CN110456641A - 一种固定时预定性能循环神经网络机械臂控制方法 - Google Patents

一种固定时预定性能循环神经网络机械臂控制方法 Download PDF

Info

Publication number
CN110456641A
CN110456641A CN201910664075.2A CN201910664075A CN110456641A CN 110456641 A CN110456641 A CN 110456641A CN 201910664075 A CN201910664075 A CN 201910664075A CN 110456641 A CN110456641 A CN 110456641A
Authority
CN
China
Prior art keywords
neural network
formula
control
mechanical arm
follows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910664075.2A
Other languages
English (en)
Other versions
CN110456641B (zh
Inventor
倪骏康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest University of Technology
Original Assignee
Northwest University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest University of Technology filed Critical Northwest University of Technology
Priority to CN201910664075.2A priority Critical patent/CN110456641B/zh
Publication of CN110456641A publication Critical patent/CN110456641A/zh
Application granted granted Critical
Publication of CN110456641B publication Critical patent/CN110456641B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明涉及一种固定时预定性能循环神经网络机械臂控制方法,包括:(1)建立直流电机驱动机械臂的数学模型,建立带有未知非线性死区的执行器模型;(2)***参考输出,设计跟踪误差需要满足的性能函数;(3)设计固定时预定性能循环神经网络控制器、神经网络权值更新律和固定时微分器,使***输出能够在固定时间内跟踪上参考输出轨迹,同时将***跟踪误差限制在预先指定的性能边界范围内;(4)对控制***进行稳定性分析,根据稳定性分析结果确定控制器参数。本发明所提出的方法能够实现固定时间预定性能轨迹跟踪,从而降低了跟踪时间,提升了控制精度,保证了控制过程中***的暂态和稳态性能。

