利用充电电压/充电电流环路控制副边有源整流器的充电电压/充电电流,通过ZVS相位环路控制副边有源整流器的ZVS相角,通过扰动观测方法自动寻找充电最优效率工作点。
利用充电电压/充电电流环路控制副边有源整流器的充电电压/充电电流的具体操作为:
充电电压/充电电流环路采集二次侧电动汽车电池的充电电压/充电电流信息,再将采集到的二次侧电动汽车电池的充电电压/充电电流信息与预设充电电压/充电电流参考值进行比较,得二次侧充电电压的第一误差信号及二次侧充电电流的第一误差信号,然后将二次侧充电电压的第一误差信号及二次侧充电电流的第一误差信号分别输入到充电电压PID调节器及充电电流PID调节器,并选择二次侧充电电压的第一误差信号及二次侧充电电流的第一误差信号对应的输出信号中较小的进行限幅后作为二次侧整流器的移相角Ds,利用二次侧整流器的移相角Ds调节副边有源整流器的充电电压/充电电流,以控制二次侧电动汽车电池的充电电压/充电电流;
通过ZVS相位环路控制副边有源整流器的ZVS相角的具体操作为:
ZVS相位环路根据前一时刻的二次侧整流器的移相角Ds和功角δ计算当前时刻二次侧整流器ZVS相位角的反馈信号
Figure BDA0002236420870000071
然后将当前二次侧整流器的ZVS相位角的反馈信号
Figure BDA0002236420870000072
与ZVS相位角的参考信号
Figure BDA0002236420870000081
进行比较,得第二误差信号,然后将所述第二误差信号输入到PID调节器中,并将PID调节器的输出结果作为下一时刻二次侧整流器的功角δ,从而调节二次侧整流器的ZVS相位角;
通过扰动观测方法自动寻找最优效率工作点的具体操作为:
通过一次侧控制器采集一次侧逆变器的直流侧电压和电流,并根据一次侧逆变器的直流侧电压和电流计算直流侧输入功率P1,然后利用无线通信模块将所述直流侧输入功率P1传送到二次侧控制器;二次侧控制器采集整流器的直流侧电压和电流,并根据整流器的直流侧电压和电流计算输出功率P2,然后根据所述直流侧输入功率P1与输出功率P2计算扰动后的充电效率,当计算得到的扰动后的充电效率大于扰动前的充电效率时,则在下一个时刻增加ZVS相角指令至
Figure BDA0002236420870000082
当计算得到的扰动后的充电效率小于扰动前的充电效率时,则在下一个时刻降低ZVS相角指令至
Figure BDA0002236420870000083
当计算得到的扰动后的充电效率等于扰动前的充电效率时,则下一个时刻ZVS相角指令保持不变。
利用充电电压/充电电流环路控制副边有源整流器的充电电压/充电电流、通过ZVS相位环路控制副边有源整流器的ZVS相角以及通过扰动观测方法自动寻找最优效率工作点的优先级依次降低。
实施例一
参见图1,以500W小功率无线充电平台为例,一次侧逆变器的直流侧电压为80V,逆变器固定移相180度,将直流电压逆变为高频交流方波电压以驱动发射侧谐振网络,从而产生高频电磁场,接收侧线圈感应出高频电磁场并产生高频交流电压,再经整流器整流与电容滤波后对电池进行充电,并采用图2和图3所述的控制方法进行控制。
为了说明本发明的有效性,采用表1所示的参数对电动汽车的无线充电***进行实验验证。
表1
Figure BDA0002236420870000091
根据表1中的电路参数,将
Figure BDA0002236420870000092
设置为20°,在耦合系数k设为0.15的情况下,当***工作于恒流模式时,设定充电电流为4A,改变电池等效直流电阻为8Ω和18Ω,此时的稳态工作波形参见图4a及图4b;当***工作于恒压模式时,设定耦合系数为0.2,充电电压为72V,电池等效电阻分别为20Ω和72Ω,此时的稳态工作波形参见图5a及图5b,从4a、图4b、图5a及图5b中可以发现,采用本发明可以同时在保持稳定的充电电压/充电电流的前提下,实现逆变器和整流器ZVS,证明了本发明的有效性。
设置
Figure BDA0002236420870000093
且k=0.2,在恒流充电模式下,设置充电电流为4A,电池等效直流电阻RL从8Ω突增至13Ω的动态波形参见图6a;电池等效直流电阻RL从13Ω突减至8Ω的动态波形参见图6b。设置
Figure BDA0002236420870000094
且k=0.2,在恒压充电模式下,充电电压为72V,无线充电***的等效直流电阻从18Ω增至23Ω的动态波形参见图7a;电池等效直流电阻RL从23Ω增至18Ω的动态波形参见图7b。从实验结果可以看出,二者的调节时间分别是183ms、166ms和164ms、161ms,实现了***快速的动态响应,且二次侧电流幅值未有较大超调,保证了***安全可靠运行。
设置耦合系数k为0.2且电池等效直流电阻RL为13Ω,在恒流充电模式下,设置充电电流为4A,将
Figure BDA0002236420870000101
的值从10°改变为20°的动态波形参见图8a;将
Figure BDA0002236420870000102
的值从20°改变为10°的动态波形参见图8a;从实验结果可以看出,相角的调节时间约为126ms,同样实现了***快速的动态响应,且二次侧直流电流和直流电压幅值未有较大超调,保证了***安全可靠运行。
当电池等效直流电阻RL为30Ω时,***总损耗和***充电效率随ZVS相角的变化如图9所示,虚线圈内的区域为当效率最优时的ZVS相角区间。采用本发明后,***效率随电池等效电阻的变化如图10所示。在耦合系数为0.2的情况下,***最优效率可达95.2%;在耦合系数为0.15下,***最优效率可达92.4%。从实验结果可以看出,采用本发明后,***在实现恒压充电/恒流充电和原副边ZVS的前提下,并且能够获得较高的传输效率。
综上所述,采用本发明后,实现了用于无线充电***的恒压充电/恒流充电、原边逆变器和副边整流器ZVS的实现、最优效率工作点的控制且在恒压充电/恒流充电闭环环路中不采用无线通信模块。具体表现为:1)通过充电电压/充电电流环路确保电动汽车充电电压/充电电流的稳定;2)通过ZVS相位环路控制整流器的ZVS相位,从而使得逆变器和整流器同时实现ZVS,实现***开关损耗的最小化,以提高无线充电***的传输效率;3)扰动观测的效率优化能够通过调节整流器的ZVS相角参考值,使得***始终工作于效率最优状态;4)电动汽车电池的恒压充电/恒流充电与***的ZVS控制不需要通过原副边无线通信来实现,尤其在复杂的电磁环境中,***的可靠性大大提升;5)采用图1所述的主电路和图2及图3所述控制结构相结合的无线充电***,极大地简化了控制***,降低了***的制造成本,提高了***的可靠性和***传输效率。

