CN110572091A - 一种优化永磁同步电机无传感器控制方法 - Google Patents

一种优化永磁同步电机无传感器控制方法 Download PDF

Info

Publication number
CN110572091A
CN110572091A CN201910870999.8A CN201910870999A CN110572091A CN 110572091 A CN110572091 A CN 110572091A CN 201910870999 A CN201910870999 A CN 201910870999A CN 110572091 A CN110572091 A CN 110572091A
Authority
CN
China
Prior art keywords
value
current
fuzzy
coordinate system
electromotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910870999.8A
Other languages
English (en)
Other versions
CN110572091B (zh
Inventor
陈李济
马强
应保胜
李华鑫
伍娇
高维士
韩海风
王硕
张强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Arts and Science
Original Assignee
Hubei University of Arts and Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Arts and Science filed Critical Hubei University of Arts and Science
Priority to CN201910870999.8A priority Critical patent/CN110572091B/zh
Publication of CN110572091A publication Critical patent/CN110572091A/zh
Application granted granted Critical
Publication of CN110572091B publication Critical patent/CN110572091B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0007Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using sliding mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/001Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using fuzzy control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/34Modelling or simulation for control purposes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Fuzzy Systems (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明公开一种优化永磁同步电机无传感器控制方法。本发明将传感器采集到的三相电流和三相电压进行Clark坐标变换得到两相静止坐标系下电压和电流,再把两相静止坐标系下电压输入给滑模电流观测器得到观测电流;将观测电流与实际电流的差值输入给基于饱和函数的反电动势观测器中得到反电势估计初值,并采用变论域模糊控制算法调节基于饱和函数的反电动势观测器中滑模增益ksmo;然后把估算出来的反电动势的初值通过变截止频率滤波器进行滤波处理,得到较为光滑反电动势估计值;再对将滤波后反转子位置进行变滞后补偿设计,计算出电机转子速度和转子位置值。本发明可以有效削弱抖震现象,提高转子速度和位置信息估算精度高,同时具有良好的动态特性。