Description

一种固定时预定性能循环神经网络机械臂控制方法
技术领域
本发明涉及工业控制领域,特别涉及一种固定时预定性能循环神经网络机械臂控制方法。
背景技术
高性能运动控制对于许多工业应用至关重要。高性能运动控制要求电机能够驱动负载(机械臂)沿着预定轨迹运动,对跟踪时间、跟踪精度以及***暂态和稳态跟踪 性能提出了很高的要求。传统的控制方法基于前馈神经网络。然而,前馈神经网络是 一个静态映射,无法在没有延时的情况下表达动态映射。此外,前馈神经网络的函数 逼近性能对训练数据敏感,当其输入受到大扰动时,其函数逼近性能将变差。而运动 控制***是一个动态***,并且受到各种外部干扰的影响。因此,将传统基于前馈神 经网络的控制方法用于运动控制中将难以获得良好的控制性能。与前馈神经网络不同, 循环神经网络具有前馈连接和内部信息的反馈环,可以捕捉***动态响应和存储信息 供以后使用。此外,循环神经网络具有良好的处理时变输入的能力。因此,循环神经 网络是一个动态映射,更适合于处理动态***,特别是在***出现参数变化,参考轨 迹突变,噪声和外部干扰情况下能显示出卓越的性能。然而,既有基于循环神经网络 的控制方案没有考虑控制输入死区。
在实际***中,死区广泛存在于机械连接、液压***和运动控制***的其他组成部分中,当执行器输入落在死区范围内时,执行器将不产生控制信号,这将降低*** 控制性能,导致控制不精确,甚至造成***失稳。许多方法被提出用于解决死区问题。 神经网络和模糊逻辑被用于估计和补偿死区非线性。然而,由于死区函数的非光滑特 性,需要使用更多的节点、训练次数和模糊规则来逼近死区非线性,这增加了计算负 担。自适应死区逆方法被用于解决死区问题。然而,未知死区参数的自适应律包含执 行器输入u,而执行器输入u仅能在确定待估计的死区参数后才能获得,这使得该方 法难以实际实施。另一种处理死区的方法是将死区建模为线性项和干扰项的组合形式, 使用自适应方法或鲁棒方法来估计和补偿干扰。然而,这些结果仅能保证闭环***稳 定,跟踪误差收敛到小的残差集合内,但无法保证预定性能。
对于运动控制***,通常要求跟踪误差需要满足一些性能指标,诸如超调、稳态误差、收敛速度等。预定性能控制可以保证跟踪误差以充分快的收敛速度,充分小的 超调和稳态误差收敛到小的残差集合。既有的预定性能控制方法可以分为三类:基于 壁垒李雅普诺夫函数的预定性能控制,基于funnel控制的预定性能控制和基于坐标变 换的预定性能控制。然而,当李雅普诺夫函数变化时,基于壁垒李雅普诺夫函数的预 定性能控制需要重新设计。此外,对于不对称的预定性能限制,壁垒李雅普诺夫函数 是一个分段光滑函数,需要保证稳定函数的可微性和连续性。基于funnel控制的预定 性能控制要求受控***必须是S型线性或非线性***,***相对阶数为1或2,并且高 频增益符号是已知的,这限制了基于funnel控制的预定性能控制的应用。基于坐标变 换的预定性能控制在进行坐标变换及其逆变换时引入复杂函数及其导数项,这将增加 计算负担。此外,基于坐标变换的预定性能控制还存在奇异性问题,将导致过大的控 制输入,造成执行器饱和甚至造成***不可控。而且,坐标变换在原点处不可微。既 有的预定性能控制无法保证跟踪误差有限时间收敛到零,无法满足许多实际应用对控 制精度和收敛时间的要求。
固定时控制可以保证误差在有限时间内收敛到零,并且收敛时间的上界是一个常数,该常数与初值无关而仅由设计参数决定。这有利于稳定时间估计和控制器设计以 满足实际应用对收敛时间的要求。既有的固定时控制实现了一阶、二阶和高阶***固 定时稳定。但是,这些控制方法未能考虑暂态和稳态性能,无法保证跟踪误差沿着预 先指定的性能函数收敛。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种固定时预定性能循环神经网络机械臂控制方法,以满足实际运动控制***对跟踪时间、跟踪精度以及***暂态和稳态 跟踪性能的高要求,并考虑实际***中普遍存在的控制死区,使得直流电机驱动的机 械手能够在固定时间内跟踪上理想轨迹,并保证跟踪误差不超过预定性能边界。
技术方案
一种固定时预定性能循环神经网络机械臂控制方法,其特征在于步骤如下:
步骤1:建立直流电机驱动机械臂的数学模型,直流电机驱动机械臂的数学模型包括机械子***和电气子***,其中机械子***的数学模型为:
式中,q,分别表示角位置、角速度和角加速度,I是电机电枢电流,ΔI为 电流干扰,J为电机转子转动惯量,m为连接质量,M为负载质量,d为连接长度,δ 为负载半径,g为重力加速度,B为连接的粘滞摩擦系数,Kr是机电转矩耦合系数;
电气子***的数学模型为:
式中,L为电枢电感,R为电枢电阻,KB为反电动势系数,V为输入控制电压;
令x1=q,x3=I,u=V,则由机械子***(1)和电气子***(2)组成的直流电机驱动机械臂可以表示为:
式中,其中i=1,2,3,f1(x1)=0,d1=0,由于实际***中存在不确定参数,因此其中i=1,2,3是未知函数;
建立带有未知非线性死区的执行器模型:
式中,v为实际控制输入,Dr(v)和Dl(v)是连续光滑非线性函数,br>0和bl>0是 确定死区大小的未知参数;
考虑到Dl(-bl)=0,Dr(br)=0,根据均值定理有:
执行器模型(4)可以重新写为
进一步,(7)可以写为:
u=ωT(t)η(t)v+du (8)
式中:
ω(t)=[ωr(t),ωl(t)]T,η(t)=[ηr(t),ηl(t)]
这里假设存在常数使得 由该假设可得,执行器模型表达式(8)中 干扰项du和线性项系数ωT(t)η(t)是有界的,即存在使得|du|≤ρ,ωT(t)η(t)≥ν;
步骤2:确定的***参考输出为预定性能函数为
式中k,l,ρ为正实数;该预定性能函数具有三个性质:1)2)3)
跟踪误差e1=y-yd被限制在如下范围内:
式中
式中δ10,δ20,ψ1,ψ2,λ1,λ2为正常数;
步骤3:设计固定时预定性能循环神经网络控制器、神经网络权值更新律和固定时微分器,使***输出能够在固定时间内跟踪上参考输出轨迹,同时将***跟踪误差 限制在预先指定的性能边界范围内,具体如下:
设计实际控制输入为:
式中u*具有如下的表述形式:
式中,β33>0,τ3是待设计的正常数,为神经网络最优权值的估计值,其值由更新律(42)-(43)确定,为固定时微分器状态变量,其值由(36) 确定,Θ3(·)为sigmoid函数,sig(·)α=|·|αsign(·),H3为隐层神经元输入,e3=x32,α2为虚拟控制,其值由(31)确定,e2=x21,α1为虚拟控制,其值由(16)确定;
神经网络权值估计值的更新律为
式中,是正常数,表示神经网络学习速率;
固定时微分器设计为:
式中,为微分器状态变量,L,M>0,μi=iμ-(i-1),μ∈(1,1+κ),κ为充 分小的正常数,k1,k2,σ1,σ2为微分器增益,其值选择应使得矩阵A1和A为Hurwitz 矩阵;
虚拟控制α2设计为:
式中β22>0,τ2是待设计的正常数,为神经网络最优权值的估计值,其值由更新律(34)-(35)确定,为固定时微分器状态变量,其值由(23) 确定,Θ2(·)为sigmoid函数,H2为隐层神经元输入,e2=x21,α1为虚拟控制,其 值由(16)确定,z1=ξ/(1-ξ), 为充分小的正常数,
神经网络权值估计值的更新律为
式中,是正常数,表示神经网络学习速率;
固定时微分器设计为:
式中,为微分器状态变量,其他变量的物理意义与(36)相同;
虚拟控制α1设计为:
式中,β11>0,τ1是待设计的正常数,为神经网络最优权值V1 *的估 计值,其值由更新律(21)-(22)确定,Θ1(·)为sigmoid函数,H1为隐层神经元输入, 其他变量的物理意义与(31)相同;
神经网络权值估计的更新律为
式中为表示神经网络学习速率的正常数;
步骤4:对控制***进行稳定性分析,根据稳定性分析结果确定控制器参数,所 述的控制参数选择应满足以下条件:β33>0,β22>0,β11>0,切换增益τi满足:
式中表示神经网络权值估计误差,w1,w2,w3具有如下形式:
式中,表示二阶及以上阶次的无穷小量,和Vi *表示理想的神经网络权值,εi表示神经网络逼近误差;
步骤5:采用步骤4确定的控制参数对直流电机驱动机械臂实施控制,使***输 出能够在固定时间内跟踪上参考输出轨迹,同时将***跟踪误差限制在预先指定的性 能边界范围内。
κ=0.2。
有益效果
本发明提出的一种固定时预定性能循环神经网络机械臂控制方法,相对于现有技术,本发明的创新性体现在以下四个方面:
(a)、本发明提出了新颖的预定性能函数,与既有的预定性能函数相比,本发明所提出的预定性能函数无需精确的跟踪误差初值信息。
(b)、本发明提出了新颖的坐标变换,克服了既有坐标变换存在的不可微问题,简化了控制器设计,克服了奇异性问题。
(c)、本发明为直流电机驱动机械臂提出了新颖的固定时预定性能控制。同既有的预定性能控制方法相比,所提出的控制方法具有更快的收敛速度和更高的收敛精度。 同既有的固定时控制方法相比,所提出的控制方案具有更好的稳态和暂态性能。
(d)、本发明考虑了更为普遍的未知非线性死区并且消除了既有方法对控制增益做 出的限定性假设,因而所设计的控制器能够更好的应用于实际直流电机驱动机械臂***。
相对于现有技术,本发明具有以下有益效果:
(a)、本发明所提出的固定时预定性能循环神经网络控制方法,充分考虑了实际***中存在的死区、***不确定和外部干扰等限制因素,消除了既有方法对控制增益 做出的限定性假设,因而能够更好地应用于实际***中。
(b)、所提出的控制方案能够实现固定时间预定性能轨迹跟踪,从而降低了跟踪时间,提升了控制精度,保证了控制过程中***的暂态和稳态性能。
(c)、所提出的控制方案简化了控制器设计,克服了奇异性问题,增强了***的 鲁棒性。
附图说明
图1是本发明提供的一种固定时预定性能神经网络控制方法的控制流程图
图2是本发明的实施例中***状态的时间响应图
图3是本发明的实施例中误差的时间响应图
图4是本发明的实施例中虚拟控制和真实控制的时间响应图
图5是本发明的实施例中不同初始跟踪误差下的收敛时间曲线图
具体实施方式
现结合实施例、附图对本发明作进一步描述:
高性能运动控制对于许多工业应用至关重要。高性能运动控制要求电机能够驱动负载(机械臂)沿着预定轨迹运动,对跟踪时间、跟踪精度以及***暂态和稳态跟踪 性能提出了很高的要求。直流电机驱动的机械臂***是一个动态***,运行参数不断 变化,而且容易受到外部干扰的影响。此外,死区广泛存在于机械连接、液压***和 运动控制***的其他组成部分中,当执行器输入落在死区范围内时,执行器将不产生 控制信号,这将降低***控制性能,导致控制不精确,甚至造成***失稳。因此,在 控制设计中需要考虑***不确定、外部干扰、死区等限制因素,同时也需要考虑实际 ***对跟踪时间、跟踪精度以及***暂态和稳态跟踪性能的高要求。
请参阅图1至图5所示,本发明提供一种固定时预定性能神经网络控制方法,包 括以下步骤:
(1)建立直流电机驱动机械臂的数学模型。直流电机驱动机械臂可以分为机械子***和电气子***,其中机械子***的数学模型为:
式中,q,分别表示角位置、角速度和角加速度,I是电机电枢电流,ΔI为 电流干扰,J为电机转子转动惯量,m为连接质量,M为负载质量,d为连接长度,δ 为负载半径,g为重力加速度,B为连接的粘滞摩擦系数,Kr是机电转矩耦合系数。
电气子***的数学模型为:
式中,L为电枢电感,R为电枢电阻,KB为反电动势系数,V为输入控制电压。
建立带有未知非线性死区的执行器模型:
式中,v为实际控制输入,Dr(v)和Dl(v)是连续光滑非线性函数,br>0和bl>0是 确定死区大小的未知参数。
考虑到Dl(-bl)=0,Dr(br)=0,根据均值定理有:
执行器模型(4)可以重新写为
进一步,(6)可以写为:
u=ωT(t)η(t)v+du (7)
式中:
ω(t)=[ωr(t),ωl(t)]T,η(t)=[ηr(t),ηl(t)]
(2)确定***的参考输出为预定性能函数为
式中k,l,ρ为正实数。该预定性能函数具有三个性质:1)2)3)
跟踪误差e1=y-yd被限制在如下范围内:
式中
式中δ10,δ20,ψ1,ψ2,λ1,λ2为正常数。
(3)设计固定时预定性能循环神经网络控制律,实现控制目标。首先,将***(1)写为控制***的标准形式。令x1=q,x3=I,u=V, 则由机械子***(1)和电气子***(2)组成的直流电机 驱动机械臂可以表示为:
式中f1(x1)=0,d1=0, d3=0。由于实际***中存在不确定参数,因此是未知函数。
接下来,对于控制***(12)设计固定时预定性能循环神经网络控制律:
在控制器设计之前,对控制参数,控制增益和参考输出信号做如下假设:
假设1:死区(6)中的参数是未知的,但是其断点bl,br和斜率D′l(v),D′r(v)是有界的,即存在常数使得
假设2:理想输出yd及其导数是有界的。
假设3:外部干扰di是有界的。
第一步:将虚拟误差定义为
式中z1=ξ/(1-ξ),e1=y-yd 为 充分小的正常数,例如
求取虚拟误差的导数可得:
由于非线性函数f1(x1)和g1(x1)是未知的,循环神经网络用于逼近F1(x1):
式中H1为隐层神经元输入,为隐层到输出层最优权值向量,V1 *为隐层和输入层之 间最优权值向量,Θ1(·)为sigmoid函数,ε1为神经网络逼近误差。
虚拟控制选择为:
式中β11>0,τ1是待设计的正常数,为神经网络最优权值V1 *的估计值, 其值由更新律(20)-(21)确定,Θ1(·)为sigmoid函数。
定义神经网络逼近误差表示为:
式中
Θ1(V1 *H1)在附近的Taylor展开为:
式中 为Taylor展开的高阶项,
将(18)代入到(17)中则有
式中
神经网络权值更新律设计为:
式中为表示神经网络学习速率的正常数。
第二步:为了克服复杂性***问题,构造如下固定时微分器获得虚拟控制的导数:
式中表示微分器状态,L,M>0,微分器增益k1,k212应选择使得式(26)和(28)定义的矩阵A1和A为Hurwitz矩阵。μi=iμ-(i-1),式中μ∈(1,1+ι),ι为充分小 的正数,sig(·)α=|·|αsign(·)。
引理1:微分器(23)将在有限时间内给出虚拟控制α1的时间导数,该收敛时间的上界为:
式中P1和Q1为满足如下条件的对称正定矩阵:
式中
P和Q为满足如下条件的对称正定矩阵
PA+ATP=-Q (27)
式中
定义误差变量为e2=x21,取e2的时间导数为:
类似于第一步,使用循环神经网络逼近未知非线性函数
式中H2是隐层输入,为隐层到输出层最优权值向量,为隐层和输入层之间最优权 值向量,Θ2(·)为sigmoid函数,ε2为神经网络逼近误差。
虚拟控制设计为:
式中,的估计,β22>0,τ2是待确定的正常数。
定义循环神经网络逼近误差为:
式中
循环神经网络权值更新律为:
式中,是表示神经网络学习速率的正常数。
第三步:在这一步,虚拟控制α2的导数由如下固定时微分器获得:
为固定时微分器状态变量,(36)中其他参数与(23)具有相同的物理意义。
将误差变量定义为e3=x32,e3的时间导数为:
式中未知的非线性函数使用循环神经网络逼近为:
式中H3为隐层神经元输入,为输出层和隐层间最优权值向量,为隐层和输入层之 间最优权值向量,Θ3(·)为sigmoid函数,ε3为神经网络逼近误差。
进一步,可以写为
式中
虚拟控制输入设计为:
式中,β33>0,τ3是待设计的正常数,为神经网络理想权值系数的估 计值,Θ3(·)为sigmoid函数,H3为隐层神经元输入。
权值更新律设计为
式中是表示神经网络学习速率的正常数。
所设计的实际控制输入为:
式中,
(4)对控制***进行稳定性分析,根据稳定性分析结果确定控制器参数。首先,引入 如下引理:
引理1:对于任意正实数x1,...,xn和0<b<1,如下不等式成立:
引理2:对于任意正实数x1,...,xn和0<p<1,如下不等式成立:
接下来,在第一步,考虑如下的李雅普诺夫函数:
W1的时间导数为:
在第二步,选择李雅普诺夫函数为:
沿着(29),(34),(35)微分W2可得:
在t≥T1后,我们有且(50)变为:
在第3步,考虑如下的李雅普诺夫函数:
对W3求取时间导数则有:
在t≥(n-1)T1后,则有(53)变为:
这说明z1,e1是一致最终有界的。由于Vi *是常值向量,则有 有界。由于z1有界,ξ是有界的。ξ和的有界性导致e1有界。由于Θ1(·), e1,ξ是有界的,β1,γ1,τ1为常数,则α1是有界的。 都是带有有界论域的连续函数,是有界的。由于z1,ξ,e2 Θ2(·),是有界的,β2,γ2,τ2是常数,α2是有界的。由于 均为含有有界论域的连续函数,是有界的。类 似的,α3ζ22和u是有界的。由于Θi(·),Θ′i(·),εi是有界的, 是常值向量,wi是有界的。因此,所有的闭环信号是有界的。
选择如下的李雅普诺夫函数:
后,微分器可以给出虚拟控制精确的微分,即, W4的时间导数为:
当切换增益τi满足:
(52)变为:
式中:β=min{β12,...,βn},γ=min{γ12,...,γn}
根据引理2-3,则有
(61)和(62)代入(60)可得:
则(63)成为:
收敛时间的上界可以估计为:
因此,误差变量将在固定时间T内收敛到0,:
由上述分析可以看出,所设计控制律的控制参数选择应满足以下条件:β33>0,β22>0,β11>0,切换增益τi满足:
(5)采用步骤(4)确定的控制参数对直流电机驱动的机械手实施控制,使得所 驱动的单连杆机械手能够跟踪上理想的运动轨迹,并且保证***输出不违反限制。
实施例:直流电机驱动的机械臂
以直流电机驱动的机械臂为例说明上述固定时预定性能循环神经网络控制方法在 实现所驱动机械臂跟踪理想轨迹上的有效性。由机械子***(1)和电气子***(2) 组成的机械臂数学模型可以表示为:
***参数选取为L=0.05,KB=0.5,R=0.5,ΔI=0.1cos(t)。 死区模型可以写为:
本实施例的一种直流电机驱动机械臂的固定时预定性能神经网络控制方法,包括以下步骤:
(1)确定控制目标:参考输出信号选择为预定性能函数选择为 控制目标确定为***输出可以在固定时间内跟踪上***的参 考输出,同时使得跟踪误差e1=y-yd满足-(0.2exp(-5t)+0.3)ρ(t)<e1(t)<(0.2exp(-5t)+0.3)ρ(t)。
(2)为实现控制目标,设计控制输入为:
式中u*具有如下的表述形式:
(3)根据李雅普诺夫函数稳定性分析,控制器,微分器和循环神经网络学习速率参数 选为βi=γi=0.5,τ2=4,τ3=5,p=5,q=9,μ=1.2,L=M=10,k1=5,k2=10, σ1=5,σ2=10,sigmoid函数选择为Θ(x)=1/(1+exp(-5x))。可以证明, 这组控制参数满足李雅普诺夫稳定性。
(4)采用步骤(3)确定的控制参数对直流电机驱动机械臂实施控制,使得所驱动的机械臂能够跟踪上理想的运动轨迹,同时使得跟踪误差e1=y-yd满足 -(0.2exp(-5t)+0.3)ρ(t)<e1(t)<(0.2exp(-5t)+0.3)ρ(t)。
所提供的一种固定时预定性能神经网络控制方法的流程图示于图1。角位置q,角速度和电枢电流I的时间响应如图2所示。误差的时间响应如图3所示。图4示出了 虚拟控制和真实控制的时间响应。图5展示了不同初始跟踪误差下的收敛时间曲线。 从这些图中可以看出,***轨迹在固定时间内跟踪上参考输出轨迹,跟踪误差没有出 现超过预定性能函数的情况,控制输入、误差变量和***状态有界,随着初值的变化, 收敛时间趋向于一个常数。

Claims (3)

1.一种固定时预定性能循环神经网络机械臂控制方法,其特征在于步骤如下:
步骤1:建立直流电机驱动机械臂的数学模型,直流电机驱动机械臂的数学模型包括机械子***和电气子***,其中机械子***的数学模型为:
式中,q,分别表示角位置、角速度和角加速度,I是电机电枢电流,ΔI为电流干扰,J为电机转子转动惯量,m为连接质量,M为负载质量,d为连接长度,δ为负载半径,g为重力加速度,B为连接的粘滞摩擦系数,Kr是机电转矩耦合系数;
电气子***的数学模型为:
式中,L为电枢电感,R为电枢电阻,KB为反电动势系数,V为输入控制电压;
令x1=q,x3=I,u=V,则由机械子***(1)和电气子***(2)组成的直流电机驱动机械臂可以表示为:
式中,其中i=1,2,3,f1(x1)=0,d1=0,d3=0;由于实际***中存在不确定参数,因此其中i=1,2,3是未知函数;
建立带有未知非线性死区的执行器模型:
式中,v为实际控制输入,Dr(v)和Dl(v)是连续光滑非线性函数,br>0和bl>0是确定死区大小的未知参数;
考虑到Dl(-bl)=0,Dr(br)=0,根据均值定理有:
执行器模型(4)可以重新写为
进一步,(7)可以写为:
u=ωT(t)η(t)v+du (8)
式中:
ω(t)=[ωr(t),ωl(t)]T,η(t)=[ηr(t),ηl(t)]
这里假设存在常数d l d r b l b r 使得 由该假设可得,执行器模型表达式(8)中干扰项du和线性项系数ωT(t)η(t)是有界的,即存在和ν=min{d l ,d r }使得|du|≤ρ,ωT(t)η(t)≥ν;
步骤2:确定的***参考输出为预定性能函数为
式中k,l,ρ为正实数;该预定性能函数具有三个性质:1)2)3)
跟踪误差e1=y-yd被限制在如下范围内:
式中
式中δ10,δ20,ψ1,ψ2,λ1,λ2为正常数;
步骤3:设计固定时预定性能循环神经网络控制器、神经网络权值更新律和固定时微分器,使***输出能够在固定时间内跟踪上参考输出轨迹,同时将***跟踪误差限制在预先指定的性能边界范围内,具体如下:
设计实际控制输入为:
式中u*具有如下的表述形式:
式中,β33>0,τ3是待设计的正常数,为神经网络最优权值V3 *的估计值,其值由更新律(42)-(43)确定,为固定时微分器状态变量,其值由(36)确定,Θ3(·)为sigmoid函数,sig(·)α=|·|αsign(·),H3为隐层神经元输入,e3=x32,α2为虚拟控制,其值由(31)确定,e2=x21,α1为虚拟控制,其值由(16)确定;
神经网络权值估计值的更新律为
式中,是正常数,表示神经网络学习速率;
固定时微分器设计为:
式中,为微分器状态变量,L,M>0,μi=iμ-(i-1),μ∈(1,1+κ),κ为充分小的正常数,k1,k2,σ1,σ2为微分器增益,其值选择应使得矩阵A1和A为Hurwitz矩阵;
虚拟控制α2设计为:
式中β22>0,τ2是待设计的正常数,为神经网络最优权值的估计值,其值由更新律(34)-(35)确定,为固定时微分器状态变量,其值由(23)确定,Θ2(·)为sigmoid函数,H2为隐层神经元输入,e2=x21,α1为虚拟控制,其值由(16)确定,z1=ξ/(1-ξ), 为充分小的正常数,
神经网络权值估计值的更新律为
式中,是正常数,表示神经网络学习速率;
固定时微分器设计为:
式中,为微分器状态变量,其他变量的物理意义与(36)相同;
虚拟控制α1设计为:
式中,β11>0,τ1是待设计的正常数,为神经网络最优权值V1*的估计值,其值由更新律(21)-(22)确定,Θ1(·)为sigmoid函数,H1为隐层神经元输入,其他变量的物理意义与(31)相同;
神经网络权值估计的更新律为
式中为表示神经网络学习速率的正常数;
步骤4:对控制***进行稳定性分析,根据稳定性分析结果确定控制器参数,所述的控制参数选择应满足以下条件:β33>0,β22>0,β11>0,切换增益τi满足:
式中 表示神经网络权值估计误差,w1,w2,w3具有如下形式:
式中,表示二阶及以上阶次的无穷小量,和Vi*表示理想的神经网络权值,εi表示神经网络逼近误差;
步骤5:采用步骤4确定的控制参数对直流电机驱动机械臂实施控制,使***输出能够在固定时间内跟踪上参考输出轨迹,同时将***跟踪误差限制在预先指定的性能边界范围内。
2.根据权利要求1所述的一种固定时预定性能循环神经网络机械臂控制方法,其特征在于κ=0.2。
3.根据权利要求1所述的一种固定时预定性能循环神经网络机械臂控制方法,其特征在于
CN201910664075.2A 2019-07-23 2019-07-23 一种固定时预定性能循环神经网络机械臂控制方法 Expired - Fee Related CN110456641B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910664075.2A CN110456641B (zh) 2019-07-23 2019-07-23 一种固定时预定性能循环神经网络机械臂控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910664075.2A CN110456641B (zh) 2019-07-23 2019-07-23 一种固定时预定性能循环神经网络机械臂控制方法