Claims (1)

1.一种用于电动汽车无线充电最优化效率的变角移相控制方法,其特征在于,利用充电电压/充电电流环路控制副边有源整流器的充电电压/充电电流,通过ZVS相位环路控制副边有源整流器的ZVS相角,通过扰动观测方法自动寻找充电最优效率工作点;
利用充电电压/充电电流环路控制副边有源整流器的充电电压/充电电流,具体操作为:
充电电压/充电电流环路采集二次侧电动汽车电池的充电电压/充电电流信息,再将采集到的二次侧电动汽车电池的充电电压/充电电流信息与预设充电电压/充电电流参考值进行比较,得二次侧充电电压的第一误差信号及二次侧充电电流的第一误差信号,然后将二次侧充电电压的第一误差信号及二次侧充电电流的第一误差信号分别输入到充电电压PID调节器及充电电流PID调节器,并选择二次侧充电电压的第一误差信号及二次侧充电电流的第一误差信号对应的输出信号中较小的进行限幅后作为二次侧整流器的移相角Ds,利用二次侧整流器的移相角Ds调节副边有源整流器的充电电压/充电电流,以控制二次侧电动汽车电池的充电电压/充电电流;
通过ZVS相位环路控制副边有源整流器的ZVS相角,具体操作为:
ZVS相位环路根据前一时刻的二次侧整流器的移相角Ds和功角δ计算当前时刻二次侧整流器ZVS相位角的反馈信号
Figure FDA0002956780650000011
然后将当前二次侧整流器的ZVS相位角的反馈信号
Figure FDA0002956780650000012
与ZVS相位角的参考信号
Figure FDA0002956780650000013
进行比较,得第二误差信号,然后将所述第二误差信号输入到PID调节器中,并将PID调节器的输出结果作为下一时刻二次侧整流器的功角δ,从而调节二次侧整流器的ZVS相位角;
通过扰动观测方法自动寻找最优效率工作点的具体操作为:
通过一次侧控制器采集一次侧逆变器的直流侧电压和电流,并根据一次侧逆变器的直流侧电压和电流计算直流侧输入功率P1,然后利用无线通信模块将所述直流侧输入功率P1传送到二次侧控制器;二次侧控制器采集整流器的直流侧电压和电流,并根据整流器的直流侧电压和电流计算输出功率P2,然后根据所述直流侧输入功率P1与输出功率P2计算扰动后的充电效率,当计算得到的扰动后的充电效率大于扰动前的充电效率时,则在下一个时刻增加ZVS相角指令至
Figure FDA0002956780650000021
当计算得到的扰动后的充电效率小于扰动前的充电效率时,则在下一个时刻降低ZVS相角指令至
Figure FDA0002956780650000022
当计算得到的扰动后的充电效率等于扰动前的充电效率时,则下一个时刻ZVS相角指令保持不变;
利用充电电压/充电电流环路控制副边有源整流器的充电电压/充电电流、通过ZVS相位环路控制副边有源整流器的ZVS相角以及通过扰动观测方法自动寻找最优效率工作点的优先级依次降低。
CN201910985007.6A 2019-10-16 2019-10-16 用于电动汽车无线充电最优化效率的变角移相控制方法 Active CN110758132B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910985007.6A CN110758132B (zh) 2019-10-16 2019-10-16 用于电动汽车无线充电最优化效率的变角移相控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910985007.6A CN110758132B (zh) 2019-10-16 2019-10-16 用于电动汽车无线充电最优化效率的变角移相控制方法