Description

一种优化永磁同步电机无传感器控制方法
技术领域
本发明涉及永磁同步电机控制领域,尤其涉及一种优化永磁同步电机无传感器控制方法。
背景技术
在当今社会生产中,永磁同步电机具有高转矩比、使用方便和功率因数高等特点,被作为主要动力源输出装置,其控制性能研究日益受到重视。传统的永磁同步电机控制***中,一般通过安装传感器获得电机转子速度以及位置信息,但是安装传感器会使电机***空间缩小、生产成本上升,使***对使用环境要求更加苛刻。为了消除使用传感器带来不利影响,目前广泛使用无位置传感器控制技术中的控制算法来估算电机转子位置和速度信息。按照算法适用速度范围,永磁同步电机的无传感器控制技术可分为两类:一类适用于电机低速运行,如电感测量、高频信号注入法等;另一种适用于电机中高速运行,如基于电机基本模型法、模型参考自适应法、人工智能算法和观测器法。
其中滑模观测器具有算法简单、抗干扰能力好、响应速度快优点,其缺点是由于惯性和测量误差干扰会产生抖震,同时由于低通滤波器的应用,会产生相位延迟问题。观测器中电流观测误差是动态变化的,所以给定的固定值滑模增益值可能加大抖动。
发明内容
针对上述问题,本发明一种优化永磁同步电机无传感器控制方法,通过采集永磁同步电机的电流和电压信号值,再通过变论域模糊滑模观测器算法***模块估算出电机转子位置和转速信息。本发明方法不仅削弱了传统滑模观测器***的抖震,滤除滑模观测器中的高次谐波,获得连续平滑的等效信号,还增强了***在转速变化、参数变化突加负载时的适应能力和鲁棒性。
本发明所采用的技术方案为一种优化永磁同步电机无传感器控制方法,包含以下步骤:
步骤1,将传感器采集到的三相电流和三相电压进行Clark坐标变换,得到两相静止坐标系下电压和电流,把两相静止坐标系下电压输入给滑模电流观测器得到观测电流,再将滑模电流观测器中观测电流与实际电流的差值输入给基于饱和函数的反电动势观测器中得到反电势估计初值;
步骤2:通过变论域模糊控制算法调节基于饱和函数的反电动势观测器中滑模增益;
步骤3,利用定子电流实际值和定子电流观测值构建Lyapunov模型,对基于饱和函数的反电动势观测器模型进行稳定性分析;
步骤4,将反电动势观测初值通过变截止频率滤波器进行滤波,得到滤波后反电动势估计值;
步骤5,通过滤波后反电势计算出转子转速估计值,并对转子位置进行变滞后补偿设计,进而计算出转子位置估计最终值;
步骤6,将转子转速估计值通过速度环PI控制器校准,将转子位置估计值通过电流环控制器进行校准,计算得出同步旋转坐标系下电压分量,再通过反Park坐标变换得到的两相静止坐标系下电压分量,经过空间矢量脉宽调制SVPWM后输入给逆变器,电压通过逆变器转换为三相交流电供给给电机,最后电机控制***形成闭环控制回路。
作为优选,步骤1中所述两相静止坐标系下α轴电压为uα,两相静止坐标系下β轴电压为uβ,两相静止坐标系下α轴电流为iα,两相静止坐标系下β轴电流为iβ,iα和iβ为定子电流实际值;
所述Clark坐标变换矩阵如下:
步骤1中所述构建滑模电流观测器模型,具体表达式如下:
式中,为两相静止坐标系下α轴电流观测值;为两相静止坐标系下β轴电流观测值;eα为两相静止坐标系下α轴反电势估计初值;eβ为两相静止坐标系下β轴反电势估计初值;R和Ls分别为定子电阻和定子电感;ψf为磁链;ksmo为滑模观测器中滑模增益;sat饱和函数为滑模观测器切换函数;
其中,sat为饱和函数作为滑模电流观测器模型中切换函数,具体定义如下:
其中,σ为饱和函数的边界层;
步骤1中所述计算电机在两相静止坐标系下定子电流观测值和反电动势观测初值过程为:
采用饱和函数作为切换函数,将永磁同步电机在两相静止坐标系下α轴上电流观测值与实际电流的差值和在β轴上电流观测值与实际电流的差值作为反电动势观测器输入值,再通过基于饱和函数的反电动势观测器分别计算出在两相静止坐标系下α轴上反电动势的观测初值eα和在β轴上反电动势的观测初值eβ
当控制***在滑模面上滑动时:
可得反电动势估计初值为:
作为优选,步骤2中所述通过变论域模糊控制算法调节基于饱和函数的反电动势观测器中滑模增益具体步骤为:
步骤2.1,对输入信号进行模糊化运算处理;
本专利变论域模糊控制器结构为二维模糊控制器,将在两相静止坐标系下定子电流α轴和β轴上分别建立两个变论域模糊控制器;以定子电流α轴变论域模糊控制器建立过程为例,将定子电流将永磁同步电机在两相静止坐标系下α轴上电流观测值与实际电流的差值定义为e,再计算求导在单位时间差内两相静止坐标系下α轴上电流观测值与实际电流的差值变化率ec,计算公式为:
其中,e(t)为t时刻在两相静止坐标系下α轴上电流观测值与实际电流的差值;Δt为时间差;
再把两相静止坐标系下α轴电流观测值与实际电流的差值e和其差值变化率ec作为模糊控制器两个输入变量,定义模糊控制器输入变量初始论域范围为{-15,15},输出变量初始论域范围为{-1,1};
在输入和输出论域上加上伸缩因子α(x)和β(x)变换后,输入变量论域范围为{-α(x)15,α(x)15},输出变量初始论域范围为{-β(x),β(x)},输入变量论域的伸缩因子函数模型为:
其中,x为模糊控制器输入量变量,λ为第一比例系数,k1为第二比例系数,k2为第三比例系数;
输出变量论域的伸缩因子函数模型为:
其中,x为模糊控制器输入量变量,τ1为第一指数系数,τ2为第二指数系数;ε为正无穷小补偿值;
再定义模糊控制器输入和输出变量的模糊语言为:
{NB、NM、NZ、PM、PB}
输入变量隶属度函数采用三角形隶属度函数,输出变量隶属度函数采用正态形隶属度函数;然后把两相静止坐标系下α轴上电流观测值与实际电流的差值e和差值变化率ec进行尺度变换,使其变换到各自的论域范围;
模糊控制器实际输入为输入量的变化范围为论域范围[xmin,xmax],采用线性变换,尺度变换表达式如下:
其中,k为比例因子,x0为论域范围的输入量;
再将变换到论域范围的输入量x0进行模糊运算处理,使其原先输入量变成模糊量并用相应的模糊集合表示,模糊化运算函数模型为:
x=fz(x0)
其中,x0是输入的清晰值;fz表示模糊运算符;x为模糊集合;
步骤2.2,根据设置的模糊规则进行模糊化推理,得到模糊输出量M;
采用Mamdani模糊推理法,其本质是一种合成推理方法,规则库第i条规则表示为:
“If x is A and y is B,then Z is C.”
其中,x、y和Z是代表***状态和控制量模糊语言变量,x和y是输入量,Z为控制量,A、B和C分别是模糊语言变量x,y,z在其论域X,Y,Z上的模糊语言变量值,所有规则组合在一起构成规则库;
其中C为模糊输出量;蕴涵的模糊关系为:
Ri=(Ai×Bi)×Ci
控制规则库之间可以看做是或,也就是求并的关系,则整个规则库蕴涵的模糊关系数学公式为:
根据实验操作和控制经验制定的模糊控制规则表对模糊控制器输入量进行模糊推理,推理公式如下:
步骤2.3,采用加权平均法对模糊输出量M进行解模糊处理,最终得到输出量u即滑模增益ksmo
将模糊推理得到输出量模糊集合M进行解模糊处理,采用加权平均法,对模糊输出量中各元素及其对应的隶属度求加权平均值得到清晰值Z,再将论域范围的清晰量Z经尺度变换变为实际的控制量u即滑模增益ksmo,若Z的变化范围为[zmax,zmin],实际控制量u的变化范围为[umin,umax]其尺度变换数学表达公式如下:
其中,k为比例因子;
最终,根据定子电流观测值与电流实际值的差值动态大小,通过变论域模糊控制调节得到最佳滑模增益值ksmo
作为优选,步骤3中所述Lyapunov模型如下:
其中,sα为在α轴上定子电流观测值与电流实际值差值;sβ为β轴上定子电流观测值与电流实际值差值;
对上式求导,并带入基于饱和函数的滑模电流观测器模型:
其中,R为定子电阻,Ls为定子电感,eα为两相静止坐标系下α轴反电势估计初值,eβ为两相静止坐标系下β轴反电势估计初值,ksmo为滑模观测器中滑模增益;
时,即只要eα-ksmosat(sα)<0和eβ-ksmosat(sβ)<0不等式成立,故此变论域模糊滑模观测器的稳定性条件为:
ksmo>max(|eα|,|eβ|)。
作为优选,步骤4中所述新型低通变截止频率滤波器设计如下:
式中,kf为正数;ke为正常数;ωe为转速控制值;为截止频率;
滤波后反电动势估计值可表示为:
其中,为α轴反电势估计值,为β轴反电势估计值,zα为α轴上包含反电势eα开关信号,zβ为β轴上包含反电势eβ开关信号。
作为优选,步骤5中所述转子位置估计的初值设定为:
其中,为转子位置估计初值;
转子转速估计值为:
进行转子位置变滞后补偿设计为:
其中,为转子转速估计值;为低通滤波器截止频率;为转子位置补偿值;
最后转子位置估计值为:
与传统滑模观测器相比,本发明的改进效果在于:
传统的滑模观测器中的滑模增益通常是给定常数,而在远离切换面时,为了加快到达滑模面的速度,滑模增益要取较大的值,而在切换面附近时,为了减小抖震,要减小滑模增益值。为了减小抖震,充分利用不同的切换增益对***的影响,采用模糊控制算法对滑模观测器的滑模增益进行动态调整。
为了降低论域范围大小对模糊控制精度影响,本专利采用变论域模糊控制方法。利用伸缩因子对普通模糊控制器的论域进行实时调整,达到消除控制死区的目的。本发明设计的低通变截止滤波器截止频率可随转速控制自适应变化,该滤波器可以在转速变化时保持时保持良好的滤波性能,能够更好地滤除包含反电势估算信息的高频分量,得到更为光滑的反电势估算信号。传统的滑模观测器中,滞后补偿为一个定值,这使得在不同转速下,相位滞后存在补偿误差。本发明滤波器的滞后补偿被设计调整为跟转子转速控制值相关的变量,使滑模观测器在不同速率运行时可以自适应地改变角度估算误差补偿,提升观测精度。
附图说明
图1:为一种优化永磁同步电机无传感器控制***框图。
图2:为基于变论域模糊滑模观测器原理框图。
图3:为变论域模糊***中输入和输出的隶属度函数图。
图4:为模糊规则表图。
图5:为本专利方法和其他两种方法滑模观测器转子启动状态转速对比图。
图6:为本专利方法和其他两种方法转速估算误差波形图。
图7:为本专利方法和其他两种方法突加负载转速波形局部放大图。
图8:为本专利算法方法流程图。
具体实施方式
为了便于本领域普通技术人员理解和实施本发明,下面结合附图及实施例对本发明做进一步的详细描述,应当理解,此处所描述的实施示例仅用于说明和解释本发明,并不用于限制本发明。
如图1所示为一种优化永磁同步电机无传感器控制***原理图。包含永磁同步电机、三相逆变器模块、SVPWM模块、矢量控制模块、变论域模糊滑模观测器模块。控制方法采用id=0矢量控制,将传感器将采集到三相电流和电压通过Clark变换为两相静止坐标系下α轴上电流分量iα、β轴上电流分量iβ和α轴上电压分量uα、β轴上电压分量uβ,再将iα、iβ和uα、uβ输入给变论域模糊滑模观测器模块。把变论域模糊滑模观测器模块估计出来的电机转速和位置信息通过速度环PI控制器和电流环控制器进行校准,校准输出为同步旋转坐标系下d轴上电压分量q轴上电压分量然后通过反Park坐标变换计算出两相静止坐标系下α轴上电压分量β轴上电压分量经过空间矢量脉宽调制SVPWM后输入给逆变器,电压通过逆变器转换为三相交流电供给给电机,最后电机控制***形成闭环控制回路。
下面结合图1至图4介绍本发明的具体实施方式为一种基于变论域模糊滑模观测器的永磁同步电控制方法,具体包含以下步骤:
步骤1,如图2所示将传感器采集到的三相电流和三相电压通过Clark坐标变换得到两相静止坐标系下电压和电流,把两相静止坐标系下电压输入给滑模电流观测器得到观测电流。再将滑模电流观测器中观测电流与实际电流的差值输入给基于饱和函数的反电动势观测器中,得到反电势估计初值
步骤1中所述两相静止坐标系下α轴电压为uα,两相静止坐标系下β轴电压为uβ,两相静止坐标系下α轴电流为iα,两相静止坐标系下β轴电流为iβ,iα和iβ为定子电流实际值;
所述Clark坐标变换矩阵如下:
步骤1中所述构建的滑模电流观测器模型,具体表达式如下:
式中,为两相静止坐标系下α轴电流观测值;为两相静止坐标系下β轴电流观测值;eα为两相静止坐标系下α轴反电势估计初值;eβ为两相静止坐标系下β轴反电势估计初值;R和Ls分别为定子电阻和定子电感;ψf为磁链;ksmo为滑模观测器中滑模增益;sat饱和函数为滑模观测器切换函数;
其中,sat为饱和函数作为滑模电流观测器模型中切换函数,具体定义如下:
其中,σ为饱和函数的边界层;
步骤1中所述计算电机在两相静止坐标系下定子电流观测值和反电动势观测初值值过程为:
把传感器采集到的三相电压通过Clark坐标变换得到两相静止坐标系下电压输入给滑模电流观测器,得到观测电流。采用饱和函数作为切换函数,将永磁同步电机在两相静止坐标系下α轴上电流观测值与实际电流的差值和在β轴上电流观测值与实际电流的差值作为基于饱和函数的反电势观测器输入值,再通过基于饱和函数的反电势观测器分别计算出在两相静止坐标系下α轴上反电动势的观测初值eα和在β轴上反电动势的观测初值eβ
当控制***在滑模面上滑动时:
可得反电动势估计初值为:
步骤2:通过变论域模糊控制算法调节基于饱和函数的反电势观测器中滑模增益;
步骤2中所述通过变论域模糊控制算法调节基于饱和函数的反电势观测器中滑模增益具体步骤为:
步骤2.1,对输入信号进行模糊化运算处理;
本专利变论域模糊控制器结构为二维模糊控制器,将在两相静止坐标系下定子电流α轴和β轴上分别建立两个变论域模糊控制器;以定子电流α轴变论域模糊控制器建立过程为例,将定子电流将永磁同步电机在两相静止坐标系下α轴上电流观测值与实际电流的差值定义为e,再计算求导在单位时间差内两相静止坐标系下α轴上电流观测值与实际电流的差值变化率ec,计算公式为:
其中,e(t)为t时刻在两相静止坐标系下α轴上电流观测值与实际电流的差值;Δt为时间差;
再把两相静止坐标系下α轴电流观测值与实际电流的差值e和其差值变化率ec作为模糊控制器两个输入变量,定义模糊控制器输入变量初始论域范围为{-15,15},输出变量初始论域范围为{-1,1};
在输入和输出论域上加上伸缩因子α(x)和β(x)变换后,输入变量论域范围为{-α(x)15,α(x)15},输出变量初始论域范围为{-β(x),β(x)},输入变量论域的伸缩因子函数模型为:
其中,x为模糊控制器输入量变量,λ为第一比例系数,k1为第二比例系数,k2为第三比例系数;本专利比例系数取值为λ=0.88,k1=0.9,k2=0.01;
输出变量论域的伸缩因子函数模型为:
其中,x为模糊控制器输入量变量,τ1为第一指数系数,τ2为第二指数系数;ε为正无穷小补偿值;
取值分别为τ1=0.9,τ2=0.4,ε=10-5
再定义模糊控制器输入和输出变量的模糊语言为:
{NB、NM、NZ、PM、PB}
如图3所示,输入和输出变量隶属度函数采用三角形隶属度函数和正态形隶属度函数;然后把两相静止坐标系下α轴上电流观测值与实际电流的差值e和差值变化率ec进行尺度变换,使其变换到各自的论域范围;
模糊控制器实际输入为输入量的变化范围为论域范围[xmin,xmax],采用线性变换,尺度变换表达式如下:
其中,k为比例因子,x0为论域范围的输入量;
再将变换到论域范围的输入量x0进行模糊运算处理,使其原先输入量变成模糊量并用相应的模糊集合表示,模糊化运算函数模型为:
x=fz(x0)
其中,x0是输入的清晰值;fz表示模糊运算符;x为模糊集合;
步骤2.2,如图4所示根据设置的模糊规则进行模糊化推理,得到模糊输出量M;
采用Mamdani模糊推理法,其本质是一种合成推理方法,规则库第i条规则表示为:
“If x is A and y is B,then Z is C.”
其中,x、y和Z是代表***状态和控制量模糊语言变量,x和y是输入量,Z为控制量,A、B和C分别是模糊语言变量x,y,z在其论域X,Y,Z上的模糊语言变量值,所有规则组合在一起构成规则库;
其中C为模糊输出量;蕴涵的模糊关系为:
Ri=(Ai×Bi)×Ci
控制规则库之间可以看做是或,也就是求并的关系,则整个规则库蕴涵的模糊关系数学公式为:
根据实验操作和控制经验制定的模糊控制规则表对模糊控制器输入量进行模糊推理,推理公式如下:
步骤2.3,采用加权平均法对模糊输出量M进行解模糊处理,最终得到输出量u即滑模增益ksmo
将模糊推理得到输出量模糊集合M进行解模糊处理,采用加权平均法,对模糊输出量中各元素及其对应的隶属度求加权平均值得到清晰值Z,再将论域范围的清晰量Z经尺度变换变为实际的控制量u即滑模增益ksmo,若Z的变化范围为[zmax,zmin],实际控制量u的变化范围为[umin,umax]其尺度变换数学表达公式如下:
其中,k为比例因子;
最终,根据定子电流观测值与电流实际值的差值动态大小,通过变论域模糊控制调节得到最佳滑模增益值ksmo
步骤3,利用定子电流实际值和定子电流观测值构建Lyapunov模型,对步骤1中所述滑模观测器模型进行稳定性分析;
所述步骤3中所述Lyapunov模型如下:
其中,sα为在α轴上定子电流观测值与电流实际值差值;sβ为β轴上定子电流观测值与电流实际值差值;
对上式求导,并带入滑模观测器模型中:
其中,R为定子电阻,Ls为定子电感,eα为两相静止坐标系下α轴反电势估计初值,eβ为两相静止坐标系下β轴反电势估计初值,ksmo为滑模观测器中滑模增益;
时,即只要eα-ksmosat(sα)<0和eβ-ksmosat(sβ)<0不等式成立,故此变论域模糊滑模观测器的稳定性条件为:
ksmo>max(|eα|,|eβ|)。
步骤4,将步骤1中所述反电动势的观测初值通过变截止频率滤波器进行滤波,以转速作为输入,使低通滤波器截止频率可随转控制自适应变化。平滑反电动势α轴上初值信号zα、β轴上反电动势差值信号zβ,得到较为光滑的α轴上反电势估计信号和β轴上反电势估计信号
所述步骤4新型低通变截止频率滤波器设计如下:
式中,kf为正数;ke为正常数;ωe为转速控制值;为截止频率
滤波后反电动势估计值可表示为:
其中,为α轴反电势估计值,为β轴反电势估计值,zα为α轴上包含反电势eα开关信号,zβ为β轴上包含反电势eβ开关信号。
步骤5,通过滤波后反电势计算出转子转速估计值,并对转子位置进行变滞后补偿设计,进而计算出转子位置估计最终值;
所述步骤5所述转子位置估计的初值设定为:
其中,为转子位置估计初值;
转子转速估计值为:
进行转子位置变滞后补偿设计为:
其中,为转子转速估计值;为低通滤波器截止频率;为转子位置补偿值;
最后转子位置估计值为:
步骤6,将转子转速估计值通过速度环PI控制器校准,将转子位置估计值通过电流环控制器进行校准,计算得出同步旋转坐标系下电压分量,再通过反Park坐标变换得到的两相静止坐标系下电压分量,经过空间矢量脉宽调制SVPWM后输入给逆变器,电压通过逆变器转换为三相交流电供给给电机,最后电机控制***形成闭环控制回路。
下面结合图5至图7的仿真波形验证本发明的可行性
如图5所示为当电机给定速度值为1000rad/s,参考转速设定为1000r/min时,采用变论域滑模观测器与模糊滑模观测器、传统滑模观测器转子转速的仿真波形对比图。由图5可以看出变论域模糊滑模观测器启动时刻转速稳定运行时间比其他两种控制方法短,仿真波形比较平稳,
抖振现象被削弱,可以较快较好的跟随电机实际速度变化。从图6可知转速稳定时,传统滑模
观测器转子速度估算误差为为±10r/min,模糊滑模观测器转子速度估算误差为0.5r/min,变论域模糊滑模观测器转子速度估算误差为为±0.1r/min。由此可见,使用变论域模糊滑模观测器转速估算精度得到提高。由图7可知:突加负载时,传统滑模观测器控制的转速输出振荡较大,说明其鲁棒性不强,控制品质不太好。变论域模糊滑模观测器速度变化范围相对传统滑模观测器和模糊滑模观测器变化较小,动态响应快,恢复到参考转速时间快。从图5到图7可知本发明比传统控制方法调节时间短、超调量小、稳态精度高的特点,并且还削弱了***抖震现象。图8为本发明的方法流程图。
应当理解的是,本说明书未详细阐述的部分均属于现有技术。
应当理解的是,上述针对实施例的描述较为详细,并不能因此而认为是对本发明专利保护范围的限制,本领域的普通技术人员在本发明的启示下,在不脱离本发明权利要求所保护的范围情况下,还可以做出替换或变形,均落入本发明的保护范围之内,本发明的请求保护范围应以所附权利要求为准。

Claims (6)

1.一种优化永磁同步电机无传感器控制方法,其特征在于,包括以下步骤:
步骤1,将传感器采集到的三相电流和三相电压进行Clark坐标变换,得到两相静止坐标系下电压和电流,把两相静止坐标系下电压输入给滑模电流观测器得到观测电流,再将滑模电流观测器中观测电流与实际电流的差值输入给基于饱和函数的反电动势观测器中得到反电势估计初值;
步骤2:通过变论域模糊控制算法调节基于饱和函数的反电动势观测器中滑模增益;
步骤3,利用定子电流实际值和定子电流观测值构建Lyapunov模型,对基于饱和函数的反电动势观测器模型进行稳定性分析;
步骤4,将反电动势观测初值通过变截止频率滤波器进行滤波,得到滤波后反电动势估计值;
步骤5,通过滤波后反电势计算出转子转速估计值,并对转子位置进行变滞后补偿设计,进而计算出转子位置估计最终值;
步骤6,将转子转速估计值通过速度环PI控制器校准,将转子位置估计值通过电流环控制器进行校准,计算得出同步旋转坐标系下电压分量,再通过反Park坐标变换得到的两相静止坐标系下电压分量,经过空间矢量脉宽调制SVPWM后输入给逆变器,电压通过逆变器转换为三相交流电供给给电机,最后电机控制***形成闭环控制回路。
2.根据权利要求1所述的优化永磁同步电机无传感器控制方法,其特征在于:步骤1中所述两相静止坐标系下α轴电压为uα,两相静止坐标系下β轴电压为uβ,两相静止坐标系下α轴电流为iα,两相静止坐标系下β轴电流为iβ,iα和iβ为定子电流实际值;
所述Clark坐标变换矩阵如下:
步骤1中所述构建滑模电流观测器模型,具体表达式如下:
式中,为两相静止坐标系下α轴电流观测值;为两相静止坐标系下β轴电流观测值;eα为两相静止坐标系下α轴反电势估计初值;eβ为两相静止坐标系下β轴反电势估计初值;R和Ls分别为定子电阻和定子电感;ψf为磁链;ksmo为滑模观测器中滑模增益;sat饱和函数为滑模观测器切换函数;
其中,sat为饱和函数作为滑模电流观测器模型中切换函数,具体定义如下:
其中,σ为饱和函数的边界层;
步骤1中所述计算电机在两相静止坐标系下定子电流观测值和反电动势观测初值过程为:
采用饱和函数作为切换函数,将永磁同步电机在两相静止坐标系下α轴上电流观测值与实际电流的差值和在β轴上电流观测值与实际电流的差值作为反电动势观测器输入值,再通过基于饱和函数的反电动势观测器分别计算出在两相静止坐标系下α轴上反电动势的观测初值eα和在β轴上反电动势的观测初值eβ
当控制***在滑模面上滑动时:
可得反电动势估计初值为:
3.根据权利要求1所述的优化永磁同步电机无传感器控制方法,其特征在于:步骤2中所述通过变论域模糊控制算法调节基于饱和函数的反电动势观测器中滑模增益具体步骤为:
步骤2.1,对输入信号进行模糊化运算处理;
本专利变论域模糊控制器结构为二维模糊控制器,将在两相静止坐标系下定子电流α轴和β轴上分别建立两个变论域模糊控制器;以定子电流α轴变论域模糊控制器建立过程为例,将定子电流将永磁同步电机在两相静止坐标系下α轴上电流观测值与实际电流的差值定义为e,再计算求导在单位时间差内两相静止坐标系下α轴上电流观测值与实际电流的差值变化率ec,计算公式为:
其中,e(t)为t时刻在两相静止坐标系下α轴上电流观测值与实际电流的差值;Δt为时间差;
再把两相静止坐标系下α轴电流观测值与实际电流的差值e和其差值变化率ec作为模糊控制器两个输入变量,定义模糊控制器输入变量初始论域范围为{-15,15},输出变量初始论域范围为{-1,1};
在输入和输出论域上加上伸缩因子α(x)和β(x)变换后,输入变量论域范围为{-α(x)15,α(x)15},输出变量初始论域范围为{-β(x),β(x)},输入变量论域的伸缩因子函数模型为:
其中,x为模糊控制器输入量变量,λ为第一比例系数,k1为第二比例系数,k2为第三比例系数;
输出变量论域的伸缩因子函数模型为:
其中,x为模糊控制器输入量变量,τ1为第一指数系数,τ2为第二指数系数;ε为正无穷小补偿值;
再定义模糊控制器输入和输出变量的模糊语言为:
{NB、NM、NZ、PM、PB}
输入变量隶属度函数采用三角形隶属度函数,输出变量隶属度函数采用正态形隶属度函数;然后把两相静止坐标系下α轴上电流观测值与实际电流的差值e和差值变化率ec进行尺度变换,使其变换到各自的论域范围;
模糊控制器实际输入为输入量的变化范围为论域范围[xmin,xmax],采用线性变换,尺度变换表达式如下:
其中,k为比例因子,x0为论域范围的输入量;
再将变换到论域范围的输入量x0进行模糊运算处理,使其原先输入量变成模糊量并用相应的模糊集合表示,模糊化运算函数模型为:
x=fz(x0)
其中,x0是输入的清晰值;fz表示模糊运算符;x为模糊集合;
步骤2.2,根据设置的模糊规则进行模糊化推理,得到模糊输出量M;
采用Mamdani模糊推理法,其本质是一种合成推理方法,规则库第i条规则表示为:
“If x is A and y is B,then Z is C.”
其中,x、y和Z是代表***状态和控制量模糊语言变量,x和y是输入量,Z为控制量,A、B和C分别是模糊语言变量x,y,z在其论域X,Y,Z上的模糊语言变量值,所有规则组合在一起构成规则库;
其中C为模糊输出量;蕴涵的模糊关系为:
Ri=(Ai×Bi)×Ci
控制规则库之间可以看做是或,也就是求并的关系,则整个规则库蕴涵的模糊关系数学公式为:
根据实验操作和控制经验制定的模糊控制规则表对模糊控制器输入量进行模糊推理,推理公式如下:
步骤2.3,采用加权平均法对模糊输出量M进行解模糊处理,最终得到输出量u即滑模增益ksmo
将模糊推理得到输出量模糊集合M进行解模糊处理,采用加权平均法,对模糊输出量中各元素及其对应的隶属度求加权平均值得到清晰值Z,再将论域范围的清晰量Z经尺度变换变为实际的控制量u即滑模增益ksmo,若Z的变化范围为[zmax,zmin],实际控制量u的变化范围为[umin,umax]其尺度变换数学表达公式如下:
其中,k为比例因子;
最终,根据定子电流观测值与电流实际值的差值动态大小,通过变论域模糊控制调节得到最佳滑模增益值ksmo
4.根据权利要求1所述的优化永磁同步电机无传感器控制方法,其特征在于:步骤3中所述Lyapunov模型如下:
其中,sα为在α轴上定子电流观测值与电流实际值差值;sβ为β轴上定子电流观测值与电流实际值差值;
对上式求导,并带入基于饱和函数的滑模电流观测器模型:
其中,R为定子电阻,Ls为定子电感,eα为两相静止坐标系下α轴反电势估计初值,eβ为两相静止坐标系下β轴反电势估计初值,ksmo为滑模观测器中滑模增益;
时,即只要eα-ksmosat(sα)<0和eβ-ksmosat(sβ)<0不等式成立,故此变论域模糊滑模观测器的稳定性条件为:
ksmo>max(|eα|,|eβ|)。
5.根据权利要求1所述的优化永磁同步电机无传感器控制方法,其特征在于:步骤4中所述新型低通变截止频率滤波器设计如下:
式中,kf为正数;ke为正常数;ωe为转速控制值;为截止频率;
滤波后反电动势估计值可表示为:
其中,为α轴反电势估计值,为β轴反电势估计值,zα为α轴上包含反电势eα开关信号,zβ为β轴上包含反电势eβ开关信号。
6.根据权利要求1所述的优化永磁同步电机无传感器控制方法,其特征在于:步骤5中所述转子位置估计的初值设定为:
其中,为转子位置估计初值;
转子转速估计值为:
进行转子位置变滞后补偿设计为:
其中,为转子转速估计值;为低通滤波器截止频率;为转子位置补偿值;
最后转子位置估计值为:
CN201910870999.8A 2019-09-16 2019-09-16 一种优化永磁同步电机无传感器控制方法 Expired - Fee Related CN110572091B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910870999.8A CN110572091B (zh) 2019-09-16 2019-09-16 一种优化永磁同步电机无传感器控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910870999.8A CN110572091B (zh) 2019-09-16 2019-09-16 一种优化永磁同步电机无传感器控制方法

Publications (2)

Publication Number Publication Date
CN110572091A true CN110572091A (zh) 2019-12-13
CN110572091B CN110572091B (zh) 2021-05-18

Family

ID=68780409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910870999.8A Expired - Fee Related CN110572091B (zh) 2019-09-16 2019-09-16 一种优化永磁同步电机无传感器控制方法

Country Status (1)

Country Link
CN (1) CN110572091B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110492805A (zh) * 2019-07-19 2019-11-22 杭州洲钜电子科技有限公司 基于模糊控制的永磁同步电机控制方法、***和存储介质
CN111257592A (zh) * 2020-03-05 2020-06-09 广东零偏科技有限公司 一种用于检测装置的静态判别的方法
CN111371356A (zh) * 2020-04-03 2020-07-03 上海至哲智控技术有限公司 一种基于变参数pi控制的pmsm转子观测方法
CN111987959A (zh) * 2020-08-11 2020-11-24 哈尔滨理工大学 永磁同步电机无传感器控制方法
CN112003526A (zh) * 2020-08-20 2020-11-27 苏州崧崧智能控制技术有限公司 一种基于低抖振滑模观测器的高速永磁同步电机无感控制***及方法
CN112928959A (zh) * 2021-02-01 2021-06-08 安徽工程大学 永磁同步电机无位置传感器控制方法
CN113241982A (zh) * 2021-05-08 2021-08-10 江苏理工学院 基于模糊单神经元控制的永磁同步电主轴矢量调速方法
CN113300645A (zh) * 2021-05-14 2021-08-24 大连海事大学 改进的永磁同步电机超螺旋滑模无位置传感器控制方法
CN113489407A (zh) * 2021-07-19 2021-10-08 珠海格力电器股份有限公司 一种电机的控制方法、装置、电机、存储介质及处理器
WO2021203589A1 (zh) * 2020-04-08 2021-10-14 西安热工研究院有限公司 基于滑模观测器的永磁直流电机换相控制装置及方法
CN113691186A (zh) * 2021-08-20 2021-11-23 浙江大学 一种永磁同步电机无位置传感器控制转子位置角补偿方法
CN113809956A (zh) * 2021-10-20 2021-12-17 大连海事大学 六相表贴式永磁容错轮缘推进电机零低速域转子位置检测方法
CN114236389A (zh) * 2021-12-27 2022-03-25 大连特种设备检验检测研究院有限公司 一种用于电梯永磁主机的在线退磁检测***
CN114859729A (zh) * 2022-05-13 2022-08-05 中国第一汽车股份有限公司 一种控制方法、装置、设备以及存储介质
CN116599413A (zh) * 2023-07-17 2023-08-15 南京信息工程大学 一种永磁同步电机的无位置传感器控制方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201955A (zh) * 2014-08-12 2014-12-10 中国南方电网有限责任公司超高压输电公司广州局 一种基于变论域模糊的特高压换流变分接开关控制方法
CN106026835A (zh) * 2016-08-04 2016-10-12 上海应用技术学院 一种基于模糊控制和滑模观测器的无速度传感器优化方法
JP2017108477A (ja) * 2015-12-07 2017-06-15 富士電機株式会社 永久磁石形同期電動機の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201955A (zh) * 2014-08-12 2014-12-10 中国南方电网有限责任公司超高压输电公司广州局 一种基于变论域模糊的特高压换流变分接开关控制方法
JP2017108477A (ja) * 2015-12-07 2017-06-15 富士電機株式会社 永久磁石形同期電動機の制御装置
CN106026835A (zh) * 2016-08-04 2016-10-12 上海应用技术学院 一种基于模糊控制和滑模观测器的无速度传感器优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
第10-16、26-46页: ""变论域模糊控制在直线电机控制***中的应用研究"", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *
陈李济等: ""基于模糊径向基函数神经网络的永磁同步电机滑模观测器设计"", 《电机与控制应用》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110492805A (zh) * 2019-07-19 2019-11-22 杭州洲钜电子科技有限公司 基于模糊控制的永磁同步电机控制方法、***和存储介质
CN111257592A (zh) * 2020-03-05 2020-06-09 广东零偏科技有限公司 一种用于检测装置的静态判别的方法
CN111257592B (zh) * 2020-03-05 2022-04-12 广东零偏科技有限公司 一种用于检测装置的静态判别的方法
CN111371356A (zh) * 2020-04-03 2020-07-03 上海至哲智控技术有限公司 一种基于变参数pi控制的pmsm转子观测方法
CN111371356B (zh) * 2020-04-03 2022-12-09 上海至哲智控技术有限公司 一种基于变参数pi控制的pmsm转子观测方法
WO2021203589A1 (zh) * 2020-04-08 2021-10-14 西安热工研究院有限公司 基于滑模观测器的永磁直流电机换相控制装置及方法
CN111987959A (zh) * 2020-08-11 2020-11-24 哈尔滨理工大学 永磁同步电机无传感器控制方法
CN112003526A (zh) * 2020-08-20 2020-11-27 苏州崧崧智能控制技术有限公司 一种基于低抖振滑模观测器的高速永磁同步电机无感控制***及方法
CN112003526B (zh) * 2020-08-20 2022-06-07 苏州崧崧智能控制技术有限公司 一种基于低抖振滑模观测器的高速永磁同步电机无感控制***及方法
CN112928959A (zh) * 2021-02-01 2021-06-08 安徽工程大学 永磁同步电机无位置传感器控制方法
CN112928959B (zh) * 2021-02-01 2022-07-26 安徽工程大学 永磁同步电机无位置传感器控制方法
CN113241982A (zh) * 2021-05-08 2021-08-10 江苏理工学院 基于模糊单神经元控制的永磁同步电主轴矢量调速方法
CN113300645A (zh) * 2021-05-14 2021-08-24 大连海事大学 改进的永磁同步电机超螺旋滑模无位置传感器控制方法
CN113489407B (zh) * 2021-07-19 2022-03-25 珠海格力电器股份有限公司 一种电机的控制方法、装置、电机、存储介质及处理器
CN113489407A (zh) * 2021-07-19 2021-10-08 珠海格力电器股份有限公司 一种电机的控制方法、装置、电机、存储介质及处理器
CN113691186A (zh) * 2021-08-20 2021-11-23 浙江大学 一种永磁同步电机无位置传感器控制转子位置角补偿方法
CN113691186B (zh) * 2021-08-20 2023-11-24 浙江大学 一种永磁同步电机无位置传感器控制转子位置角补偿方法
CN113809956A (zh) * 2021-10-20 2021-12-17 大连海事大学 六相表贴式永磁容错轮缘推进电机零低速域转子位置检测方法
CN114236389A (zh) * 2021-12-27 2022-03-25 大连特种设备检验检测研究院有限公司 一种用于电梯永磁主机的在线退磁检测***
CN114859729A (zh) * 2022-05-13 2022-08-05 中国第一汽车股份有限公司 一种控制方法、装置、设备以及存储介质
CN116599413A (zh) * 2023-07-17 2023-08-15 南京信息工程大学 一种永磁同步电机的无位置传感器控制方法及装置
CN116599413B (zh) * 2023-07-17 2023-09-22 南京信息工程大学 一种永磁同步电机的无位置传感器控制方法及装置

Also Published As

Publication number Publication date
CN110572091B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
CN110572091B (zh) 一种优化永磁同步电机无传感器控制方法
CN110138297B (zh) 一种永磁同步直线电机速度和电流双闭环控制***和控制方法
CN110289795B (zh) 一种电动汽车用永磁同步电机控制***及控制方法
CN110752806B (zh) 改进趋近律的内置式永磁同步电机的滑模转速控制方法
Wang et al. Review of sensorless control techniques for PMSM drives
CN108377117B (zh) 基于预测控制的永磁同步电机复合电流控制***及方法
CN110165953B (zh) 一种基于趋近律的pmsm调速控制方法
CN108365787A (zh) 一种基于内模控制的永磁同步电机调速***及其设计方法
CN110138298B (zh) 一种永磁同步电机滑模控制方法
CN111293947B (zh) 一种改良永磁同步电机无速度传感器控制方法
CN112039394A (zh) 一种基于模糊自抗扰的pmsm伺服控制***
CN108964556A (zh) 用于驱动永磁式同步电机的无速度传感器控制装置
Boulghasoul et al. Fuzzy improvement on Luenberger observer based induction motor parameters estimation for high performances sensorless drive
CN110995102A (zh) 一种永磁同步电机直接转矩控制方法及***
CN110703591A (zh) 一种转阀驱动电机自抗扰控制器的控制方法
Rong et al. A new PMSM speed modulation system with sliding mode based on active-disturbance-rejection control
CN112953335A (zh) 一种永磁同步电机有限时间自适应复合控制方法和***
Ding et al. Research on pmsm vector control system based on fuzzy pi parameter self-tuning
CN109617482B (zh) 永磁同步电机的l2滑模控制方法
Rehman et al. A fuzzy learning—Sliding mode controller for direct field-oriented induction machines
CN109936319B (zh) 一种整定转速控制器参数的方法及装置
Zhang et al. Linear active disturbance rejection speed control with variable gain load torque sliding mode observer for IPMSMs
Sayouti et al. Sensor less low speed control with ANN MRAS for direct torque controlled induction motor drive
JP4144284B2 (ja) 超音波モータの位置制御方式
CN111293933A (zh) 基于全阶自适应观测器的pmsm传感器抗扰控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210518

Termination date: 20210916

CF01 Termination of patent right due to non-payment of annual fee