Publications (2)

Publication Number Publication Date
CN110456641A true CN110456641A (zh) 2019-11-15
CN110456641B CN110456641B (zh) 2022-03-11

Family

ID=68483080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910664075.2A Expired - Fee Related CN110456641B (zh) 2019-07-23 2019-07-23 一种固定时预定性能循环神经网络机械臂控制方法

Country Status (1)

Country Link
CN (1) CN110456641B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110941183A (zh) * 2019-11-30 2020-03-31 华南理工大学 一种基于神经网络的工业机器人动力学辨识方法
CN113359434A (zh) * 2021-04-15 2021-09-07 山东师范大学 针对电动平衡车的有限时间跟踪控制方法及***
CN114700960A (zh) * 2022-03-02 2022-07-05 西北工业大学 一种阶次优化的远程操控行为轮廓规划方法
CN116382066A (zh) * 2023-03-23 2023-07-04 哈尔滨工业大学 一种基于sigmoid型积分增强微分器的信号微分估计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105958515A (zh) * 2016-06-15 2016-09-21 西安交通大学 电力***混沌振荡的固定时动态面高阶滑模抑制方法
CN108549235A (zh) * 2018-05-14 2018-09-18 西北工业大学 一种电机驱动单连杆机械手的有限时神经网络控制方法
CN108845493A (zh) * 2018-08-21 2018-11-20 曲阜师范大学 带有输出约束的机械臂***的固定时间跟踪控制方法
CN109062240A (zh) * 2018-09-28 2018-12-21 浙江工业大学 一种基于神经网络估计的刚性飞行器固定时间自适应姿态跟踪控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105958515A (zh) * 2016-06-15 2016-09-21 西安交通大学 电力***混沌振荡的固定时动态面高阶滑模抑制方法
CN108549235A (zh) * 2018-05-14 2018-09-18 西北工业大学 一种电机驱动单连杆机械手的有限时神经网络控制方法
CN108845493A (zh) * 2018-08-21 2018-11-20 曲阜师范大学 带有输出约束的机械臂***的固定时间跟踪控制方法
CN109062240A (zh) * 2018-09-28 2018-12-21 浙江工业大学 一种基于神经网络估计的刚性飞行器固定时间自适应姿态跟踪控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNKANG NI 等: "Fixed-time adaptive neural network control for nonstrict-feedback nonlinear systems with deadzone and output constraint", 《ISA TRANSACTIONS》 *
JUNKANG NI等: "Fixed-Time Leader-Following Consensus for Second-Order Multiagent Systems With Input Delay", 《IEEE TRANSACTIONSON CIRCUITS AND SYSTEMS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110941183A (zh) * 2019-11-30 2020-03-31 华南理工大学 一种基于神经网络的工业机器人动力学辨识方法
CN113359434A (zh) * 2021-04-15 2021-09-07 山东师范大学 针对电动平衡车的有限时间跟踪控制方法及***
CN114700960A (zh) * 2022-03-02 2022-07-05 西北工业大学 一种阶次优化的远程操控行为轮廓规划方法
CN114700960B (zh) * 2022-03-02 2023-09-08 西北工业大学 一种阶次优化的远程操控行为轮廓规划方法
CN116382066A (zh) * 2023-03-23 2023-07-04 哈尔滨工业大学 一种基于sigmoid型积分增强微分器的信号微分估计方法
CN116382066B (zh) * 2023-03-23 2024-05-10 哈尔滨工业大学 一种基于sigmoid型积分增强微分器的信号微分估计方法

Also Published As

Publication number Publication date
CN110456641B (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
CN110456641A (zh) 一种固定时预定性能循环神经网络机械臂控制方法
CN107561935B (zh) 基于多层神经网络的电机位置伺服***摩擦补偿控制方法
Hu et al. Adaptive robust precision motion control of systems with unknown input dead-zones: A case study with comparative experiments
Hu et al. Performance-oriented adaptive robust control of a class of nonlinear systems preceded by unknown dead zone with comparative experimental results
CN108303885A (zh) 一种基于干扰观测器的电机位置伺服***自适应控制方法
CN108011554B (zh) 永磁同步电机无速度传感器自适应转速跟踪控制***及其设计方法
CN113078861B (zh) 一种永磁同步电机滑模控制方法、***、介质及应用
CN111176118B (zh) 一种基于鲁棒自适应算法的转台伺服***辨识方法
CN108155833B (zh) 考虑电气特性的电机伺服***渐近稳定控制方法
CN104638999B (zh) 基于分段神经网络摩擦模型的双电机伺服***控制方法
Du et al. Modeling and compensation of low-velocity friction with bounds
CN108549235A (zh) 一种电机驱动单连杆机械手的有限时神经网络控制方法
CN106100469B (zh) 基于自适应的电机伺服***鲁棒位置控制器的实现方法
Velthuis Learning feed-forward control-theory, design and applications
CN114578697B (zh) 一种电机驱动机械手的多约束自适应控制方法
Chi et al. Hybrid tracking control of 2-DOF SCARA robot via port-controlled hamiltonian and backstepping
CN111546346A (zh) 一种柔性关节扰动观测方法、力矩控制方法和设备
CN110362110A (zh) 一种固定时自适应神经网络无人机航迹角控制方法
CN108469734A (zh) 考虑状态约束的电机伺服***自抗扰控制方法
CN111506996A (zh) 一种基于辨识误差受限的转台伺服***自适应辨识方法
CN110842911B (zh) 考虑关节电机特性的柔性机械臂联合建模和滑模控制方法
Zou Extended state observer‐based finite time control of electro‐hydraulic system via sliding mode technique
Wang et al. Trajectory tracking control of XY table using sliding mode adaptive control based on fast double power reaching law
CN111200378B (zh) 一种基于迭代学习的压电电机节能控制方法
CN109194244A (zh) 一种面向电动伺服***的控制方法及***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220311