Publications (2)

Publication Number Publication Date
CN110758132A CN110758132A (zh) 2020-02-07
CN110758132B true CN110758132B (zh) 2021-04-20

Family

ID=69332016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910985007.6A Active CN110758132B (zh) 2019-10-16 2019-10-16 用于电动汽车无线充电最优化效率的变角移相控制方法

Country Status (1)

Country Link
CN (1) CN110758132B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113162165B (zh) * 2021-04-09 2023-05-02 西安交通大学 一种基于互感可控的单向无线充电控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104702113A (zh) * 2015-02-16 2015-06-10 湘潭大学 基于频率跟踪的无线输电***zvs软开关实现装置及方法
CN108494109A (zh) * 2018-03-16 2018-09-04 清华大学 一种不依赖实时无线通讯的双向无线充电***的控制策略
US10112495B2 (en) * 2015-07-27 2018-10-30 Ford Global Technologies, Llc Vehicle wireless charging system including an inverter to control a voltage input to a vehicle power converter
CN109075613A (zh) * 2016-02-02 2018-12-21 韦特里西提公司 控制无线电力传输***
CN109823206A (zh) * 2019-04-02 2019-05-31 浙江大学 一种基于双边移相和调频的软开关高效率无线充电方法
CN110228378A (zh) * 2019-05-30 2019-09-13 西安交通大学 一种用于电动汽车无线充电的双侧多环控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104702113A (zh) * 2015-02-16 2015-06-10 湘潭大学 基于频率跟踪的无线输电***zvs软开关实现装置及方法
US10112495B2 (en) * 2015-07-27 2018-10-30 Ford Global Technologies, Llc Vehicle wireless charging system including an inverter to control a voltage input to a vehicle power converter
CN109075613A (zh) * 2016-02-02 2018-12-21 韦特里西提公司 控制无线电力传输***
CN108494109A (zh) * 2018-03-16 2018-09-04 清华大学 一种不依赖实时无线通讯的双向无线充电***的控制策略
CN109823206A (zh) * 2019-04-02 2019-05-31 浙江大学 一种基于双边移相和调频的软开关高效率无线充电方法
CN110228378A (zh) * 2019-05-30 2019-09-13 西安交通大学 一种用于电动汽车无线充电的双侧多环控制方法

Also Published As

Publication number Publication date
CN110758132A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
CN110654253B (zh) 一种用于电动汽车无线充电***最优效率的联合控制方法
CN107425610B (zh) 并联能源***负载补偿的无线电能传输***及控制方法
CN110228378B (zh) 一种用于电动汽车无线充电的双侧多环控制方法
CN108683229B (zh) 一种电动汽车无线充电副边输出控制***及其控制方法
Zhao et al. The load estimation and power tracking integrated control strategy for dual-sides controlled LCC compensated wireless charging system
CN108448693B (zh) 用于agv的无线电能传输***及其控制方法
US20220340024A1 (en) Transmit end, receive end, method, and system for wireless charging
CN110571899A (zh) 一种基于变步长扰动观测法的无线电能传输***恒流输出控制和效率提升方法
CN113315258B (zh) 基于lcl-lcl-s混合自切换谐振式的充电方法
CN105680577A (zh) 一种宽范围功率可调无线电能传输***及其控制方法
CN115033046B (zh) 一种mcr-wpt***的最大效率追踪控制方法
Baros et al. Transmitter side control of a wireless EV charger employing IoT
Huynh et al. Analysis and design of soft-switching active-clamping half-bridge boost inverter for inductive wireless charging applications
CN110758132B (zh) 用于电动汽车无线充电最优化效率的变角移相控制方法
CN111355307B (zh) 一种基于pi控制器优化的bd-wpt***功率协调控制方法
CN110138097B (zh) 一种采用特殊拓扑结构实现恒流恒压磁感应式充电***
CN110126648B (zh) 电动汽车无线充电最大电流跟踪的自寻优调谐控制方法
Xingtian et al. Self‐adaptation load change control strategy for three‐phase staggered parallel LLC resonant converter
CN112260416B (zh) 一种基于变初级参数的恒流恒压感应式无线充电***
CN103368416B (zh) 潜航器长距离直流馈电***
CN107070218B (zh) 一种大功率软开关斩波电路
CN112600432B (zh) 一种llc谐振变换器预测电荷控制方法
Tang et al. A bidirectional contactless power transfer system with dual-side power flow control
CN111614256B (zh) 一种非隔离dcdc谐振变换控制电路及控制方法
CN108923514B (zh) 充电机控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant